
A Partitioning-Based CAD Flow For
Interposer-Based Multi-Die FPGAs

Mahesh A. Iyer∗, Andrew B. Kahng‡, Jason Luu†, Bodhisatta Pramanik‡, Kristofer Vorwerk∗, Grace Zgheib∗
‡University of California San Diego, La Jolla, CA, USA, ∗Altera, †Intel Corporation

Email: ∗{mahesh.iyer, kris.vorwerk, grace.zgheib}@altera.com, †{luu jason}@hotmail.com, ‡{abk, bopramanik}@ucsd.edu

Abstract—Multi-die interposer-based FPGA architectures
present several design challenges: (i) limited inter-die con-
nectivity (interposer) resources and (ii) increased interposer
delays compared to intra-die routing. Addressing these chal-
lenges is critical, as compared to intra-die routing, they
directly impact the routability, routed wirelength (rWL) and
maximum clock frequency (Fmax) of the design. In this
paper, we present a partitioning-based CAD flow tailored
for interposer-based multi-die FPGA architectures. Central
to our approach is FPGAPart, the first open-source timing-
driven netlist partitioner that can handle FPGA designs while
addressing modern architectural constraints. We integrate
FPGAPart with the open-source tool VTR 7.0. In particular,
we use: (i) VTR 7.0’s pre-packing solutions as clustering hints
during partitioning and (ii) the FP-Growth algorithm [14]
to detect frequently occurring patterns (instances) across
multiple timing paths for clustering. Additionally, we in-
troduce neighborhood influences-based cutting planes into
the core ILP solver in FPGAPart, resulting in a ∼38× ILP
runtime speedup with <1% degradation in solution quality,
compared to using no neighborhood influences. Compared
to the default VTR 7.0, our flow achieves a geometric mean
improvement of ∼3% in rWL and ∼3% in Fmax for a two-
die configuration, with similar improvements across other
configurations. Compared to hMETIS [17], METIS [18] and
TritonPart [5], FPGAPart achieves improvements up to ∼4%
in rWL and ∼7% in Fmax for a two-die configuration, with
similar improvements across other configurations.

I. INTRODUCTION

The increasing complexity and size of modern designs
have led to significant innovations in FPGA architectures.
To meet the demand for higher device capacities, die-
stacking technologies have emerged as a solution which
enables the creation of larger FPGAs by integrating mul-
tiple smaller FPGA dies [1]. Among these technologies,
interposer-based multi-die FPGAs have drawn consider-
able interest. This configuration connects multiple FPGA
dies through a silicon interposer [19]. Commonly referred
to as a multi-die, or 2.5D, architecture, this approach
achieves higher integration levels by leveraging advanced
stacking techniques [19].

Multi-die architectures based on interposers present
significant challenges due to limited inter-die connectivity
resources and increased interposer delay compared to
intra-die routing. Routing through the interposer intro-
duces higher delays, potentially making nets (paths) routed
through it timing-critical. Placement and routing tools
must address these challenges, specifically the limited
inter-die interconnects and the higher interposer delay.

These factors directly impact the routability, routed wire-
length (rWL), and maximum clock frequency (Fmax) of
the design. Furthermore, the limited availability of inter-
die interconnects can lead to congestion at die boundaries,
necessitating more sophisticated CAD tools.

To mitigate these challenges, classical min-cut1 circuit
(hypergraph) partitioning is often considered as an effec-
tive strategy. The partitioner divides the netlist into several
sub-netlists—each sub-netlist is assigned and implemented
on a specific die. While the min-cut objective aligns
well with minimizing inter-die communication, multi-die
FPGA partitioning involves more than optimizing cutsize;
for example, the partitioner must be timing aware to
prevent timing-critical nets (hyperedges) from getting cut
and routed through the interposer. Heterogeneity (multi-
dimensional weights) of FPGA designs and the pres-
ence of “groups” (grouping constraints) of logic (e.g.,
carry chains, DPS, RAMs) further increase the problem
complexity—most hypergraph partitioners do not handle
these constraints [6], [17].

In this work, we present a partitioning-based CAD flow
tailored for interposer-based multi-die FPGA architectures.
The main contributions of this paper are as follows.
• A partitioning-based CAD flow. We propose a

partitioning-based CAD flow for interposer-based multi-
die FPGAs. Our flow is implemented with the open-
source tool VTR 7.0 (interposer branch) [39].

• A partitioner for multi-die FPGAs. We propose FPGA-
Part, the first open-source netlist partitioner that can
handle FPGA designs. FPGAPart is timing aware and
extends the capabilities of the open-source ASIC parti-
tioner, TritonPart [5]. We propose three enhancements.

(i) Pre-packing guidance. We use VTR’s pre-packer
to pre-pack the netlist, helping the partitioner to
avoid poor clustering solutions.

(ii) Parallelized FP-Growth. We propose a fully par-
allelized FP-Growth algorithm [14] to improve
timing-driven clustering.

(iii) Neighborhood influences-based cutting planes. We
introduce the concept of neighborhood influences
and incorporate cutting planes into the core Inte-

1We use the terms cut, cutsize and cutline in this paper. Cutsize is used
in the context of partitioning a hypergraph, cutline is used in the context
of the FPGA architecture and cut is used in both contexts.

ger Linear Programming (ILP) solver in FPGA-
Part to achieve faster solver convergence. To the
best of our knowledge, this is the first work to
utilize cutting planes in the context of ILP-based
hypergraph partitioning [32].

• Experimental confirmations. We evaluate the perfor-
mance of our FPGAPart-based flow using the VTR
7.0 [30] and Koios benchmark [2] sets, and compare
against the default VTR 7.0 flow and modern partition-
ers, including hMETIS [17], METIS [18] and Triton-
Part [5]. Experimental results demonstrate that FPGA-
Part can significantly improve Quality of Results (QoR)
metrics, achieving improvements up to 14% in rWL
and 23% in Fmax, compared to the default VTR flow.
Additionally, our FPGAPart-based flow shows lower
sensitivity to seed noise and produces more routable
designs, even under constrained interposer conditions.

