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Abstract
Machine learning (ML) is transforming electronic design automation
(EDA), offering innovative solutions for designing and optimizing
integrated circuits (ICs). However, the field faces significant chal-
lenges in standardization, accessibility, and reproducibility, limiting
the impact of ML-driven EDA (ML EDA) research. To address these
barriers, this paper presents a vision for an ML EDA Commons, a
collaborative open ecosystem designed to unify the community and
drive progress through establishing standards, shared resources, and
stakeholder-based governance. The ML EDA Commons focuses on
three objectives: (1) Maturing existing EDA infrastructure to sup-
port ML EDA research; (2) Establishing standards for benchmarks,
metrics, and data quality and formats for consistent evaluation via
governance that includes key stakeholders; and (3) Improving acces-
sibility and reproducibility by providing open datasets, tools,models,
and workflows with cloud computing resources, to lower barriers to
ML EDA research and promote robust research practices via artifact
evaluations, canonical evaluators, and integrationpipelines. Inspired
by successes of ML andMLCommons, the ML EDA Commons aims
to catalyze transparency and sustainability in ML EDA research.
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1 Introduction
The rapid advancement of machine learning (ML) and artificial in-
telligence (AI) technologies, including the recent advances in large
language models (LLMs), has unlocked opportunities for electronic
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design automation (EDA), enabling transformative shifts in the de-
sign, optimization, and verification of integrated circuits (ICs) and
systems. ML techniques have shown promise in addressing complex
problems across the RTL-to-GDSII design flow, including physical
design problems such as layout optimization [1, 2], performance
prediction [3, 4], and enabling automation [5, 6]. However, the suc-
cessful integration ofML into the design flow requires a robust, open,
and shareable ecosystem.
ML EDA Challenges. Despite increasing interest over the past
decade,ML-drivenEDA(MLEDA) facessignificantandwell-lamented
challenges due to a disconnect between the open culture of ML re-
search and the closed nature of the EDA community. ML research
thrives on open access to datasets, benchmarks, metrics, andmodels.
By contrast, EDA – particularly the RTL-to-GDSII flow – relies on
components such as RTL, process design kits (PDKs), libraries, tools,
and flows, all constrained by intellectual property (IP) restrictions.
Non-disclosure agreements (NDAs) limit access to PDKs, end-user
license agreements (EULAs) restrict interoperability and sharing of
proprietary tools and flows, and unique tool-specific parameters fur-
ther complicate reproducibility. RTL designs are often proprietary,
hindering availability of reliable benchmarks; those available are
often outdated or poorly maintained. The lack of cohesion within
the EDA community compounds these issues, as fragmented efforts
and the absence of a governing body prevent the development of
standards, open formats, and equitable access. Without coordinated
leadership to foster collaboration, establish benchmarks, and align
initiatives, the field continues to struggle with reproducibility and
transparency of innovation.
Success of ML. Donoho [7] defines frictionless reproducibility as
arising from three foundations: (1) availability and sharing of data;
(2) availability and sharing of code that processes this data; and (3)
competitive testing as a means of evaluation. The success of ML
can largely be attributed to these principles, which have fostered
transparency, accessibility, and rigorous validation, enabling rapid
progress. Open datasets and benchmarks such as ImageNet [8] ac-
celerated early ML research by enabling consistent evaluation and
fostering innovation through challenges such as Kaggle [9]. Stan-
dardized libraries such as TensorFlow, PyTorch, and scikit-learn
further reduced barriers, enabling rapid experimentation and de-
ployment. Similarly, MLCommons [10], an AI consortium, advances
AI systems through open collaboration, standardized benchmarks
such as MLPerf [11], and metrics (accuracy, efficiency, and energy
performance), exemplifying the impact of a Commons.
Need for an ML EDA Commons. The need for a shareable ML
EDA research infrastructure has long been recognized [12]. The
work in [13] demonstrated the potential of ML in physical design
(PD), and outlined several challenges related to infrastructure for
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Figure 1: The three pillars of anML EDACommons.

