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Abstract
The ISPD 2026 Contest [22] challenges participants to develop
post-detailed placement buffering and sizing tools that optimize
timing and fix electrical rule check (ERC) violations under real-
world constraints. Unlike prior contests, this contest emphasizes
practical physical design challenges including fixed macros and
I/Os, power delivery network (PDN) blockages, soft placement
blockages, and fixed routing resources. The contest provides eight
public benchmarks and four hidden benchmarks, with a range from
15K to 1.4M instances, in the ASAP7 7nm technology node [4] with
multi-threshold voltage cell libraries. Evaluation is performed using
the open-source OpenROAD infrastructure, with scoring based on
timing (total negative slack), power (dynamic and leakage) and
penalties for ERC violations, displacement, routing congestion and
runtime. This paper describes the contest problem formulation,
benchmarks, evaluation methodology, a review of related contests
and a two-year roadmap for continuation in the ISPD 2027 Contest.

CCS Concepts
• Hardware→ Physical design (EDA); • Computing method-
ologies→Machine learning.
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1 Introduction
Post-placement timing closure is increasingly limited by intercon-
nect delay, congestion and electrical rule check (ERC) violations in
modern technology nodes. Two key levers for timing optimization
after global placement are repeater insertion (buffers and inverters)
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and gate sizing. The ISPD 2026 Contest challenges contestants to
develop a post-detailed placement buffering and sizing tool that
improves power, performance and area (PPA) while fixing ERC
violations under a set of real-world physical constraints.
Real-World Motivation. This open, academic research contest
bridges the gap between research methods and real industry flows.
Unlike previous contest settings, this contest tries to emphasize
physical and electrical constraints seen in practice, which include:
• Fixed macros and I/Os. Macros occupy large, immovable re-
gions of the layout, often fragmenting available placement space
and constraining repeater insertion and gate sizing. Also, as in
real-world designs, the I/Os are fixed in our testcases.
• Power delivery network (PDN). The PDN uses significant
routing resources, exacerbating congestion and making DRC-
free routability more challenging. As a result, fixing timing and
ERC violations in congested regions becomes more difficult.
• Soft placement blockages. These blockages represent reserved
regions and allow only specific cells (e.g., physical cells, buffers,
and inverters) to be placed, which further constrains the available
areas in the placement canvas and increases legalization difficulty.
• Fixed routing resource. The routing track supply is fixed, so the
global router may be forced to detour nets in congested regions
to stay within routing resource limits, which in turn makes it
difficult to resolve timing and ERC violations.
Together, these real-world constraints significantly complicate

post-placement timing optimization by limiting available white-
space, increasing local utilization, and raising the difficulty of en-
suring legal and congestion-free cell placement.
Contest Scope. The ISPD 2026 Contest challenges contestants
to develop buffering and sizing tools that operate after detailed
placement. Their tools are expected to offer the following benefits:
• Physically-aware timing optimization. Post-detailed place-
ment, interconnect delays can be estimated more accurately than
after earlier physical design stages (e.g., synthesis, floorplanning
and global placement). This enables the tool to make effective
buffering and sizing decisions for timing optimization.
• ERCviolation fixes. Electrical rules constraints (maximum slew,
maximum capacitance, and maximum fanout) must be addressed
at the post-placement stage to improve timing analysis accuracy
and reduce iterations at the signoff stage.
• Legal and congestion-aware insertion. Solutions must satisfy
all legality constraints, including with respect to PDN and place-
ment blockages, fixed macros, and fixed I/Os. Inserted repeaters
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and resized gates must be placed in legal areas such that global
routing finishes within time limits.
The contest is built on OpenROAD [1] [24] infrastructure, yield-

ing a controlled, open-source environment for benchmarking and
evaluation. To encourage scalability and innovation, contestants
may (but are not required to) leverage GPU-accelerated solutions
or modern ML infrastructure such as PyTorch [14], which have
shown strong potential to address large-scale optimization prob-
lems in physical design [5][7][8][9][10][16]. The contest’s evalua-
tion framework, along with sponsor-provided compute resources
made available to contest teams that pass certain contest stages, will
include GPUs. Nonetheless, the primary objective of this contest
remains to achieve better PPA results under real-world constraints.