II. RELATED WORKS

Traditionally, partitioning has been utilized in the FPGA
CAD flow within two contexts: (i) packing and (ii) adding
partitioner in the flow to improve quality of results.
Packing. Partitioning has previously been extensively used
for packing [23], [11], [12], [8], [34], [35]. In partitioning-
based packing, clusters are formed by recursively bi-
partitioning the circuit until the partitions contain fewer
primitives than a predefined limit. Following this, a series
of inter-partition moves are performed to legalize the
packing solution [11], [12]. Several seed-based methods
[3], [22], [21] and clustering-based methods [31] have also
been proposed across literature.
CAD flow. Partitioners are often used in the CAD flow for
implementing designs on a multi-die FPGA architecture.
In [25], the authors investigated the impact of partitioning
at two different stages of the VTR flow: before packing (on
the primitive netlist) and after packing (on the clustered
netlist). The study demonstrated that partitioning the prim-
itive netlist yields better results compared to partitioning
the clustered netlist. The authors use METIS [18] as their
partitioning tool. However, METIS requires the conversion
of a hypergraph to a graph, which can lead to information
loss [33], and it lacks timing awareness. The authors of
[27] explore the effect of imbalance on partitioning quality
for multi-die FPGA systems. The authors use hMETIS [17]
to partition the netlist prior to the packing step. They
establish that an imbalance factor of 10 and 12 is best for a
two-die and three-die architecture, respectively; however,
the study does not examine the impact of hMETIS on rWL
and Fmax. Additionally, hMETIS does not support multi-
dimensional balance constraints (corresponding to differ-
ent logic types on FPGAs) and lacks timing awareness—
leaving room for further exploration and improvement.

In this work, we focus on integrating a timing-driven
FPGA-based partitioner in a multi-die FPGA CAD flow.
The rest of the paper is organized as follows. Section III
discusses some preliminary studies and our problem state-
ment; Section IV describes how we integrate a partitioner

in the multi-die CAD flow; Section V describes our par-
titioner in detail; Section VI presents experimental setup
and results; and Section VII offers concluding remarks.

III. PRELIMINARIES

A. Modeling 2.5D Multi-Die FPGA Architectures

Open-source interposer-based multi-die FPGA architec-
tures are still unavailable for academic research. In [25],
the authors model multi-die architectures by adapting a
flagship monolithic FPGA architecture in VTR 7.0. In
this work, we use [25] to model interposer-based multi-
die FPGA architectures for our experiments. Below, we
briefly review the key strategies for modeling multi-die
architectures (details can be found in [25]).
Introducing horizontal cutlines. The monolithic FPGA
die is partitioned into multiple dies by defining horizontal
cutlines.2 These cutlines are directly incorporated into the
FPGA fabric. The number of cutlines is user-defined;
for example, a four-die FPGA requires three horizontal
cutlines. The cutlines are aligned with the FPGA grid,
ensuring equal die heights across all dies. Special care
is taken to avoid intersecting any logical blocks with the
cutlines, preserving logical integrity.
Modifying the routing resource graph. The routing
resource graph (rrgraph3) is then modified to model inter-
poser characteristics: limited inter-die interconnects and
high interposer delay. A fraction of the routing wires is
removed at the boundaries between dies to model these
characteristics. An interposer architecture with a higher
percentage of reduced wires can simplify manufacturabil-
ity but increase overall routing complexity.
Adapting the placer. The default placer in VTR 7.0
assumes a monolithic FPGA die and does not account
for the presence of an interposer. To address this, two
modifications are made to the VTR placer:
• Timing cost. VTR’s placement timing cost function is

modified to consider the number of times a path crosses
the interposer. The increased delay introduced by the
interposer is factored into this cost function.

• Wiring cost. VTR’s placement wiring cost function is
adapted to reflect the reduced inter-die connectivity.

Adapting the router. Additional terms are introduced to
the router’s cost function to capture the interposer delay
and costs associated with the modifed rrgraph.

B. Problem Statement

Since the number of wires that can cross the inter-
poser between multiple FPGA dies is limited, using a
partitioner to divide the circuit into one partition per die
offers a promising approach for an efficient CAD flow.
The objective is to optimize the performance metrics:
rWL and Fmax. A partitioning-based CAD flow can also

2A cutline represents a split on the monolithic die. Cutlines can
have various configurations—horizontal, vertical, or zigzag pattern—
although [25] implements only horizontal cutlines.

3rrgraph is the data structure in VTR that defines all available routing
wires (rrnodes) and switches in the FPGA.

TABLE I: Terminology and notation used in this work.

Symbol Description
wv ∈ Rm

+ , Input weight vector for vertex v and
we ∈ R+ scalar weight for hyperedge e (input).
H,V,E Hypergraph, vertex set, and hyperedge set (input).
K Number of output blocks (input).
ϵ Imbalance parameter for blocks (input).
P = {p1, p2, ..., pl} Set of timing-critical paths.
slackp, slacke Slack for path p and hyperedge e.
S = {V1, V2, ..., VK} A partitioning solution with K blocks: {Vi|i =

1, 2, ..., K}.
Cut(e) Cut(e) = 1 if e is cut by S, 0 otherwise.
tp, te Timing weight (cost) for path p and edge e.
D(p) Number of times a path p is cut.
SF (p) Snake factor of path p.
α Hyperedge cut cost scaling factor.
β Non-negative scalar for hyperedge timing cost

scaling.
γ Non-negative scalar for path timing cost scaling.
τ Non-negative scalar for snaking cost scaling.
Λ Non-negative scalar for setting cutting planes.

be beneficial by enabling faster compile times through
parallelized compiles for each of the partitions. In the
following, we discuss the partitioning problem.
Partitioning problem statement. Our partitioning prob-
lem formulation is adapted from [5]. The input is a hy-
pergraph H(V,E), where each vertex v ∈ V is associated
with a non-negative m-dimensional weight vector wv , and
each edge e ∈ E has a non-negative scalar weight we.
Additionally, we are given a positive integer K and aim
to partition H into K partitions.