ML for PD that are still unaddressed today. Realizing the infrastruc-
ture challenge, our community has started moving toward an open
culturewith the availability of open-source tools [14], PDKs [15–17],
researchers open-sourcing theirmodels [5, 18], datasets [19–22], and
scripts. While these initiatives contribute to ML EDA infrastructure,
theyare scatteredor fragmenteddue to IPchallenges, andoften inade-
quate absent buy-in from key stakeholders.While IP-related reasons
create one category of fragmentation, geographical reasons are an-
other. Research and development efforts are unevenly distributed
across regions due to disparities in access to funding, geopolitical
considerations, infrastructure, and educational resources. These dif-
ferences often lead to isolated advancements, which fail to integrate
into a cohesive global framework. These challenges result in a highly
siloed ecosystem, with research efforts dispersed across academia
and industry. Such fragmentation creates significant barriers for
new entrants, along with reproducibility challenges.

A viable solution requires a large-scale and well-concerted com-
munity effort. ML EDA, with many fewer actors, cannot afford re-
dundant efforts. The community must coordinate to identify and fill
gaps in existing infrastructure, generate the most critical content,
and shape external contributions through contests and community
engagement. Inspired by the MLCommons, there is a need for an
ML EDA Commons to mature existing infrastructure, standardize
formats, establish quality standards for datasets, benchmarks, met-
rics, leaderboards, etc., and generally advance the accessibility and
reproducibility of ML EDA research.

Toward establishing anML EDA Commons, this paper presents
four perspectives. (1) It calls for the establishment of an ML EDA
Commons to build ML EDA infrastructure and propel ML EDA re-
search for the RTL-to-GDSII flow. (2) It highlights existing initiatives
that can function as foundational ML EDA infrastructure. (3) It iden-
tifies critical gaps in ML EDA infrastructure efforts that the ML EDA
Commons must address. (4) It outlines the essential components of
an ML EDA Commons, including maturing existing infrastructure,
governance, standardization, accessibility, and reproducibility.

The rest of the paper is organized as follows. Section 2 defines
what an ML EDA Commons is within the context of physical design.
It explains key terminologies, including the definition of aCommons;
the ML EDA infrastructure; and how these components are related.
Section 3 reviews current contributions to building anML EDA in-
frastructure, which forms part of the ML EDA Commons. It also
examines what has been accomplished so far, how existing efforts
fall short, and identifies gaps that need to be addressed. Section 4
details how anML EDACommons can be established. It specifies the
required components, what enhancements are needed to improve
current infrastructure, who would be responsible for development

and maintenance, and who are the key stakeholders. It discusses the
role of the Commons in defining standards and policies, and estab-
lishing governance that emphasizes accessibility and reproducibility
of ML EDA research. Section 5 outlines a roadmap for proposed
action items toward achieving this vision.

2 A Vision of anML EDACommons
Commons. The concept of “Commons” refers to shared resources
where all stakeholders have an equal interest [23]. Tumeo [24] de-
scribes theOpenHardwareTechnologyCommons (OHTC) as an “open
and extensible portfolio of composable and interoperable hardware,
software, design automation, and architecture design tools” that
facilitates rapid prototyping. Kahng [25] provides the vision of an
EDA Commons and highlights the complementarity of open-source
and proprietary EDA technologies as an integral part of the OHTC.
AnML EDACommons, a critical piece of the EDACommons, focuses
on advancing ML EDA applications by providing shared resources
(datasets, tools, flows, benchmarks, metrics). This forms a part of
ML EDA infrastructure prioritizing the principles of standardization,
accessibility, and reproducibility (Fig. 1).
Components of anML EDACommons.AnML EDA Commons
for the RTL-to-GDSII flow consists of the following (Fig. 2).
(1) ML EDA infrastructure is composed of the essential tools, re-
sources, frameworks, and standards required to enable ML EDA. It
encompasses datasets, benchmarks, APIs, open-source tools, and
proxies to facilitate model development, training, evaluation, and
deployment across the RTL-to-GDSII design flow. These are high-
lighted in Fig. 2(b). Today, this infrastructure is nascent and requires
significant effort to form a mature pool of resources.
(2) Standardization refers to the establishment of common protocols,
formats, benchmarks, and best practices to ensure consistency, in-
teroperability, and collaboration across tools, datasets, and research
workflows. These standards are set by key stakeholders, and involve
defining uniform data structures, evaluation metrics, and APIs to
streamline the integration of ML techniques into EDA flows.
(3) Accessibility refers to the ability of researchers, developers, and
practitioners to access and utilize resources, tools, and data for ML
EDA research. This includes open and equitable access to datasets,
benchmarks, models, and tools without prohibitive barriers (cost, in-
tellectual property restrictions, technical complexity). Accessibility
also involves creating user-friendly interfaces, APIs, and documenta-
tion to lower theentrybarrier fornewcomersandfostercollaboration
across academia, industry, and open-source communities [26].
(4) Reproducibility refers to the ability to consistently replicate ex-
periments, results, and workflows across different environments,
researchers, and institutions using shared resources. It ensures that
models, algorithms, and research findings in ML EDA can be inde-
pendently verified and validated by others. This involves providing
well-documented datasets, standard benchmarks and leaderboards,
publicly available code, and clear instructions for reproducing experi-
ments. Reproducibility fosters trust, transparency, and collaboration
in the ML EDA community, enabling researchers to build upon each
other’s work while reliably and credibly advancing the field.