In the following, Section 2 presents the contest problem formu-
lation, and Section 3 describes benchmark details. Section 4 dis-
cusses the evaluation environment and metrics. Section 5 reviews
related contests and the development of the ISPD 2026 Contest, and
presents a two-year roadmap. We conclude in Section 6.

2 Contest Problem Formulation
We now present the contest problem definition, followed by the
optimization operations, design constraints, and workflow.

2.1 Problem Definition
Given a post-detailed placement design with fixed macros, I/Os,
PDN and placement blockages, the objective is to optimize timing
and power while fixing ERC violations through gate sizing, VT-
swapping and buffer insertion.
Given:
• A gate-level netlist 𝑁 = (𝐺, 𝐸), where 𝐺 is the set of gates and 𝐸
is the set of nets;
• A legalized placement 𝑃 with cell locations (𝑥𝑖 , 𝑦𝑖 ) for each gate
𝑔𝑖 ∈ 𝐺 ;
• A standard cell library 𝐿 with multiple drive strengths and thresh-
old voltage variants for each logic function; and
• Design constraints including clock period, input/output delays
and ERC limits (maximum slew, maximum capacitance and max-
imum fanout).

Find:
• For each gate 𝑔𝑖 : a library cell 𝑙𝑖 ∈ 𝐿 with appropriate drive
strength and threshold voltage;
• A set of buffers and inverters 𝐵 to insert, with locations and
connectivity; and
• An updated placement 𝑃 ′ that remains legal.
Minimize: A weighted combination of:
• Total negative slack (TNS) for timing optimization;
• Dynamic and leakage power consumption;
• ERC violations (slew, capacitance and fanout);
• Runtime of the developed buffering and sizing tool as well as the
overall flow;
• Cell displacement; and
• Global routing overflow.
Subject to:
• Placement legality;
• Logical equivalence (netlist function preserved); and
• Fixed elements (macros, I/Os and physical cells unchanged).

2.2 Optimization Operations
The contest permits three types of netlist transformations.
Gate Sizing. Gate sizing replaces a logic gate with a functionally
equivalent cell of different drive strength. Larger drive strengths
reduce output slew and delay at the cost of increased area, input
capacitance and power. Smaller drive strengths reduce power and
capacitive load on upstream drivers but may increase delay and
output slew.
VT-Swapping. VT-swapping replaces a cell with a functionally
equivalent cell having different threshold voltage. The ASAP7 li-
brary provides three variants:
• SLVT (Super-Low VT): Fastest switching but highest leakage;
• LVT (Low VT): Fast switching with high leakage; and
• RVT (Regular VT): Slower switching but lowest leakage.
Critical paths benefit from SLVT/LVT cells for speed, while non-
critical paths use RVT cells to minimize leakage power.
Buffer and Inverter Insertion. Repeater insertion adds buffer or
inverter cells to:
• Fix slew violations by breaking long interconnects;
• Fix capacitance violations by isolating high-fanout loads; and
• Improve timing by reducing interconnect delay on critical paths.
Inverters may be inserted in pairs to maintain signal polarity. The
number of inverters on any source-to-sink path must be even to
preserve logical equivalence.

2.3 Design Constraints
The following constraints must be satisfied by all solutions.
• Macros, I/Os and physical cells are fixed and cannot be moved.
• PDN grid defines blocked routing layers; cells with pin shapes
on blocked layers cannot be placed in those regions.
• Soft placement blockages permit only physical cells, along with
buffers and inverters, to be placed within their boundaries.
• Routing track supply is fixed.
• Netlist restructuring is limited to repeater insertion, sizing and
VT swapping.
• The output netlist must remain functionally equivalent to the
input netlist (as verified via logic equivalence checking).
• Timing analysis uses setup (late-mode) checks with a single PVT
corner and ideal clock.
• Logic gates (except repeaters) must not move beyond a specified
displacement threshold; excess movement is penalized.