Given these inputs, I, the goal is to compute a partition
of V into K disjoint partitions S = {V1, . . . , VK} that
minimizes the cost function: Φ(I, S) = Φcut(I, S) +
Φtime(I, S). Here, Φcut(I, S) measures the cutsize, con-
sistent with the standard hypergraph partitioning formula-
tion, while Φtime(I, S) accounts for the timing cost. The
constraints we consider are as follows with details in [5].
• Grouping constraints. Vertices belonging to the same

group must be assigned to the same partition in S [5].
An example of this constraint is to ensure that groups
of logic, such as carry chains, digital signal processing
(DSPs) or RAMs, remain grouped during partitioning.

• Multi-dimensional balance constraints. Let wv(j) de-
note the jth coordinate of the weight vector wv . We
define Wj =

∑
v∈V wv(j) as the total weight in the jth

dimension. The solution S must satisfy the following
balance constraint for all 1 ≤ i ≤ K and 1 ≤ j ≤ m:(

1

K
− ϵ

)
Wj ≤

∑
v∈Vi

wv(j) ≤
(

1

K
+ ϵ

)
Wj (1)

The standard balance constraint must hold along each
weight dimension. This is a hard constraint and must
always be satisfied.

• Timing constraints. We want the partitioner to minimize
the number of timing-critical paths (P) that are cut. For
a K-way partition, we also want to limit the maximum
number of times any timing-critical path can be cut. The
set P and its associated slacks can be provided as inputs
by a static timing analyzer (STA) tool.

Given a user-defined parameter α (Table I), [5] defines the
cutsize (cut cost) as: Φcut(I, S) = α

∑
e∈E Cut(e).

Fig. 1: Our partitioning-based VTR 7.0 flow.

The timing cost follows the formulation in [5], with the
quantities te, tp, D(p), and SF (p) defined in Table I. The
timing cost Φtime(I, S) is based on three components,
respectively associated with the timing costs of: (i) hyper-
edges that are cut (Cut); (ii) timing-critical paths that are
cut ((D)); and (iii) the snaking factor (SF) [5]. The overall
timing cost is expressed as:

Φtime(I, S) =
|E|∑
e=1

βteCut(e)+
∑

p∈{P}

(γD(p)tp + τSF (p))

(2)
Here, β, γ, τ are user-defined scalar parameters that

control the relative importance of the respective costs
(Table I). The final objective of our partitioner is twofold:
(i) seamless integration into a standard CAD flow, and (ii)
enhancing QoR (rWL and Fmax) for multi-die FPGAs.

IV. INTEGRATING PARTITIONING INTO A CAD FLOW

In [25], partitioning at the pre-packing stage is shown
to yield better results; we followed suit by integrating
FPGAPart in the VTR 7.0 flow prior to packing as well.4
Our proposed multi-die FPGA CAD flow is illustrated in
Figure 1 and works as follows.
• The input to this flow is a primitive netlist. To in-

corporate a hint of heterogeneity that can guide the
partitioning process, we run VTR 7.0’s pre-packing
before partitioning.5 Our experiments demonstrate that
incorporating the pre-packing information during parti-
tioning improves the quality of results compared to no
pre-packing before partitioning (see Section V-A).

• From the generated partitioning solution, we derive
packing constraints. Two primitives assigned to different
partitions (dies) cannot be packed into the same logical
block. This feature is implemented in VTR 7.0 [39].

• Next, the partitioning information is forwarded to the
placement stage, where we generate placement (region)

4VTR 8.0 lacks infrastructure to support multi-die FPGA architectures,
so we use VTR 7.0 in this work.

5The pre-packed solution consists of soft constraints for the VTR
packer generated by grouping together netlist primitives that should stay
together as a single unit during packing. For further details, refer to [21].

Fig. 2: FPGAPart framework. AAPack is VTR’s packer.

constraints. The placement region of a logical block is
determined as the intersection of the placement regions
of the primitives packed into that block.

• Finally, we run the router to generate the post-
implementation netlist and record the rWL and Fmax.

In this work, we leverage the open-source hypergraph
partitioner TritonPart [5] and extend it to handle multi-
die FPGA applications (FPGAPart). FPGAPart can handle
multi-dimensional balance constraints. However, there are
complex legality constraints governing which LUTs and
FFs can be packed into logic blocks, as well as which
multipliers can be packed into DSP blocks [20]. The
partitioner is unaware of these constraints, since it is
challenging to estimate accurate resource usage on the
FPGA. While running the partitioner after the packing
stage is a workaround, this degrades the solution quality.
We describe our FPGAPart in more detail in Section V.

V. OUR PARTITIONING APPROACH: FPGAPART

The overall partitioning framework for FPGAPart is
shown in Figure 2. FPGAPart adopts the multilevel parti-
tioning paradigm in [5]. There are three phases.
• Multilevel clustering. Here a sequence of progressively

coarser hypergraphs is constructed. At each level of
coarsening, clusters of vertices are identified and merged
into a single vertex, representing the cluster in the
coarser hypergraph.

• Initial partitioning. After completing the clustering pro-
cess, we compute an initial partitioning solution for the
coarsest hypergraph. The reduced size of this hypergraph
allows us to leverage a range of partitioning methods:
(i) random, (ii) very illegal (VILE) [7] and (iii) ILP.

• Multilevel refinement. After obtaining a feasible solution
on the coarsest hypergraph from initial partitioning, we
perform uncoarsening and move-based refinement to
improve the partitioning solution. These steps are carried
out level by level, gradually refining the solution as
the hypergraph is uncoarsened. We use two variants
of refinement: (i) direct K-way FM [5] and (ii) K-way
pairwise FM (K-way P-FM) [9].