The pillars of theMLEDACommons, standards, accessibility, and
reproducibility, align closely with the principles of FAIR (findable,
accessible, interoperable, and reproducible). TheML EDACommons



Invited: Toward anML EDA Commons: Establishing Standards, Accessibility, and Reproducibility in ML-driven EDA Research ISPD ’25, March 16–19, 2025, Austin, TX, USA

Figure 2: (a) The RTL-to-GDSII flow. (b) Existing individual
efforts in creatingML EDA infrastructure at different levels
of maturity. (c) Envisioned components of an ML EDA
Commons.

must ensure each component developed, released and contributed
to the community as a part of the ML EDA infrastructure aligns
with FAIR principles. Stable repositories or platforms for hosting
the infrastructure make it findable and accessible. Accessibility em-
phasizes open and transparent data sharing, supported by proper
licensing and clear documentation. Standards ensure that resources
contributed to the infrastructure are consistently formatted, anno-
tated, and validated, make them interoperable. across diverse ML
EDA applications and tools. Documentation, continuous integra-
tion/continuous delivery (CI/CD) pipelines, and version control,
enables others to reproduce or extend previous works using the
same datasets and methodologies.
Scopeof theMLEDACommons.TheCommons,while focused on
enablingMLEDA research, can stir a sense of excitement in students
and can contribute shareable, modular training materials to engage
and train the next generation of ML EDA researchers and engineers.
However, it is important to acknowledge that anML EDACommons
cannot realistically aim to address every stakeholder’s needs com-
prehensively. For instance, access to tape-out shuttles for “lab-to-fab”
prototyping, chip design workforce development resources such
coursework and laboratories, IP access, licensing of EDA tools, etc.
are perhaps better served by other initiatives such as Microelectron-
ics Commons Hubs [27], NSF Chipshub [28, 29], Natcast WFPA [30],
andNISTNAPMPefforts [31]. Tobe effective, theMLEDACommons
must focus on identifying the most pressing problems and prioritiz-
ing solutions that offer the highest impact for ML EDA research.

3 ML EDA infrastructure initiatives
Developing a robust ML EDA research infrastructure for the RTL-
to-GDSII flow requires key components (Fig. 2(b)) such as datasets,
benchmarks, metrics, contests, and proxies. Existing efforts to create
this infrastructure remain nascent and individually-driven, and do
not form a cohesive ecosystem. Maturity levels of each component
vary, as shown in Fig. 2(b). Below, we outline example initiatives
toward building each component, along with limitations.

3.1 Datasets
Datasets from domains where ML has traditionally excelled – text,
images, code, audio, and video – differ significantly from those en-
countered in the RTL-to-GDSII design flow [32]. IC data comes in
specialized formats suchashardwaredescription languages (e.g., Sys-
temVerilog), reports, andEDAfile formats (e.g., LEF/DEF),which are
less intuitive or widely understood than natural language or images.