2.4 Workflow
Figure 1 shows the contest workflow. The inputs to contestants
include (i) a debuffered gate-level netlist (.v file) that is input to
OpenROAD global placement, (ii) a post-detailed placement, le-
galized placement (.def file) and (iii) design constraints (.sdc file)
including clock period and I/O delays. Contestants’ tools perform
buffering and gate sizing, and must output the modified .v, .def and
changelist files. The evaluation flow then performs legality checks
(checkPlacement) and equivalence checks, followed by global rout-
ing, parasitic extraction and OpenSTA-based timing and power
analysis to report final QoR metrics.
Input Formats. Each benchmark includes standard design files in
the ASAP7 technology node. The provided files include:
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• .lef file: Specifies the physical definitions of the different cells,
metal layers and layout of the design;
• .lib file: Library file containing the logic description, look-up
tables for delay, slew and power with the area of each cell;
• .sdc file: Specifies input port delay and transition, output port
delay and capacitance, and specified clock period;
• .v file: Debuffered gate-level netlist that is input to OpenROAD
global placement; this netlist is debuffered with the exception
of the I/O buffering added through the OpenROAD-flow-scripts
(ORFS) [25] flow; and
• .def file: Post-detailed placement, legalized placement with fixed
I/Os, macros, PDNs, and placement and routing blockages.

Output Formats. The tool must return a legalized placement con-
sisting of:
• Modified Verilog Netlist (.v): Includes only repeater insertions
and cell sizing modifications; and
• Updated DEF File (.def): Reflects the placement solution (must
be legalized).

Global Placement

Detailed Placement

(Baseline) (Contest)

OR Resizer Contestant Tool

Legality Check

Equiv. Check

Global Routing

Parasitic Ext.

Timing Analysis

QoR Report

Fixed Modifiable Evaluation

Figure 1: ISPD 2026 Contest flow. The contestant’s buffering
and sizing tool replaces the OpenROAD Resizer step. Fixed
placement stages (gray) provide inputs; the evaluation flow
(orange) performs equivalence checking, global routing, par-
asitic extraction and timing analysis to measure QoR.

3 Benchmarks
We evaluate contestants’ solutions using a diverse benchmark
suite that includes eight public designs and four hidden designs.
These designs are drawn from the OpenROAD-flow-scripts [25] and
MacroPlacement [30] [2] [3] repositories. They are implemented
in the ASAP7 [4] technology node using a 7.5T multi-threshold
voltage (multi-VT) cell library. The synthesized design sizes range
from 15K to 1.4M instances and include both macro-free designs
(four public designs) and macro-containing designs (eight designs:
four public and four hidden).
Technology Platform. All benchmarks use the ASAP7 technol-
ogy [4], which is a predictive 7nm academic process design kit.
The cell library includes multiple threshold voltage variants (SLVT,

LVT and RVT) and multiple drive strengths, enabling contestants
to explore timing-power tradeoffs through gate sizing. The library
includes standard cells for combinational logic (AND-OR, OR-AND,
simple gates), sequential elements (flip-flops) and buffers/inverters
for repeater insertion.
Designs. Table 1 summarizes the public benchmark characteris-
tics. The benchmarks include designs with varying target clock
periods (TCPs) ranging from 200ps to 1300ps and placement utiliza-
tion ranging from 30% to 70%. Each design has two variants. The
base variant (without suffix) uses commercial synthesis with man-
ual macro placement. The v2 variant uses Yosys [31] for synthesis
and OpenROAD for macro placement, and includes soft placement
blockages that further constrain the available whitespace for buffer
insertion and gate sizing. Both variants use ORFS for physical cell
(e.g., tapcell) insertion, power delivery network (PDN) insertion,
global placement and detailed placement. Four hidden benchmarks
are derived from AR37 and BSG_CHIP with different TCPs, place-
ment utilizations and blockages.

Table 1: Benchmark characteristics. TCP denotes target clock
period in picoseconds. Util denotes placement utilization.
#blocks denotes the number of soft placement blockages.