Fig. 3: FPGAPart’s multilevel clustering steps.

A. Timing-Driven Clustering

The timing-driven clustering approach in FPGAPart
builds upon the multilevel First-Choice (FC) implemen-
tation in TritonPart [5] (illustration in Figure 3). Tri-
tonPart integrates timing awareness by incorporating a
rating function that evaluates a timing score for clustering
decisions. Specifically, it identifies hyperedges with high
timing costs and prioritizes merging the vertices connected
by these hyperedges. We extend TritonPart’s timing-driven
clustering by introducing two enhancements.
Pre-packing guidance. We utilize VTR’s pre-packing
information as clustering hints during FPGAPart’s
multilevel clustering. VTR employs a pre-packing
step to identify logic which can be grouped together
to form adaptive logic modules (ALMs), which can
later be clustered into logic array blocks (LABs). This
information is used to induce the first level of multilevel
clustering, ensuring that primitives belonging to the same
pre-packed group are assigned to the same cluster during
the coarsening stage.

Algorithm 1: Parallelized FP-Growth algorithm.
Inputs: Dataset D, Minimum support threshold min support,

Number of threads num threads
Outputs: Frequent patterns F

1 /* Step 1: Filter and sort frequent items */
2 item counts← Count occurrences of each item in D
3 frequent items← {item | item counts[item] ≥

min support}
4 foreach transaction t ∈ D do
5 t← Filter t to retain only frequent items
6 t← Sort t in descending order of frequency

7 /* Step 2: Construct the FP-Tree */
8 Initialize FP-Tree T with root node
9 foreach transaction t ∈ D do

10 Insert t into T , updating counts for existing prefixes

11 /* Step 3: Mine patterns from the FP-Tree */
12 F ← ∅
13 Divide T into num threads disjoint subtrees

T1, T2, . . . , Tnum threads

14 Initialize patterns← vector of maps (one per thread)
15 foreach thread i ∈ [1, num threads] in parallel do
16 patterns[i]← Subtree Mining(Ti, ∅,min support)

17 F ←
num threads⋃

i=1
patterns[i]

18 /* Step 4: Return the result */
19 return F

Exploring patterns in timing paths. We extract the
top |P | timing-critical paths using VTR’s STA tool [24].
From the P paths, we identify frequently occurring vertex
sets (patterns) using pattern-mining techniques [4]. These
vertex sets serve as additional clustering guidance. Since
these sets include vertices that frequently appear in P ,
clustering them together can reduce the snaking factor. We
use a parallelized FP-Growth algorithm adapted from [14]
and presented in Algorithms 1 and 2.

Algorithm 1 begins by filtering items (primitives) in
the dataset D (top P timing-critical paths) based on their
frequency (Lines 2–6), retaining only those that meet or
exceed the specified min_support. Each transaction—
representing a collection of items—is then processed in
two steps: (i) filtering to retain only frequent items and (ii)
sorting these items by frequency to perform prefix-based
pattern mining [14], which systematically explores shared
prefixes6 in transactions. In the next stage, a Frequent
Pattern Tree (FP-Tree) [14] is constructed (Lines 8–10).
This compact data structure maintains the frequency and
order of items while eliminating redundancy. To exploit
parallelism, the FP-Tree is divided into disjoint subtrees
(Lines 12–16), which are independently mined using mul-
tiple threads. Each thread performs subtree mining (Algo-
rithm 2), to explore frequent patterns within its assigned
subtree. The results from all threads are combined (Line
17) to generate the output.

Algorithm 2: Subtree mining in FP-Growth.
Inputs: FP-Tree T , Prefix pattern prefix, min support
Outputs: Frequent patterns F

1 /* Step 1: Initialize patterns */
2 F ← ∅
3 /* Step 2: Process each frequent item */
4 foreach item i ∈ T (in reverse frequency order) do
5 new pattern← prefix ∪ {i}
6 F ← F ∪ {new pattern}
7 /* Step 3: Extract conditional pattern base */
8 conditional base← Prefix paths leading to i
9 /* Step 4: Build conditional FP-Tree */

10 conditional tree←
Construct FP-Tree from conditional base

11 /* Step 5: Recursively mine conditional
FP-Tree */

12 if conditional tree ̸= ∅ then
13 F ← F ∪ Subtree Mining(conditional tree,

new pattern,min support)

14 return F

Our subtree mining methodology is detailed in Algo-
rithm 2. Given a prefix pattern and min_support, the
algorithm recursively extracts frequent patterns from a
given FP-Tree. It begins by initializing an empty set of
frequent patterns F (Line 2). Next, the algorithm processes
each frequent item in reverse frequency order, generating
new patterns by appending the current item to the prefix
(Lines 4–6). For each new pattern, the conditional pattern
base—the set of all prefix paths leading to the current
item—is extracted (Line 8). Using this conditional pattern

6A prefix refers to the common initial subsequence shared by multiple
transactions. E.g., if two transactions are [A,B,C] and [A,B,D], the
prefix is [A,B].

base, a conditional FP-Tree is constructed (Line 10), repre-
senting a reduced search space for further pattern mining.
If the conditional FP-Tree is non-empty, the algorithm
recursively mines it (Lines 12–13) to discover additional
patterns, which are then added to F .

After completion of FP-Growth, the rest of the multi-
level hierarchy is constructed by running [5]’s multilevel
timing-driven clustering.

