

ORFS-agent: Tool-Using Agents for Chip Design Optimization

MLCAD 2025

Amur Ghose, Andrew B. Kahng, Sayak Kundu, Zhiang Wang

UCSD

September 9 2025

Roadmap

1. Motivation
2. Concept & Contributions
3. Method
4. Experiments
5. Results
6. Limitations & Next
7. Takeaways

Open, reproducible; replication badges.

Motivation — EDA flow tuning is high-dimensional

- Knobs: *hundreds–thousands*; RTL→GDS

- Knobs: *hundreds–thousands*; RTL→GDS
- Plain BO: weak domain priors; objective design burden; poor high-D scaling

- Knobs: *hundreds–thousands*; RTL→GDS
- Plain BO: weak domain priors; objective design burden; poor high-D scaling
- Agents: read logs; reason in context; call tools; iterate

- Knobs: *hundreds–thousands*; RTL→GDS
- Plain BO: weak domain priors; objective design burden; poor high-D scaling
- Agents: read logs; reason in context; call tools; iterate
- Core loop: propose → parallel ORFS runs → read metrics/logs → refine

- Knobs: *hundreds–thousands*; RTL→GDS
- Plain BO: weak domain priors; objective design burden; poor high-D scaling
- Agents: read logs; reason in context; call tools; iterate
- Core loop: propose → parallel ORFS runs → read metrics/logs → refine
- Model-agnostic: no fine-tune; swap in stronger LLMs

- Classical BO treats the vector of knobs as *opaque*; kernel + acquisition on an unlabeled space scales poorly in high- D

- Classical BO treats the vector of knobs as *opaque*; kernel + acquisition on an unlabeled space scales poorly in high- D
- Here, knobs have *names and physics*: e.g., Core Util $\uparrow \Rightarrow$ congestion risk; Clock Period $\downarrow \Rightarrow$ timing pressure

- Classical BO treats the vector of knobs as *opaque*; kernel + acquisition on an unlabeled space scales poorly in high- D
- Here, knobs have *names and physics*: e.g., Core Util $\uparrow \Rightarrow$ congestion risk; Clock Period $\downarrow \Rightarrow$ timing pressure
- The agent exploits semantics and logs: recognizes regimes, uses priors (ranges, monotonicities), and proposes *meaningful* batches

- Classical BO treats the vector of knobs as *opaque*; kernel + acquisition on an unlabeled space scales poorly in high- D
- Here, knobs have *names and physics*: e.g., Core Util $\uparrow \Rightarrow$ congestion risk; Clock Period $\downarrow \Rightarrow$ timing pressure
- The agent exploits semantics and logs: recognizes regimes, uses priors (ranges, monotonicities), and proposes *meaningful* batches
- Loop: read logs \Rightarrow summarize context \Rightarrow choose sampling scheme (local sweep, bracket, or exploratory LHS) \Rightarrow refine

- Classical BO treats the vector of knobs as *opaque*; kernel + acquisition on an unlabeled space scales poorly in high- D
- Here, knobs have *names and physics*: e.g., Core Util $\uparrow \Rightarrow$ congestion risk; Clock Period $\downarrow \Rightarrow$ timing pressure
- The agent exploits semantics and logs: recognizes regimes, uses priors (ranges, monotonicities), and proposes *meaningful* batches
- Loop: read logs \Rightarrow summarize context \Rightarrow choose sampling scheme (local sweep, bracket, or exploratory LHS) \Rightarrow refine
- Outcome: better early signal, fewer wasted trials than black-box BO at similar parallelism

Roadmap

1. Motivation
2. **Concept & Contributions**
3. Method
4. Experiments
5. Results
6. Limitations & Next
7. Takeaways

1. **ORFS-agent**: LLM autotuner inside ORFS; parallel trials; metric-aware refinement
2. **NL objectives**: single/multi-objective (WL, ECP); NL constraints
3. **Tool-using loop**: INSPECT / MODEL / AGGLOMERATE; optional BO for sample-efficiency
4. **Model-agnostic**: benefits scale with foundation model strength