Design TCP Util #std cells #macros #nets #pins #blocks

AES 250 0.40 15K 0 14K 389 0
JPEG 350 0.70 50K 0 44K 48 0
AR37 900 0.30 0.1M 37 147K 496 0
AES_v2 200 0.40 15K 0 15K 390 8
JPEG_v2 450 0.65 50K 0 61K 49 26
AR37_v2 950 0.45 0.1M 37 183K 497 41
BSG_CHIP 1200 0.30 0.9M 220 1.1M 136 83
BSG_CHIP_v2 1300 0.50 1.4M 220 1.3M 137 90

Figure 2 shows the placement layouts of the four v2 benchmarks,
illustrating the placement blockages (shown in light magenta) that
contestants must navigate when inserting buffers or moving cells.
The yellow triangles indicate I/O pin locations on the chip boundary.

4 Evaluation
This section describes the evaluation framework. We present the
evaluation environment, followed by the metrics used to score
contestants’ solutions.

4.1 Evaluation Environment
The contest provides an evaluation environment via Docker and
Apptainer (formerly Singularity) containers. All participants must
build on top of this environment. If additional packages are needed,
participants provide a setup.sh script that completes in under two
hours to set up the environment. More details about the submis-
sion requirements are described in the ISPD 2026 Contest GitHub
repository [22].
Compute Resources. We provide an evaluation environment via
the Purdue Anvil supercomputer [28], with a specified number of
CPU and GPU hours in each team’s allocation, after successful
alpha submission. Purdue Anvil offers 128-core/128-thread AMD
EPYC-7763 CPUs and NVIDIA A100 GPUs, with CUDA 12.6 and
Apptainer. The evaluation environment has the following limits:
• One NVIDIA A100 GPU (40 GB)
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(a) AES_v2 (b) JPEG_v2

(c) AR37_v2 (d) BSG_CHIP_v2

Figure 2: Placement layouts of the four v2 benchmarks. Light
magenta regions indicate placement blockages. Yellow trian-
gles indicate I/O pins.

• 16 physical CPU cores/threads
• 64 GB memory
• 200 GB disk
Software Infrastructure. The evaluation uses a modified Open-
ROAD [24] (based on commit hash: 7559f96) and OpenROAD-Flow-
Scripts [25] (commit hash: 66e441c). The evaluation flow performs
the following steps: (i) read technology LEF files and standard-cell
libraries; (ii) read placement DEF files and Verilog netlist; (iii) check
placement legality and logical equivalence; (iv) perform global rout-
ing with congestion reporting; (v) extract parasitics from global
routing; and (vi) run timing analysis and power analysis to report
violations and metrics. The evaluation flow is contained within a
hybrid Docker and Apptainer container, with support for CUDA
and an included copy of Miniconda 3 to enable the use of GPU-
accelerated ML frameworks.

4.2 Evaluation Metrics
Contestants’ solutions are evaluated based on global routing qual-
ity, runtime efficiency and legality, using OpenROAD’s timing and
power analysis infrastructure. The scoring metric compares normal-
ized improvement versus a baseline [19] (OpenROAD Resizer with
repair_design and repair_timing commands). Table 2 shows
the weights for each score component. These weights may be ad-
justed and finalized after the alpha submission, and will be incor-
porated in working code in the contest GitHub repository [22].
PPAMetrics. The primary PPA (power, performance, area) metrics
are calculated as

𝑆𝑃𝑃𝐴 =𝑤tns × ΔTNS +𝑤dpower × Δdpower +𝑤lpower × Δlpower, (1)

where Δ𝑇𝑁𝑆 is the normalized TNS improvement

ΔTNS =
TNS − TNSbaseline
|TNSbaseline | + 𝜖

, (2)

Δ𝑑𝑝𝑜𝑤𝑒𝑟 is the normalized dynamic power (DPower) improvement

Δdpower =
DPowerbaseline − DPower

DPowerbaseline
, (3)

Δ𝑙𝑝𝑜𝑤𝑒𝑟 is the normalized leakage power (LPower) improvement

Δlpower =
LPowerbaseline − LPower

LPowerbaseline
, (4)

𝑤tns,𝑤dpower and𝑤lpower are weights for each PPA component. All
timing and power results are reported by OpenSTA [27].
ERC Violation Penalty. ERC violations are penalized based on
the sum of violation values after global routing