To make this data suitable for MLmodels, it is typically transformed
into structured formats that ML excels at processing.
Examples. Numerous efforts have sought to gather and release
datasets across different flow stages.
RTL and logic synthesis. The creation of RTL datasets has seen var-
ious individual efforts, such as VeriGen [33] and RTLCoder [18].
VeriGen [33] has gathered Verilog datasets compiled from various
GitHubrepositories andVerilog textbooks.RTLCoder [18] createdan
automated training dataset generation flow, producing over 27,000
training samples. Each sample includes a design description instruc-
tion and the corresponding reference RTL code. Another effort was
the community-driven LLM4HW [22] contest held at ICCAD 2024,
aiming to gather an open-source, large-scale, high-quality dataset
to fine-tune LLMs for generating Verilog code. For logic synthesis,
OpenABC-D [19] is a labeled dataset with 29 hardware IP designs
synthesized with 1500 yosys-abc synthesis flows, with 870,000 and-
inverter graphs (AIGs) in PyTorch format.
Physical design. The high cost of creating place-and-route datasets
results in limited availability of such benchmarks. Examples include
FloorSet [34], CircuitNet [21], BeGAN [35], and EDA Corpus [36].
FloorSet [34] contains two benchmark datasets, FloorSet-Prime and
FloorSet-Lite, eachwith 1M training samples and 100 test samples of
synthetic fixed-outline floorplan layouts, reflecting real SoCdistribu-
tions and modern design flow constraints. CircuitNet [21] features
samples from 10,242 layouts generated through synthesis and phys-
ical design of 28nm RISC-V designs.

BeGAN [35] is a synthetic dataset for power delivery networks
(PDNs), created using generative adversarial networks (GANs) and
transfer learning from urban satellite images. It contains realistic
PDN benchmarks with 1000 data points per technology node for
three open-source technologies, preserving data privacy of the un-
derlying IP used for training. EDA Corpus [36] is an open-source
dataset for theOpenROADEDAtoolchain,with 1000 data points that
include pairwise sets of question prompts with prose answers and
code prompts with corresponding OpenROAD scripts, facilitating
LLM-focused research on user productivity for EDA flows.
Maturity level. The released ML EDA datasets are typically small,
lack realism, and are inadequate for training today’s large-scale ML
modelswith billions of parameters (e.g., LLMs). These datasets are of-
ten developed in isolation, lack standardization, are not significantly
diverse, and fail to cater to the diverse applications required for
ML EDA research across the entire RTL-to-GDSII flow. Researchers
have created datasets that are publicly available, but these are still in
their infancy and require significant advancements in quality, quan-
tity, and standards to make a meaningful impact. Datasets must be
continuously updated to remain relevant, which becomes challeng-
ing when they are created by students for specific research papers;
maintaining and updating these datasets after students graduate is
difficult due to a lack of incentives and continuity.

3.2 Contests, benchmarks, andmetrics
There have beenmany contests in EDAover the past several decades,
including ones that create benchmarks and metrics for ML EDA
research. These contests have been crucial to the advancement of
EDA research. Similar to the ML community, these contests have
the potential to transformML EDA research. Below, we highlight
examples of the contests, describe their benchmarks and metrics,
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and then comment on their level of maturity in the context of an ML
EDA Commons.
Examples. Contests in ML EDA have recently gained prominence
for their role in setting benchmarks and driving innovation. ICCAD
2023 featured aproblemon static IRdrop estimation [37], and ICCAD
2024 presented a problem on gate sizing [38]. The ISPD 2024 and
2025 contests focused on global routing [39]. Each of these contests
has released benchmarks tailored to their respective problems.

While contests are a good source of benchmarks, there have also
been significant efforts outside of contests to create useful bench-
marks for EDA research. VerilogEval [40] serves as a benchmark
for evaluating LLM performance in Verilog code generation, using
a dataset of 156 problems from HDLBits. It tests a range of tasks
from simple circuits to complex finite-state machines, providing a
standardized way to assess the functional correctness of generated
Verilog code. Efforts to confirm reproducibility have also led to new
benchmarks such as those in the MacroPlacement [41]. This repos-
itory consists of open-source designs such as Ariane, MemPool, and
NVDLA, inenablements suchasNanGate45,ASAP7, andSKY130HD;
these serve as benchmarks for the macro placement problem.
Maturity level. Many current contests are based on oversimplified
problems and unrealistic assumptions. The research that uses these
benchmarks may have limited practical impact, due to these unre-
alistic assumptions. The benchmarks they provide fail to address
the complexities of real-world challenges. Moreover, each contest
introduces its own benchmarks and nonstandard metrics, leading
to further fragmentation. The benchmarks almost always fall victim
to Goodhart’s law [42] (“when a measure becomes a target, it ceases
to be a good measure”) and need to be regularly updated.