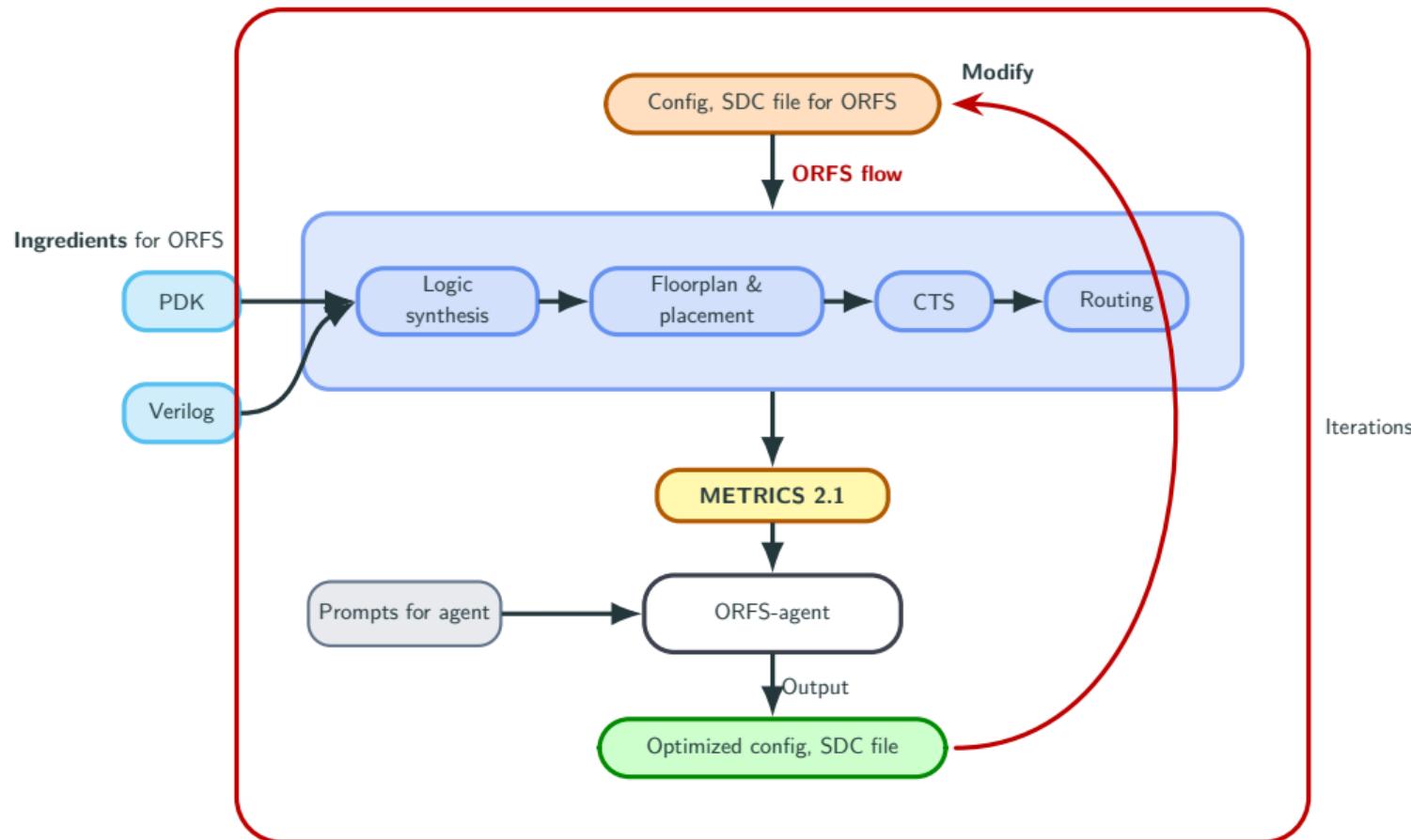
Related work (very brief)

- **BO/autotuning**: Ray Tune, HyperOpt, Spearmint; EDA-specific OR-AutoTuner for ORFS
- **LLM + optimization**: function-calling agents and “LLM-augmented BO” (e.g., LLAMBO-style) show viability on structured domains
- **This work**: seated *inside* ORFS; uses *tool-inspected* context instead of raw CSV; supports NL objectives/constraints and parallel batches

Roadmap

1. Motivation
2. Concept & Contributions
3. **Method**
4. Experiments
5. Results
6. Limitations & Next
7. Takeaways

Method — ORFS-agent pipeline



Method — objectives, surrogates, constraints

Actual metrics: WL, ECP; baselines: α ; surrogates from CTS: '