𝑃ERC =𝑤slew · Δslew +𝑤cap · Δcap +𝑤fanout · Δfanout, (5)

where Δ𝑠𝑙𝑒𝑤 is the normalized slew violation reduction

Δslew =
SlewViolation − SlewViolationbaseline

|SlewViolationbaseline | + 𝜖
, (6)

Δ𝑐𝑎𝑝 is the normalized capacitance violation reduction

Δcap =
CapViolation − CapViolationbaseline

|CapViolationbaseline | + 𝜖
, (7)

Δ𝑓 𝑎𝑛𝑜𝑢𝑡 is the normalized fanout violation reduction

Δfanout =
FanoutViolation − FanoutViolationbaseline

|FanoutViolationbaseline | + 𝜖
, (8)

and𝑤slew,𝑤cap and𝑤fanout are corresponding weights.
Runtime. Runtime efficiency is evaluated using both the buffering
and sizing tool runtime and the total flow runtime. The tool runtime
penalty is defined as

𝑅tool =
𝑡tool − 𝑡baselineTool

𝑡baselineTool
, (9)

where 𝑡tool is the runtime of the contestant-developed tool, and
𝑡baselineTool is the runtime of the OpenROAD Resizer.

The total flow runtime penalty is defined as

𝑅flow =
𝑡flow − 𝑡baselineFlow

𝑡baselineFlow
, (10)

where 𝑡flow is the total runtime of the contestant’s flow (including
buffering, sizing, and the fixed evaluation flow), and 𝑡baselineFlow is
the runtime of the baseline flow.

The overall runtime penalty is computed as

𝑅 =𝑤toolRuntime · 𝑅tool +𝑤flowRuntime · 𝑅flow, (11)

where𝑤toolRuntime and𝑤flowRuntime are the runtime weights. A max-
imum runtime limit is enforced for each testcase, with final limits
determined after the alpha submission.
Average Displacement Penalty. Placement legality is evaluated
using the average Manhattan displacement of movable cells from
their original positions

𝑃dis =𝑤dis ·
𝐷avg − 𝐷avg,baseline

𝐷avg,baseline
, (12)

where 𝐷avg is the average displacement of the contestant’s solution
and 𝐷avg,baseline is the displacement of the baseline solution.
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Global Routing Overflow Penalty. Poor global routing quality
is further penalized using routing overflow metrics. The maximum
overflow penalty is defined as

𝑃max =
𝑂max −𝑂max,thr

𝑂max,thr
, (13)

and the total overflow penalty is defined as

𝑃total =
𝑂total −𝑂total,thr

𝑂total,thr
, (14)

where 𝑂max and 𝑂total are the maximum and total global routing
overflow values after routing, and 𝑂max,thr and 𝑂total,thr are the
corresponding thresholds.

The overall overflow penalty is computed as

𝑃overflow =𝑤maxOverflow · 𝑃max +𝑤totalOverflow · 𝑃total, (15)

where𝑤maxOverflow and𝑤totalOverflow are the overflow weights.

Table 2: Scoring weights for each metric component. TBD
values will be determined after the alpha submission.

Metric Weight Description

𝑤tns 80 Total negative slack
𝑤dpower 40 Dynamic power
𝑤lpower 40 Leakage power
𝑤slew 0.001 Slew violation
𝑤cap 10 Capacitance violation
𝑤fanout 1 Fanout violation
𝑤toolRuntime TBD Tool runtime
𝑤flowRuntime 1 Flow runtime
𝑤dis TBD Displacement
𝑤maxOverflow 1 Max GR overflow
𝑤totalOverflow 1 Total GR overflow

Hard Constraints. The following hard constraints must be satis-
fied by all submitted solutions.
• Placement legality: Final placement must pass legality checks
performed by the OpenROAD checkPlacement command. The
following checks are enforced.
– Placed check: All cells must have valid placement status.
– In rows check: Cells must be properly placed within defined
rows, and cell orientation must match row/site orientation.

– Site alignment check: Cell x-coordinate must be aligned to site
width, and y-coordinate must be on a valid row coordinate.