B. Neighborhood Influences-Based Cutting Planes
Improving the scalability and runtime of the ILP solver

is crucial for improving the performance of FPGAPart.
To achieve this, we use cutting planes. The core idea
is to add additional constraints, known as “cuts”, that
exclude non-optimal parts of the solution space. By nar-
rowing the feasible region, cutting planes can potentially
guide the solver toward an optimal solution quickly—
accelerating the solver’s convergence. In this work, we
introduce neighborhood-influences-based cutting planes to
accelerate the ILP solver. First, we formulate our ILP-
based partitioning problem instance as follows.
ILP-based partitioning problem. Hypergraph partition-
ing can be solved optimally (or near-optimally) by casting
the problem as an ILP [32]. To write balanced hypergraph
partitioning as an ILP, for each block Vi we introduce
binary {0,1} variables, xv,i for each vertex v, and ye,i for
each hyperedge e. Setting xv,i = 1 signifies that vertex
v is in block Vi, and setting ye,i = 1 signifies that all
vertices in hyperedge e are in block Vi. We then define
the following constraints for each 0 ≤ i < K:
•
∑K−1

j=0 xv,j = 1, for all v ∈ V
• ye,i ≤ xv,i for all e ∈ E, and v ∈ e
• (1

K − ϵ) ≤
∑

v∈Vi
wvxv,i ≤ (1

K + ϵ)W
where W =

∑
v∈V wv.

The objective is to maximize the total weight of the
hyperedges that are not cut, i.e.,

maximize
∑
e∈E

K−1∑
i=0

weye,i.

If accurate resource estimates for the FPGA dies are
available, the constraints on the partition weight vectors
can be replaced with precise resource counts for each type.
In this work, we consider an imbalance factor of 5% [25].
Neighborhood influences. We use CPLEX [37] as our
ILP solver and leverage the UserCallback API to
dynamically add cutting planes. We first find vertices with
undetermined assignments, where a vertex xv is consid-
ered undetermined if the difference between its two largest
assignment variables is less than a specified tolerance—
we use 0.5 in our implementation. For such vertices, the
neighborhood influence is calculated by analyzing the sum
of assignment variables of its neighboring vertices for
each partition. Based on this influence, the partition ibest
with the highest influence is selected. Cutting planes are
then added to encourage the decision: xv,ibest ≥ Λ for
the most influenced partition, and for all other partitions:
xv,j < Λ for all j ̸= ibest.

Fig. 4: (a) Default VTR 7.0 flow, and (b) the partitioner-
augmented VTR 7.0 flow.

In our implementation, we use Λ = 0.7. This value
is empirically chosen to ensure that the most influenced
partition, ibest, receives a sufficiently high assignment
variable xv,ibest . In our extensive background experiments,
using Λ = 0.7 achieves the best quality-runtime tradeoff.

VI. EXPERIMENTAL SETUP AND RESULTS

FPGAPart is implemented in C++ using approximately
14K lines of code and is built on the OpenROAD in-
frastructure [16], [38], with all scripts and code avail-
able in our public repository [36]. We use CPLEX ver-
sion 12.10 [37] as our ILP solver. We implemented our
FPGAPart-based CAD flow using the VTR 7.0 inter-
poser branch [39].7 For all experiments in this paper,
we use the flagship architecture of the VTR 7.0 project
(k6 frac N10 mem32K 40nm.xml) [20].8 For the hyper-
parameters mentioned in Section III-B (α, β, γ and τ), we
use the default values from [5]. We divide our validation
efforts into four major categories: (i) validation of parti-
tioning in the CAD flow (Section VI-A), (ii) an ablation
study of the neighborhood influences-based cutting planes
(Section VI-B), (iii) study of seed noise (Section VI-C),
and (iv) assessment of routability (Section VI-D).
Baselines for comparisons. We use the VTR 7.0 bench-
mark set [30] and the Koios benchmark set [2] for our
evaluations. The characteristics of these benchmarks are
shown in Tables II and III.9 We compare our FPGAPart-
based flow with the default VTR 7.0 flow (i.e., with
no partitioner). Additionally, we integrate TritonPart [5],
hMETIS [17] and METIS [25] with the VTR 7.0 flow and
compare their performance with FPGAPart (Figure 4). We
use an imbalance factor [17] of 5% [25] for all partitioners.
In our experiments, all circuits are evaluated under “low-
stress” routing conditions, using a channel width that is
30% larger than the minimum required for routability [25].

7The VTR 7.0 interposer branch provides infrastructure to model
interposer-based multi-die FPGAs. We hence use this version of VTR
7.0 in all of our experiments.

8The implementation in [39] does not support modern Stratix archi-
tecture, so we do not use them in our evaluations.

9A few benchmarks were excluded because they result in segmentation
faults when run with the default VTR 7.0 interposer branch [39].

Fig. 5: Comparisons of rWL (top) and Fmax (bottom).
Left: VTR 7.0 benchmarks, two-die architecture. Right:
Koios benchmarks, three-die architecture.

A. Validation of Partitioning in the CAD Flow
Our evaluation includes three architectural configura-

tions: two-die, three-die, and four-die setups. To model
the interposer, we remove 70% of the interconnects cross-
ing the dies and set an interposer delay of 1ns. These
configurations are generated using the scripts provided
in [39], with the following settings: (i) num_cuts set
to 1, 2 and 3, (ii) percent_wires_cut set to 70 and
(iii) delay_increase set to 1. All numbers presented
are averaged over 10 unique seed runs.
Comparison with default. Results (rWL and Fmax) are
shown in Tables II and III for the VTR 7.0 and Koios
benchmarks, respectively. Our observations are as follows.
• VTR 7.0 benchmarks. For all configurations, the

FPGAPart-based VTR 7.0 flow almost always achieves
better rWL and Fmax compared to the default VTR
7.0 flow (Table II). The geomean rWL improvements
are 3%, 3% and 5% for the two-die, three-die and
four-die configurations, respectively, while the geomean
Fmax improvements are 3%, 2% and 2% for the same
configurations. Notably, in the two-die setup, the design
mcml shows an rWL improvement of 10%, while
stereovision2 achieves an Fmax improvement of 9%.
Additional comparisons of best results across all seeds
from the default VTR 7.0 flow and the FPGAPart-based
VTR 7.0 flow are available in the repository [36].