3.3 Open-sourceML EDAmodels
TheMLcommunityhasbenefited from largeopen-source foundation
models such as Llama and,more recently, DeepSeek [43]. Thesemod-
els are trained on large amounts of data and generalize to different
modalities. TheMLEDAcommunity has extensively leveraged these
largemodels, e.g., fine-tuning them for domain-specific applications.
Examples.Open domain-specific models include [18] for RTL gen-
eration and [5] for physical design (answering questions, scripting).
Maturity level.Theexistingopen-sourcemodels inMLEDAareusu-
ally task-specific and unsuitable for developing broader or general-
purpose solutions. These models are still at a very early stage of
development and are often released as an artifact of a research paper.
Typically, they require peripheral harnesses to enable reuse, and are
very far from open-source foundation models for EDA that can be
generalized across different modalities and applications.

3.4 Open-source EDA tools and flows
The open-source EDA community serves as a cornerstone of the ML
EDA infrastructure by enabling scalable data generation without IP
restrictions, facilitating the integration of ML into design flows, and
embedding ML capabilities within EDA tools.
Examples.Open-source EDA tools such as OpenROAD and Yosys,
along with flows such as OpenROAD-flow-scripts [44], have been
available for some time. These tools and flows are actively updated
and maintained, have garnered a large user base, and have been
successfully used to tape out multiple chips.

Maturity level. The open-source EDA ecosystem [14, 44, 45] has
reached sufficient maturity to play a vital role in advancingML EDA
research by making it accessible and reducing entry barriers. While
someprior effortshaveenabledanMLEDAresearchplayground[46],
further development is needed to fully meet community require-
ments, including support for ML-native data structures within tools,
Python APIs that provide ML-friendly outputs (e.g., NumPy arrays),
and other features tailored to ML researchers.

3.5 Proxies for designs and PDKs
Proxies serve as substitutes for commercial or proprietary resources
when direct access or sharing is restricted. These include proxy
PDKs that emulate proprietary process design kits, proxy designs
that replicate the characteristics of commercial designs, and proxy
tools, suchas open-source alternatives, that provide functional stand-
ins for proprietary EDA tools. Although proxies may not achieve
the exact performance, power, and area metrics of their commer-
cial equivalents, they are sufficiently accurate to facilitate research,
development, and benchmarking in resource-constrained scenarios.
Examples. Efforts include proxies for PDKs [47, 48], RTL [49], and
netlists [50]. To bridge the gap between open-source and commercial
PDKs, [48] calibrated proxy design enablements which autotuned
scaling factors for standard-cell timing and powermodels, setup and
hold timing, pin capacitance, and BEOL resistance and capacitance.
This work has narrowed the gap between the open-source ASAP7
enablement and an unnamed leading-edge commercial 7nm technol-
ogy. Other proxies include [49] and [50] which respectively create
synthetic RTL and gate-level netlists for ML applications.
Maturity level. Initial efforts to create proxies for commercial de-
signsandPDKsareprimarilydrivenbyvery fewindividual initiatives.
These proxies still need adoption and recognition; efforts to drive
awareness are still needed to gain traction. Their value is yet to be
recognized in the community (including reviewers, conferences, and
forMLEDA) and theymust further be developed tomakemeaningful
impacts in a data- and IP-constrained world.

4 Components of theML EDACommons
Wenowoutline the components of theMLEDACommons, including
a mature ML EDA infrastructure and a governance framework to
establish standardization for accessibility and reproducibility.