- Single-objective (WL): $\min \frac{WL}{WL_\alpha}$

Method — objectives, surrogates, constraints

Actual metrics: WL, ECP; baselines: α ; surrogates from CTS: '

- Single-objective (WL): $\min \frac{WL}{WL_\alpha}$
- If WL missing: $\min \frac{WL'}{WL'_\alpha}$

Method — objectives, surrogates, constraints

Actual metrics: WL, ECP; baselines: α ; surrogates from CTS: '

- Single-objective (WL): $\min \frac{WL}{WL_\alpha}$
- If WL missing: $\min \frac{WL'}{WL'_\alpha}$
- Multi-objective: $\min \left(\frac{WL}{WL_\alpha} + \frac{ECP}{ECP_\alpha} \right)$

Method — objectives, surrogates, constraints

Actual metrics: WL, ECP; baselines: α ; surrogates from CTS: '

- Single-objective (WL): $\min \frac{WL}{WL_\alpha}$
- If WL missing: $\min \frac{WL'}{WL'_\alpha}$
- Multi-objective: $\min \left(\frac{WL}{WL_\alpha} + \frac{ECP}{ECP_\alpha} \right)$
- Constraints (NL): "Improve X; other metrics $\leq 2\%$ worsen"

Method — tunables (4-var & 12-var)

- 4-var: Core Util, TNS End %, LB Add On Place Density, Clock Period
- +8 vars: GP/DP padding, DPO enable, Pin/Above layer adjust, Flatten, CTS cluster size, CTS cluster diameter

Var	Range
Core Util	20–99
TNS End %	0–100
LB Add On	0.00–0.99
Clock Period	> 0 (ns/ps)
CTS size	10–40
CTS diam.	80–120

Conforms to METRICS 2.1 and OR-AutoTuner practice.

- **INSPECT**: PCA; min/max; correlations; plots ⇒ context summaries (not raw CSV)

- **INSPECT**: PCA; min/max; correlations; plots \Rightarrow context summaries (not raw CSV)
- **MODEL**: fast fits (linear, Gaussian, GMM, etc.); LLM tunes model hyperparams

- **INSPECT**: PCA; min/max; correlations; plots \Rightarrow context summaries (not raw CSV)
- **MODEL**: fast fits (linear, Gaussian, GMM, etc.); LLM tunes model hyperparams
- **AGGLOMERATE**: candidate pruning via coverage/diversity; DPP-like tools; cap at 25 parallel

Method — INSPECT: what goes into context

- **Signal shaping**: PCA/top- k loadings; min/max; heavy-tail checks; outlier flags
- **Structure**: pairwise correlations (summarized, not raw matrices); simple partials where available
- **Health**: run diagnostics (timeouts, DRCs, CTS warnings) \Rightarrow binary/ordinal features
- **Text \rightarrow features**: log snippets \Rightarrow short normalized summaries (bounded tokens)
- **Design priors**: known feasible ranges/monotonocities injected as compact hints

Aim: *succinct* context—human-data-scientist style notes, not CSV dumps.

Method — MODEL: lightweight surrogates

- **Fits**: linear/ridge/lasso; isotonic trends; Gaussian/GMM; KDE; GP-lite on small active sets
- **Tuning**: the agent chooses hyperparameters and feature subsets; rejects unstable fits
- **Use**: rank candidates; detect diminishing returns; propose bracketing around promising modes
- **Cost ceiling**: keep per-iter modeling \ll one ORFS batch; no fine-tuning of LLM itself

Surrogates guide *selection* - but they do not replace physical evaluation.

Method — AGGLOMERATE: pick 25 diverse trials

- **Candidate pool:** ≥ 100 feasible suggestions from heuristics + surrogates
- **Down-selection:** coverage/diversity (DPP-like scoring or k -medoids) under batch budget (25; 12 for JPEG)
- **Guards:** include safe baselines; cap step sizes; ensure boundary probes for space learning
- **Outcome:** low redundancy, good space coverage, and at least one conservative configuration

- **Function-calling**: schema-checked tools; strict I/O contracts; deterministic fallbacks
- **Isolation**: containerized ORFS; pinned commits; reproducible metrics extraction
- **Parallelism**: batch launcher (25/iter); streaming log taps for early failure detect
- **Stability**: seeded sampling; retry budget; clamp out-of-range proposals
- **No model fine-tune**: benefits scale with stronger LLMs without re-training