• Koios benchmarks. The FPGAPart-based VTR 7.0 flow
achieves considerable improvements compared to the
default VTR 7.0 flow (Table III). The geomean rWL
improvements are 3%, 6% and 10% for the two-
die, three-die, and four-die configurations, respectively,
while the geomean Fmax improvements are 3%, 4%
and 5% for the same configurations. In the two-die
setup, the design lstm shows an rWL improvement
of 14%, while clstm like.medium achieves an Fmax
improvement of 23%.

FPGAPart consumes 1038 MB peak memory for Koios
designs, whereas the default VTR 7.0 flow consumes
1536 MB. This shows that integrating FPGAPart into VTR
does not incur any significant memory overhead.

TABLE II: Default VTR 7.0 vs. FPGAPart-based VTR 7.0 flow on VTR 7.0 designs (k6 frac N10 mem32K 40nm).

Design #Primitives
Two Dies Three Dies Four Dies

Routed WL Fmax (MHz) Routed WL Fmax (MHz) Routed WL Fmax (MHz)

Def. FPGAPart Def. FPGAPart Def. FPGAPart Def. FPGAPart Def. FPGAPart Def. FPGAPart

bgm 51267 596332 586373 39.02 39.21 586332 568438 39.22 39.55 586871 536433 39.53 39.96
blob merge 12577 87668 86173 101.61 103.98 85561 85272 99.42 101.98 89007 89066 101.66 103.14
boundtop 3574 29678 28705 152.60 156.36 30490 28518 154.29 156.36 30506 29993 152.40 155.47
diffeq1 569 9406 9072 47.20 48.74 9732 9095 46.50 47.33 9689 8937 46.91 47.77
diffeq2 481 6926 6808 60.30 61.96 7404 7172 61.33 62.58 7673 7172 60.64 60.68
LU32PEEng 31342 1738456 1683622 9.07 9.07 1744322 1723214 9.04 9.07 1746956 1735422 9.17 9.19
LU8PEEng 104372 416791 406528 8.89 8.90 412923 412716 9.04 9.11 406075 405922 8.88 8.91
mcml 137425 1132942 1019365 12.57 12.94 1143349 1144356 12.09 13.45 1140695 1139241 12.07 14.09
mkDelayWorker32B 6638 110718 108623 140.59 142.72 108944 108542 135.06 136.12 111674 110392 144.61 145.92
mkPktMerge 335 13818 12698 254.62 256.13 13587 12692 244.22 244.54 13748 12968 258.87 259.91
or1200 3972 49419 47562 73.03 73.04 50379 46246 70.56 70.98 50491 50026 73.48 74.56
raygentop 2733 28778 27643 194.69 207.98 27969 25641 210.15 211.34 27977 26255 204.79 204.91
sha 2330 21861 22404 78.34 77.51 22034 22647 77.49 74.47 22294 20581 72.50 72.12
stereovision0 14672 90851 90297 236.36 252.47 93553 92393 244.25 245.67 97389 90725 244.12 245.61
stereovision1 14312 161077 158368 177.51 181.52 161302 160671 174.49 178.59 168532 153661 174.39 179.38
stereovision2 26672 855932 809111 56.08 61.46 798888 734728 56.98 61.51 824386 720036 60.83 62.23

Improv. (geo. mean) % 3% 3% 3% 2% 5% 2%

TABLE III: Default VTR 7.0 vs. FPGAPart-based VTR 7.0 flow on Koios designs (k6 frac N10 mem32K 40nm).

Design #Primitives
Two Dies Three Dies Four Dies

Routed WL Fmax (MHz) Routed WL Fmax (MHz) Routed WL Fmax (MHz)

Def. FPGAPart Def. FPGAPart Def. FPGAPart Def. FPGAPart Def. FPGAPart Def. FPGAPart

bnn 204601 2317469 2223826 85.02 85.37 2458889 2223826 84.09 86.27 2275962 1976057 86.45 89.27
bwave like.fixed.small 16632 490975 468131 89.27 93.41 554864 597075 78.74 87.17 457783 462614 77.31 83.77
clstm like.medium 743071 4028628 4013949 65.77 80.81 4200372 4177747 81.82 85.48 4387657 4060581 81.58 83.17
clstm like.small 402331 1645582 1757997 107.93 108.85 1684506 1639474 109.10 113.95 1661891 1511011 105.46 105.87
conv layer hls 12097 104564 96725 107.99 110.55 105613 88319 107.92 121.65 108383 80253 112.71 119.53
dla like.small 260199 1299244 1365961 90.08 93.64 1386845 1333858 95.02 99.12 1352230 1246486 93.08 94.06
eltwise layer 16187 186987 175506 210.39 214.49 189793 171108 207.35 214.13 195773 179746 193.72 212.79
lenet 190809 217427 217281 109.88 108.05 216757 226055 110.39 111.51 232488 232699 95.02 109.24
lstm 247060 2105091 1815726 96.88 105.00 2055257 2035348 82.68 92.89 2105748 1897236 82.44 94.05
reduction layer 18323 169277 154729 134.74 136.04 159782 159168 132.92 138.48 162764 145871 142.01 141.88
robot rl 30529 210775 204080 98.59 99.50 218674 206651 98.49 99.03 228486 200707 93.45 98.14
softmax 13177 171535 170419 150.78 153.98 174350 167756 156.39 157.97 176558 153687 149.17 153.88
spmv 17734 224674 213602 153.72 156.19 251221 226637 140.93 134.92 275868 227806 141.26 144.87
tpu like.small.os 27097 466148 446796 137.64 137.95 444053 339903 141.22 145.74 451459 394132 138.70 145.98
tpu like.small.ws 21962 449553 432153 104.66 104.70 440624 406784 100.67 106.50 455362 423278 96.87 100.10

Improv. (geo. mean) % 3% 3% 6% 4% 10% 5%

Fig. 6: Validation of neighborhood influences.

Comparisons with partitioners. Results of our compari-
son with hMETIS, METIS and TritonPart on the VTR 7.0
benchmark suite are presented in Figure 5. All numbers in
the figure are normalized to default VTR 7.0. We present
results for two-die on the VTR 7.0 benchmarks and three-
die on the Koios benchmarks, with more results available
in [36]. Our FPGAPart-based VTR 7.0 flow achieves
improvements up to 10% in rWL and 9% in Fmax.