4.1 Maturing theML EDA infrastructure
The several individual efforts described in Section 3 establish various
different components of an ML EDA infrastructure. These efforts
must be matured, maintained, and unified into a shared platform to
have an impact. The acute need for a shared open collaborative ML
EDA infrastructure was echoed in a 2023 NSF workshop [12]. Such
an ML EDA infrastructure will be an important component of the
ML EDA Commons as a pool of resources.
SLICE. The 2023 NSF workshop on Shared Infrastructure for Ma-
chineLearningEDA[12] culminated inSLICE [51], a Sharedmachine
Learning Infrastructure for the Community of EDA that will poten-
tially play a crucial role in theCommons. Inspired by the open shared
infrastructure available in the ML community, SLICE aims to create
an analogous infrastructure for ML EDA as shown in Fig. 3, with all
the components described in Section 3.
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Figure 3: Inspired by open AI infrastructure, SLICE [51] aims
to develop anML EDA infrastructure.

Aligned with the broader goal of the Commons to unify ML EDA
infrastructure efforts, SLICE aims to serve as a one-stop shop for
data,models, scripts, and software interfaceswith EDA tools for easy
access by the EDA community [51]. SLICE was conceived based on
inputs from a large community of researchers spanning academia,
industry, and government with a focus on digital design and ver-
ification. SLICE seeks to advance existing ML EDA infrastructure
through the following contributions.
• Datasets and benchmarks. SLICE aims to create datasets in two
ways. The first way curates EDA tool runs across different flow
stageswith different parameter settings; the secondway leverages
synthetic data generation techniques [35] to create large datasets
for training large models. SLICE will develop proxies for designs
and PDKs, while also updating and maintaining benchmarks for
a variety of ML EDA applications across the RTL-to-GDSII flow.
Beyond the datasets from SLICE and other sources, a mature in-
frastructure as a part of the Commons will gather datasets into a
single platform. The Commons will enforce standards for quality,
documentation, and diversity.

• Pretrained models. SLICE will develop and open pre-trained mod-
els for a variety of applications including automatic HDL code
generation, testbench generation, RTL code bug detection, EDA
tool script generation [5], etc. These will be released along with
the datasets used to train them, enabling reduced training costs
for users and development of foundation models that can be fine-
tuned for specific ML EDA applications. The ML EDA Commons
must enforce that models are supported by collaterals to ensure
usability, including scripts for processing data that feeds into the
models, and APIs for model training and fine-tuning.

• Software infrastructure. SLICE will enhance existing software in-
frastructure [46] to support ML inside open-source EDA tools,
and outside EDA tools within open EDA flows. SLICE will de-
velop PythonAPIs that interactwith EDA tools to directly support
ML-native data return types in PyTorch or NumPy arrays.

4.2 Governance inML EDACommons
All of the above-mentioned infrastructure pieces will serve as a pool
of resources managed by the ML EDA Commons. Commons infras-
tructure and its development also require governance to establish qual-
ity standards, equitable access, and prioritization of reproducibility.

Table 1: Roles of stakeholders in activities of the Commons.
Key

stakeholders
Define

standards
Develop in-
frastructure

Provide
incentives

Serve on
advisory
board

Ensure
sustenance

Engage
community

Academia ✓ ✓ ✓ ✓ ✓

Industry ✓ ✓ ✓ ✓ ✓ ✓

Professional
societies

✓ ✓ ✓

Government
agencies

✓ ✓ ✓

Open-source
community

✓ ✓ ✓

4.2.1 Commons activities. Key Commons activities include:
• Defining standards and policies. Standards and policies should de-
fine clear and comprehensive guidelines for contributing datasets
and benchmarks, developing formats, and developing guidelines
for reproducibility and artifact evaluations (AE). These standards
should incorporate quality assurance measures, establish proto-
cols tomitigate datapoisoning risks, andmandate theuseofCI/CD
pipelines formanaging datasets. Additionally, they should include
maintenance policies to ensure long-termusability of datasets and
benchmarks. Furthermore, the guidelines should provide specific
recommendations for conference organizers, reviewers, and jour-
nal editors to promote reproducibility and strongly encourage the
availability of necessary artifacts.

• Providing incentives and funding. Incentives and funding mecha-
nisms are essential to encourage contributions to ML EDA Com-
mons infrastructure. The Commons can offer incentives to its con-
tributors, e.g., certifications and support in the pursuit of funding
opportunities. Incentives such as badges provided by the Com-
mons can encourage reproducible ML EDA research.