– Overlap check: No cell overlaps are permitted.
– Blocked layers check: Cells with pin shapes on blocked layers
must not overlap blocked routing layers.

– Soft blockage check: Only buffers, inverters and physical cells
(tapcells, fillers, endcaps, tie cells) may be placed in soft block-
age regions.

• Logical equivalence: The netlist must be logically equivalent.
Several checks are performed.
– Sizing equivalence:When sizing an instance, the new library
cell must be functionally equivalent to the original master cell
(same logic function, but different drive strength or thresh-
old voltage). Equivalence is determined using a predefined
equivalent cell list provided with the contest benchmarks.

– Instance insertion: Only buffers and inverters may be inserted.
No other cell types can be added to the netlist, and no existing
cells (except those being resized) can be removed.

– Pin connectivity: Original driver-to-sink pin connections must
be preserved; pin swapping on gates is not permitted.

– Buffer tree parity: For each source-to-sink path in the origi-
nal netlist, the buffered tree must contain an even number
of inverters to preserve logical equivalence. This is verified
efficiently in 𝑂 (𝑛) time (where 𝑛 is the number of cells in the
buffer tree) using Algorithm 1.

Algorithm 1: Buffer Tree Parity Verification
Input: Original netlist 𝑁 , post-optimization netlist 𝑁 ′
Output: true if parity check passes, false otherwise

1 foreach net 𝑛 in 𝑁 do
2 𝑠𝑟𝑐 ← driver pin of 𝑛;
3 𝑜𝑟𝑖𝑔𝑆𝑖𝑛𝑘𝑠 ← sink pins of 𝑛;
4 𝑣𝑎𝑙𝑖𝑑𝑆𝑖𝑛𝑘𝑠 ← ∅;
5 𝑄 ← queue with (𝑠𝑟𝑐, 0) ; // (pin, inverter count)

6 while𝑄 is not empty do
7 (𝑝𝑖𝑛, 𝑐𝑛𝑡 ) ← 𝑄 .dequeue();
8 // 𝑐𝑛𝑡 is #inv found in 𝑁 ′ between original

source-sink pairs

9 foreach sink 𝑠 connected to 𝑝𝑖𝑛 via net edge in 𝑁 ′ do
10 𝑐𝑒𝑙𝑙 ← instance containing 𝑠 ;
11 if 𝑐𝑒𝑙𝑙 is newly inserted then
12 if 𝑐𝑒𝑙𝑙 is inverter then
13 𝑄 .enqueue(output of 𝑐𝑒𝑙𝑙 , 𝑐𝑛𝑡 + 1);
14 else
15 𝑄 .enqueue(output of 𝑐𝑒𝑙𝑙 , 𝑐𝑛𝑡 ); // buffer

16 else
17 // Original cell: check parity

18 if 𝑐𝑛𝑡 mod 2 == 0 then
19 𝑣𝑎𝑙𝑖𝑑𝑆𝑖𝑛𝑘𝑠 ← 𝑣𝑎𝑙𝑖𝑑𝑆𝑖𝑛𝑘𝑠 ∪ {𝑠 };

20 if 𝑜𝑟𝑖𝑔𝑆𝑖𝑛𝑘𝑠! = 𝑣𝑎𝑙𝑖𝑑𝑆𝑖𝑛𝑘𝑠 then
21 return false;

22 return true;

The algorithm performs a Breadth-First Search (BFS) traversal
from each driver pin to verify inverter parity.
– Lines 1–4: For each net, extract the driver pin (𝑠𝑟𝑐), collect
original sink pins (𝑜𝑟𝑖𝑔𝑆𝑖𝑛𝑘𝑠), and initialize an empty valid
sinks set.

– Line 5: Initialize BFS queue with the source pin and inverter
count of zero.

– Lines 6–7: Process each queued pin by dequeuing and examin-
ing its connected sinks in the optimized netlist.

– Lines 8–15: For newly inserted cells, inverters increment the
count (𝑐𝑛𝑡 + 1) while buffers preserve it (𝑐𝑛𝑡 ), and the output
pin is enqueued for further traversal.