Our FPGAPart is slower than hMETIS (avg. ∼2.5×)
and METIS (avg. ∼100×), but faster than TritonPart (avg.
∼5×). However, the overall runtime of the FPGAPart-
based VTR 7.0 flow is faster than the default VTR 7.0
flow (avg. ∼1.4×). Notably, for larger designs, FPGAPart
accounts for only ∼5% of the total flow runtime.

B. Validation of Neighborhood Influences
To evaluate the impact of neighborhood influences-

based cutting planes, we compare the cutsize and runtime
generated by the ILP solver with cutting planes to those
generated by the solver without cutting planes. We select
six benchmarks from our suite10 and collect the cutsize
and runtime from the ILP on the coarsest hypergraph ob-
tained from FPGAPart’s clustering (Section V-A). These
hypergraphs typically contain a few hundred vertices and
hyperedges. The results, presented in Figure 6 for a four-
way partitioning with 5% imbalance, show that our cutting
plane technique achieves ∼38× runtime speedup and
< 1% cutsize degradation.11

C. Study of Seed Noise
We evaluate the impact of seed selection on QoR for

both our flow and the default VTR 7.0 flow. Similar to
Section VI-A, we modify the seed values in FPGAPart
and VTR 7.0, and run our experiments on a subset of the
VTR 7.0 and Koios benchmark sets. For each benchmark,
we perform 100 runs, each with a unique seed. We run this

10We observe similar results across all benchmarks; for brevity, we
present results for six benchmarks.

11To assess optimality, we apply FM-based refinements to the ILP-
generated solutions to evaluate how close they are to a near-optimal
cutsize. On some benchmarks, these refinements lead to < 1% cutsize
improvement, indicating that while the solutions obtained with cutting
planes may not be strictly optimal, they are still of very high quality.

Fig. 7: Routability comparisons between (a) default VTR 7.0 flow and (b) FPGAPart-based flow.

Fig. 8: Seed sensitivity of default VTR 7.0 flow.

Fig. 9: Seed sensitivity of FPGAPart-based VTR 7.0 flow.

evaluation on a three-die configuration with 70% wires
removed and interposer delay of 1ns. The results (Fig-
ure 8 and Figure 9) reveal that the default VTR 7.0 flow
exhibits high sensitivity in Fmax across different seeds.
The arithmetic mean (among the selected benchmark set)
of the coefficient of variation (CV) in the default VTR 7.0
flow is 3.44 for Fmax, and 1.49 for rWL. In comparison,
the FPGAPart-based flow achieves a significantly lower
CV of 1.35 for Fmax and 1.44 for rWL. This shows the
improved stability of our approach to seed noise.

D. Routability Evaluation

We further evaluate the benefits of FPGAPart by analyz-
ing its impact on routability (Figure 7). For this evaluation,
we consider the same subset of benchmarks as in Sec-
tion VI-C and run both the default VTR 7.0 flow and our
FPGAPart-based flow using 20 unique seeds on a four-die
architecture. To simulate increasing interposer constraints,
we gradually reduce the available interconnects at the

die boundaries by varying percent_wires_cut from
80% to 95%, while keeping the interposer delay fixed at
1 ns. The results indicate that the FPGAPart-based flow
achieves more successfully routed runs compared to the
default flow. As shown in Figure 7, we observe a “cliff-
ing” effect, where routing failures become significantly
more frequent as interposer constraints tighten. Notably,
our FPGAPart-based flow delays the onset of this cliff,
effectively pushing it to the right and improving routability
under constrained interposer conditions.

VII. CONCLUSION

This work introduces a partitioning-based CAD flow
for interposer-based multi-die FPGAs and presents the
first open-source FPGA-specific partitioner, FPGAPart. By
adapting the multilevel partitioning paradigm and incorpo-
rating pre-packing guidance alongside a parallelized FP-
Growth algorithm, FPGAPart integrates seamlessly into an
FPGA CAD flow. Additionally, the use of neighborhood
influences-based cutting planes is shown to accelerate
convergence of the ILP solver. Extensive experimental
results validate the benefits of FPGAPart compared to the
default VTR 7.0 flow, demonstrating superior performance
relative to leading partitioners such as hMETIS, METIS,
and TritonPart.

Our ongoing efforts are focused on three main
directions. First, we aim to adapt FPGAPart to the
modern VTR 8.0 framework and the enhanced VTR
placement flow in [29], enabling compatibility with the
latest architectures, algorithms and designs. Second,
we seek to enhance the timing-driven refinement in
FPGAPart, particularly by better usage of STA tools and
exploring slack budgeting techniques. Finally, we feel
that incorporating spatial awareness into FPGAPart could
be beneficial for multi-die FPGAs where blocks may be
configured in various physical arrangements (e.g., stacked
vertically or laid out in a 2D grid). To further explore
this, we also intend to evaluate FPGAPart under static
die configurations with varying aspect ratios.

Acknowledgments. This work is supported by Intel Cor-
poration.

REFERENCES

[1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing and R.
Mahnkopf, “More than Moore white paper”, International Technol-
ogy Roadmap for Semiconductors, 2010.

[2] A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, et al., “Koios:
A deep learning benchmark suite for FPGA architecture and CAD
research”, Proc. FPL, 2021, pp. 355–362.

[3] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: area
efficiency vs. input sharing and size”, Proc. CICC, 1997, pp. 551–
554.

[4] C. Borgelt, “An implementation of the FP-growth algorithm”, Proc.
OSDM, 2005, pp. 1–5.

[5] I. Bustany, G. Gasparyan, A. B. Kahng, Y. Koutis, B. Pramanik and
Z. Wang, “An open-source constraints-driven general partitioning
multi-tool for VLSI physical design”, Proc. ICCAD, 2023, pp. 1–9.