• Contributing to ML EDA infrastructure and resource allocation.
Contributing to ML EDA infrastructure includes the community-
driven engineering effort in releasing datasets, and developing
supporting libraries and tools that follow guidelines set by defined
policies and standards. Resource allocation and management ac-
tivities in the Commons must ensure availability of its resources
(cloud and infrastructure) to all users, while managing access to
IP, tools, and PDKs.

• Providingdirection throughanadvisoryboard.Anadvisoryboard to
the ML EDA Commons must guide the development and periodic
updates of standards to keep pace with the rapid advancements
in ML research. The board should also identify key areas requir-
ing investment based on the progress and evolving needs of ML
EDA research. The board also serves as a channel through which
community needs are communicated and considered.

• Sustaining the effort over time. These efforts involve developing ro-
bust frameworks to maintain standards and infrastructure within
the Commons. This includes regularly updating benchmarks to
mitigate the effects of Goodhart’s Law, ensuring that they reflect
real-world complexities and do not encourage narrow optimiza-
tion. Additionally, these efforts must create strategies to ensure
the long-term viability of the ML EDA Commons, such as fos-
tering community engagement, incentivizing contributions, and
securing funding to support ongoing development and innovation.

• Promoting community engagement. Community engagement ac-
tivities span the roles of stakeholders in conference/workshop
organization, mechanisms for conflict resolution within the com-
munity to prevent fragmentation, and strategies to ensure that
the ML EDA Commons can sustain itself over the long term.
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4.2.2 Role of stakeholders. The stakeholders in the ML EDA Com-
mons will form an essential part of the governance. Their roles,
shown in Table 1, are outlined below:
• Academic members. Academia contributes by developing proto-
type frameworks and publishing research that can inform the
creation of ML EDA standards. Academics also implement and
contribute datasets, and advise on standards for the next gener-
ation of ML EDA algorithms. They play a key role in steering
conferences and workshops, which indirectly drive research, and
can advise on areas for investment within the Commons.

• Industry members. Members from industry play a role in all activ-
ities, as shown in Table 1. They guide development of standards
based on their requiredMLEDAapplications (an example includes
the Si2 efforts [52]); contribute toward developing datasets [34],
benchmarks [40], designs and open-source PDKs, and provide
compute resources to the community. They also can incentivize
contributions to the Commons via funding opportunities. Indus-
try ensures sustainability by integrating ML EDA outcomes into
commercial workflows and supporting community projects.

• Professional societies. Professional organizations, including IEEE
and ACM, play a vital role as they sponsor conferences, oversee
publications, and promote reproducibility through badges and
awards, such as best artifact and best paper recognitions. As newer
conferences and workshops emerge to focus onML EDA [53, 54],
these can actively prioritize reproducible research, encouraging
the use of open-source tools, datasets, benchmarks, and metrics
by establishing practices such as AE as incentives.

• Government agencies. Government agencies shape policies to align
ML EDA advancements with national priorities such as techno-
logical leadership. They provide funding, guide roadmaps, and
identify investment areas through advisory roles, exemplified by
workshops onML EDA infrastructure [12, 55].

• Open-source communities. The community contributes to creat-
ing open standards, ensuring interoperability and accessibility
of ML EDA tools. Open-source developers build and maintain
tools, frameworks, and libraries essential for implementation of
ML EDA systems, and ensure continuous improvement of tools
and resources to ensure the long-term viability of the Commons.

4.3 ML EDA data standardization
TheMLEDACommonsmust establish standards for research, includ-
ing data formats and quality standards for benchmarks, datasets, and
metrics. These standards can be established if theMLEDACommons
defines them through responsible governance by key stakeholders.