Roadmap

1. Motivation
2. Concept & Contributions
3. Method
4. **Experiments**
5. Results
6. Limitations & Next
7. Takeaways

- Nodes: **SKY130HD, ASAP7**; Circuits: **IBEX, AES, JPEG**
- ORFS env: pinned commit; containerized; reproducible
- Trials/iter: 25 (12 for JPEG)
- Compare: ORFS-agent (4/12 vars; with/without tools) vs OR-AutoTuner
- Resources: GCP VM (112 vCPUs, 220 GB RAM)
- Metrics: WL, ECP; also area, count, power, PDP

Open-source: github.com/ABKGroup/ORFS-Agent; Cost: < \$50 at run time; < \$10 now

Reproducibility checklist

- **Code:** pinned ORFS commit; agent + tools in repo; one-command launcher
- **Env:** Docker image + exact package locks; CPU/RAM spec disclosed
- **Seeds:** fixed RNG seeds for sampling; recorded per-iter configs/metrics
- **Metrics:** WL, ECP defined/normalized vs baseline α ; surrogates documented
- **Baselines:** OR-AutoTuner config + iteration budgets published
- **Artifacts:** logs, CSVs, and JSON summaries for each iter; script to regenerate figures

Roadmap

1. Motivation
2. Concept & Contributions
3. Method
4. Experiments
5. **Results**
6. Limitations & Next
7. Takeaways

Results — key outcomes

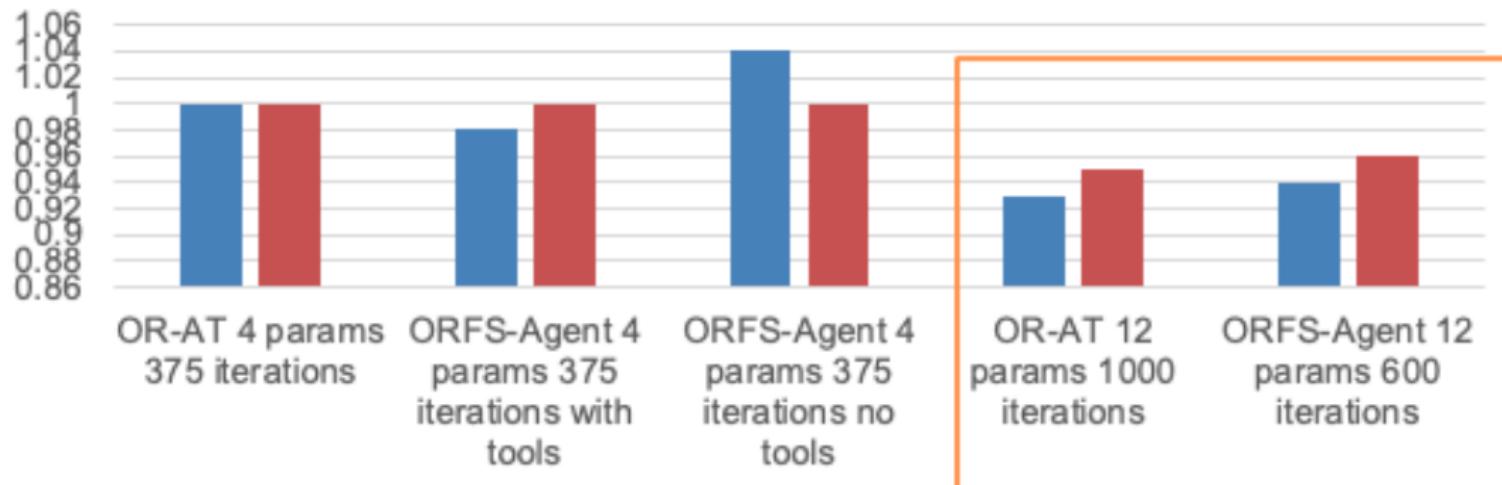


Figure 1: Comparison of ORFS-agent and OR-AutoTuner, with [wirelength](#) and [ECP](#), normalizing OR-AT 4 params and 375 iterations to 1.0

Baseline: OR-AT (4 vars, 375 iters) $\equiv 1.0$. ORFS-agent: $\approx 40\%$ fewer iters; $\approx 13\%$ gains in WL or ECP (single-objective).