[6] I. Bustany, A. B. Kahng, Y. Koutis, B. Pramanik and Z. Wang, “Spec-
Part: a supervised spectral framework for hypergraph partitioning
solution improvement”, Proc. ICCAD, 2022, pp. 1–9.

[7] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved algorithms
for hypergraph bipartitioning”, Proc. ASP-DAC, 2000, pp. 661–666.

[8] D. T. Chen, K. Vorwerk and A. Kennings, “Improving timing-sriven
FPGA packing with physical information”, Proc. FPL, 2007, pp.
117–123.

[9] J. Cong and S. K. Lim, “Multiway partitioning with pairwise
movement”, Proc. ICCAD, 1998, pp. 512–516.

[10] J. Fairbrother, A. N. Letchford and K. Briggs, “A two-level graph
partitioning problem arising in mobile wireless communications”,
Computational Optimization and Applications 69(3) (2018), pp. 653–
676.

[11] W. Feng, “K-way partitioning based packing for FPGA logic blocks
without input bandwidth constraint”, Proc. FPT, 2012, pp. 8–15.

[12] W. Feng, J. Greene, K. Vorwerk, V. Pevzner and A. Kundu,
“Rent’s rule based FPGA packing for routability optimization”, Proc.
ISFPGA, 2014, pp. 31–34.

[13] P. Garrou, M. Koyanagi and P. Ramm, Handbook of 3d integration:
3d process technology, New York, Wiley, 2014.

[14] J. Han, J. Pei and Y. Yin, “Mining frequent patterns without
candidate generation”, Proc. SIGMOD, 2000, pp. 1–12.

[15] T. Heuer, “Engineering initial partitioning algorithms for direct
k-way hypergraph partitioning”, Karlsruhe Institute of Technology,
2015.

[16] A. B. Kahng and T. Spyrou, “The OpenROAD project: unleashing
hardware innovation”, Proc. GOMACTech, 2021.

[17] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain”, IEEE Trans.
on VLSI 7(1) (1999), pp. 69–79.

[18] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs”, SIAM J. on Scientific
Computing 20(1) (1998), pp. 359-392.

[19] N. Kim, D. Wu, D. Kim, A. Rahman and P. Wu, “Interposer design
optimization for high frequency signal transmission in passive and
active interposer using through silicon via (TSV)”, Proc. ECTC,
2011, pp. 1160–1167.

[20] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu et al., “VTR
7.0: next generation architecture and CAD system for FPGAs”, ACM
Trans. on RETS 7(2) (2014), pp. 1–30.

[21] J. Luu, J. Rose and J. Anderson, “Towards interconnect-adaptive
packing for FPGAs”, Proc. FPGA, 2014, pp. 21–30.

[22] A. S. Marquardt, V. Betz and J. Rose, “Using cluster-based logic
blocks and timing driven packing to improve FPGA speed and
density”, Proc. FPGA, 1999, pp. 37–46.

[23] Z. Marrakchi, H. Mrabet and H. Mehrez, “Hierarchical FPGA
clustering based on multilevel partitioning approach to improve
routability and reduce power dissipation”, Proc. ReConfig, 2005, pp.
25–28.

[24] K. E. Murray and V. Betz, “Tatum: parallel timing analysis for
faster design cycles and improved optimization”, Proc. FPT, 2018,
pp. 110–117.

[25] E. Nasiri, J. Shaikh, A. H. Pereira and V. Betz, “Multiple dice
working as one: CAD flows and routing architectures for silicon
interposer FPGAs”, IEEE Trans. on VLSI 24(5) (2016), pp. 1821–
1834.

[26] A. H. Pereira and V. Betz, “CAD and routing architecture for
interposer-based multi-FPGA systems”, Proc. FPGA, 2014, pp. 75–
84.

[27] R. Raikar and D. Stroobandt, “Multi-die heterogeneous FPGAs:
how balanced should netlist partitioning be?”, Proc. SLIP, 2022, pp.
1–7.

[28] R. Raikar and D. Stroobandt, “LiquidMD: optimizing inter-die and
intra-die placement for 2.5D FPGA architectures”, Proc. HEART,
2024, pp. 90–98.

[29] R. S. Rajarathnam, K. Thurmer, V. Betz, M. A. Iyer and D. Z.
Pan, “Better together: combining analytical and annealing methods
for FPGA placement”, Proc. FPL, 2024, pp. 43–52.

[30] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, et al. “The
VTR project: architecture and CAD for FPGAs from verilog to
routing”, Proc. FPGA, 2012, pp. 77–86.

[31] L. Singhal, M. A. Iyer and S. Adya, “LSC: a large-scale consensus-
based clustering algorithm for high-performance FPGAs”, Proc.
DAC, 2017, pp. 1–6.

[32] T. Heuer, “Engineering initial partitioning algorithms for direct k-
way hypergraph partitioning”, Karlsruher Institute of Technology,
2015.

[33] Y. Wang and J. Kleinberg, “From graphs to hypergraphs: hy-
pergraph projection and its remediation”, arXiv:2401.08519, 2024.
https://arxiv.org/abs/2401.08519

[34] D. Vercruyce, E. Vansteenkiste and D. Stroobandt, “Runtime-
quality tradeoff in partitioning based multithreaded packing”, Proc.
FPL, 2016, pp. 1–9.

[35] D. Vercruyce, E. Vansteenkiste and D. Stroobandt, “How preserv-
ing circuit design hierarchy during FPGA packing leads to better
performance”, IEEE Trans. on CAD 37(3) (2018), pp. 629–642.

[36] FPGAPart public repository.
https://github.com/ABKGroup/FPGAPart

[37] IBM ILOG CPLEX optimizer.
https://www.ibm.com/analytics/cplex-optimizer

[38] The OpenROAD project.
https://github.com/The-OpenROAD-Project/OpenROAD

[39] VTR 7.0 interposer branch.
https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/
interposer