– Lines 16–19: For original cells (sinks), mark the sink as valid
only if the inverter count is even (𝑐𝑛𝑡 mod 2 == 0), ensuring
signal polarity is preserved.

– Lines 20–21: After processing all paths, return false if any
original sink is unreachable with even parity.

– Line 22: Return true if all nets pass the parity check.
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• No floorplan perturbation: The following elements must re-
main unchanged from the input.
– Fixed locations:Macro cells and I/O pins must not be moved.
– Physical cells: Standard cells that are not being resized must
remain at their original locations.

– Layout elements: Blockages and PDN must be preserved.
Final Score. The final score is computed as

𝑆final =𝐶HC · (𝑆PPA − 𝑃ERC − 𝑅 − 𝑃dis − 𝑃overflow), (16)

where 𝐶HC = 1 if all hard constraints are satisfied and 𝐶HC = −∞
otherwise.

5 Discussion
This section reviews relevant previous contests, the development
of this ISPD 2026 Contest, and the two-year roadmap leading to the
ISPD 2027 Contest.

Table 3: Comparison of contest features across prior related
contests and the ISPD 2026 Contest. DPL = Detailed Place-
ment; RC-GRT = RC extraction from global routing; STA-PT
= PrimeTime-based static timing analysis.

Features ISPD ICCAD MLCAD Ours
’12 [12] ’13 [13] ’24 [15] ’25 [11] ’25 [6]

Physical Design Awareness

DPL-Aware × × ✓ ✓ ✓ ✓
Macro × × ✓ ✓ ✓ ✓
PDN × × ✓ ✓ ✓ ✓
Blockage × × × × × ✓
PDK-Routable × × ✓ ✓ ✓ ✓

Parasitic Model

C-Lumped ✓ × × × × ×
RC-Distributed × ✓ ✓ ✓ ✓ ✓
RC-Placement × × × ✓ × ×
RC-GRT × × ✓ × ✓ ✓

Timing Analysis

STA-PT ✓ ✓ × × × ×
STA-OpenSTA × × ✓ ✓ ✓ ✓

Optimization Capabilities

Buffering × × × ✓ ✓ ✓
VT-Swapping ✓ ✓ × ✓ ✓ ✓
Sequential × × × ✓ × ✓
Restructuring × × × × ✓ ×
Scale & Compute

950K+ #Inst ✓ ✓ × × × ✓
GPU × × ✓ ✓ ✓ ✓

5.1 Review of Related Contests
Several prior contests have explored aspects of gate sizing, buffer-
ing and timing optimization. However, these contests typically
simplified key elements of real-world physical design flows. Table 3
summarizes key feature differences.
ISPD 2012–2013 Discrete Gate Sizing Contests. The ISPD 2012
[12] and ISPD 2013 [13] Contests focused on timing-driven gate
sizing using discrete standard-cell libraries, with the objective of
meeting setup timing constraints while minimizing leakage power.
These contests operated purely at the logic level, assuming fixed

netlists without placement or physical awareness. Consequently,
they did not consider congestion, PDN, legalization, or other physi-
cal feasibility constraints.
ICCAD 2024 Contest Problem C: Scalable Logic Gate Sizing.
The ICCAD 2024 Contest Problem C [15] focused on scalable gate
sizing for timing and power optimization, encouraging the use of
machine learning techniques and GPU acceleration. This contest
disallowed buffer insertion, netlist edits, or cell relocation.
ICCAD 2025 Contest Problem C: Incremental Placement Op-
timization Beyond Detailed Placement. The ICCAD 2025 Con-
test [11] addressed post-detailed placement optimization, allowing
simultaneous gate sizing, buffer insertion, and limited cell reloca-
tion within a legalized design context. While this formulation is
similar to that of ISPD 2026 Contest, the testcases were simplified
and did not capture real-world constraints such as PDN-induced
placement gaps and complex blockages. In addition, the contest
focused on post-placement PPA metrics without consideration of
routing quality.
MLCAD 2025 Contest: ReSynthAI: Physical-Aware Logic Re-
synthesis for Timing Optimization Using AI. The MLCAD
2025 Contest [6] explored AI-driven logic resynthesis for timing
optimization, introducing the CircuitOps [17] abstraction to support
graph-based learning and structure-aware transformations. The
contest allowed cloning, resizing, and logic rewiring operations.
However, the problem formulation remained abstracted from actual
implementation flows, omitting physical blockages and routing
considerations.