Results — constrained optimization (NL prompts)

- Prompt: “Minimize ECP; Area/Count/Power/PDP $\leq 2\%$ worse”
- Effect: primary improves; secondaries hold or improve modestly

Observed: $\approx 11\%$ WL gains; $\approx 8\%$ ECP gains (scenario-dependent).

Prompt patterns (ready to reuse)

- **Single-objective:** “*Improve WL. If WL is unavailable, optimize the CTS surrogate WL’.*”

Prompt patterns (ready to reuse)

- **Single-objective:** “*Improve WL. If WL is unavailable, optimize the CTS surrogate WL’.*”
- **Multi-objective (balanced):** “*Minimize $\frac{WL}{WL_\alpha} + \frac{ECP}{ECP_\alpha}$. Prefer configurations that keep both terms ≤ 1.0 .*”

Prompt patterns (ready to reuse)

- **Single-objective:** “*Improve WL. If WL is unavailable, optimize the CTS surrogate WL’.*”
- **Multi-objective (balanced):** “*Minimize $\frac{WL}{WL_\alpha} + \frac{ECP}{ECP_\alpha}$. Prefer configurations that keep both terms ≤ 1.0 .*”
- **Constrained:** “*Minimize ECP; ensure Area/Count/Power/PDP worsen by $\leq 2\%$. If infeasible, return the least-violating candidate and explain.*”

Prompt patterns (ready to reuse)

- **Single-objective:** “*Improve WL. If WL is unavailable, optimize the CTS surrogate WL'.*”
- **Multi-objective (balanced):** “*Minimize $\frac{WL}{WL_\alpha} + \frac{ECP}{ECP_\alpha}$. Prefer configurations that keep both terms ≤ 1.0 .*”
- **Constrained:** “*Minimize ECP; ensure Area/Count/Power/PDP worsen by $\leq 2\%$. If infeasible, return the least-violating candidate and explain.*”
- **Safety rails:** “*Never exceed documented ranges. If a proposal hits a boundary, include a conservative neighbor.*”

Roadmap

1. Motivation
2. Concept & Contributions
3. Method
4. Experiments
5. Results
6. **Limitations & Next**
7. Takeaways

- Surrogates: imperfect when detailed routing timeouts
- Heuristics: kernel/AF in GP set manually
- Next: literature integration; code-diff models in-flow; broader constraints

What changed in last six months

- LLMs: larger contexts (to ~1M tokens)
- Scale: ~10k iterations feasible
- Cadence: rapid model release
- Implication: avoid brittle fine-tunes; prefer modular, model-agnostic agents

Threats to validity & failure modes (with mitigations)

- **Routing timeouts** distort surrogates \Rightarrow use timeout flags; fall back to robust summaries; penalize incomplete runs
- **Nondeterminism** across stages \Rightarrow fix seeds; replicate key points; report variance bars
- **Metric drift** (tool/version) \Rightarrow pinned toolchain; normalize to concurrent baselines, not historical
- **Over-exploitation** near local modes \Rightarrow enforce exploratory quota in AGGLOMERATE
- **PDK/testcase leakage** of priors \Rightarrow keep priors coarse (ranges/monotonocities); avoid hardcoding recipe lore

Roadmap

1. Motivation
2. Concept & Contributions
3. Method
4. Experiments
5. Results
6. Limitations & Next
7. **Takeaways**

Takeaways

- **Model-agnostic agent**: automates ORFS tuning; future-proof to better LLMs

Takeaways

- **Model-agnostic agent**: automates ORFS tuning; future-proof to better LLMs
- **Competitive/better QoR**: beats BO-only, fewer iterations; co-optimization; NL constraints

Takeaways

- **Model-agnostic agent**: automates ORFS tuning; future-proof to better LLMs
- **Competitive/better QoR**: beats BO-only, fewer iterations; co-optimization; NL constraints
- **Open & cheap**: reproducible; research-scale cost

Takeaways

- **Model-agnostic agent**: automates ORFS tuning; future-proof to better LLMs
- **Competitive/better QoR**: beats BO-only, fewer iterations; co-optimization; NL constraints
- **Open & cheap**: reproducible; research-scale cost

QR Code linking to Drive folder with ORFS-agent and a lot more!