5.2 ISPD 2026 Contest Development
The ISPD 2026 Contest differs from prior contests by incorporating
key real-world constraints, including fixed macros, user-specified
soft placement blockages, PDN–induced gaps in the placement site
map and fixed I/O locations. These constraints reduce the available
placement area and increase legalization and congestion complex-
ity, thereby significantly raising the difficulty of post-placement
buffering and gate sizing.

The contest infrastructure and benchmarks were developed in
close collaboration with the OpenROAD developers. They provided
valuable feedback during benchmark construction and evaluation
flow design, helping identify scalability limitations and corner cases.
In particular, the evaluation flow has been refined to support large-
scale designs by excluding extremely large fanout nets (e.g., clock
net) from global routing [20], since the contest focuses on post-
placement buffering and sizing for data paths under ideal clock as-
sumptions. In addition, the OpenROAD placement verification flow
has been extended to correctly honor soft placement blockages, en-
suring consistent and physically meaningful legality checking [29].

To support a deployable and reproducible evaluation environ-
ment, the contest provides compute resources to contestants after
successful alpha submissions. Specifically, the contest provides
evaluation environment on the Purdue Anvil supercomputer [28],
with a specified allocation of CPU and GPU hours. Contestants
are expected to use their own computational resources for primary
development and to leverage the provided environment for tuning
and practice evaluation.
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5.3 Two-year Roadmap
Building on the foundation established in ISPD 2026 Contest, our
plan is for the ISPD 2027 Contest to further advance the research
context by introducing more challenging and realistic conditions.
The goal is to stress the robustness, adaptability and scalability of
buffering and sizing strategies under tighter physical and timing
constraints. Enhancements under consideration for the ISPD 2027
Contest include the following.
• Multi-CornerMulti-Mode (MCMM) timing constraints.Tim-
ing and powermust be optimized across multiple process-voltage-
temperature corners and operating modes. This introduces signif-
icant complexity for buffering and sizing decisions, which must
meet timing constraints across all mode-corner combinations
while balancing power consumption.
• Incremental infrastructure improvements. As OpenROAD
capabilities advance, the evaluation infrastructure will incorpo-
rate higher cell utilization targets, updated baseline flows, and
refined legality checks.
• Post-CTS sizing and buffering. Extending optimization to post-
clock tree synthesis will enable contestants to leverage useful
clock skew for timing improvement through coordinated data
path and clock path optimization.
• Hold timing constraints. Including hold timing checks will
reflect real-world signoff constraints, and will require sizing and
buffering decisions to balance setup and hold margins simultane-
ously.
• Iterative ECO-style optimization. In ECO-style workflows,
tools will iteratively generate sizing and buffering solutions, eval-
uate results, and refine decisions to progressively improve PPA
across multiple optimization passes.
• Multi-stage evaluation. Evaluation of sizing and buffering qual-
ity at multiple design stages, including post-placement, post-CTS
and post-route, will enable assessment of tool robustness and
adaptability across the physical design flow.
• Community and contestant feedback. Importantly, the ISPD
2027 Contest will also be shaped by feedback from ISPD 2026
contestants and the broader EDA research community. We wel-
come suggestions on problem formulations, evaluation metrics
and new challenges that reflect emerging industry needs.

6 Conclusion
This paper has presented the ISPD 2026 Post-Placement Buffering
and Sizing Contest, describing the problem formulation, benchmark
suite, and evaluation methodology. Building on insights from prior
contests, this year’s contest is designed to reflect realistic industrial
challenges while remaining accessible to the research community.
A two-year roadmap will support continued development and com-
munity engagement for the ISPD 2027 Contest. We hope that this
work will spur new research innovations and provide a robust
platform for evaluating future advances in physical optimization.
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