4.3.1 Standards for data formats. Users today face significant chal-
lenges in exploring MLwith proprietary EDA tools due to several
barriers: (i) the lack of standardized reporting formats and tool met-
rics; (ii) the unique and proprietary parameters of each tool, which
complicate comparisons and adjustments; and (iii) the extensive
fragmentation of naming conventions and formats across toolchains
and vendors, creating a “Tower of Babel” that impedes the sharing of
MLmodels and expertise. Moreover, proprietary tool command sets
and reports are often copyrighted and confidential, restricting the
deployment of ML EDA. These challenges are well recognized, and
efforts to address these obstacles and overcome the “Tower of Babel”
date back to the late 1990s. The work [56] proposed METRICS1.0,

which was then realized in [57]. With the rise of AI/ML, renewed
efforts have emerged to address these challenges.
(1) METRICS2.1. A collaborative effort between the OpenROAD

project and IEEE CEDADATC, METRICS2.1[58] introduces an
open-source standard for metrics naming conventions, a metrics
dictionary, and a reference JSON-based implementation within
the OpenROAD/OpenROAD-flow-scripts platforms. Thousands
of RTL-to-GDSII datasets, with configuration files for repro-
ducibility, are available in DATC’s GitHub [59].

(2) CircuitOps. A data representation format developed for inte-
grating ML in EDA, CircuitOps [60] minimizes preprocessing
overhead for ML EDA, lowering barriers to entry for researchers
in applying ML models for tasks such as timing optimization,
power estimation, and design space exploration. The design data
is represented as labeled property graphs (LPGs) backed by inter-
mediate representation tables (IRTables), simplifying theprocess
of custom dataset generation for ML applications.

(3) EDA Schema. A recent effort toward creating a schema to drive
ML EDA applications is EDA schema [61]. It uses a property
graph that represents the physical attributes and quality-of-
results (QoR) metrics of a circuit across various stages of the
physical design flow. The property graph encapsulates informa-
tion about timing paths, interconnects, and parasitics.
Each of the above data formats has its own limitations and often

fails to cater to a broad spectrum of ML use cases of the industry. To
address this, the Silicon Integration Initiative (Si2) – a non-profit or-
ganization that creates standards for the semiconductor industry – is
collaboratingwith itsmembers, DrexelUniversity, andArizona State
University to develop a unified ML EDA schema [52]. This initiative
aims to serve the ML EDA data format needs of member companies
and their ML EDA applications. Recent advancements in this effort
include enhancingCircuitOps and transitioning it fromadata format
to a formal schema. These enhancements include documented Cir-
cuitOpsAPIs thatcallPyTorch,Pandas,orGraphTool libraryAPIsun-
der the hood, aswell as exampleCircuitOps use cases and scripts [62]
designed to interact with OpenROAD via Python APIs [46]. Such
efforts in developing standard formats must be governed and overseen
by theML EDACommons.MLEDACommonsmust ensure standards
for the proposed schema, including but not limited to the following.
(1) Modularity and extensibility. The Commons should, for example,

standardize a schema supportingmultiple stages of the EDAflow
(RTL, synthesis, place-and-route, etc.), extensible to allowadding
newdatafields or components for evolvingMLEDAapplications.

(2) Interoperability. Data formats should be compatiblewith existing
EDA tools (proprietary and open-source) and ML frameworks.

(3) ML-friendly representation. Data should be stored in forms eas-
ily consumable by ML algorithms, e.g., tabular data for metrics,
graph-based representations for netlists and circuit connectivity,
and image-like formats for congestion maps or layouts. It must
allow for ML-specific annotations, such as labels for supervised
learning or features for reinforcement learning.

(4) Scalability. ML EDA methods must handle large datasets effi-
ciently, including hierarchical designs and full-chip layouts.

(5) Human andmachine readability. The chosen data formats should
ensure a balance between readability (for debugging and inspec-
tion) and machine-optimized formats (for speed and scalability).
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4.3.2 Standards for data quality. AnML EDA Commons must es-
tablish standards for dataset quality that include robust safeguards
against data poisoning through automated validation pipelines to
ensure data security and integrity. These standards should mandate
comprehensive documentation for all datasets, specifying details
of data collection methods, tools, and parameters used. Datasets
must also exhibit diversity, encompassing a broad range of PDKs
and design classes such as RISC-V processors or accelerators. High-
quality benchmarks should require datasets, such as RTL collections,
to include synthesized and verified designs, with complete, open en-
ablement extending toGDSII generation. Synthetic or proxy datasets
shouldmeet strict quality criteria to ensure their utility and accuracy
for ML training. Additionally, the integration of CI/CD pipelines for
dataset updates andmaintenancewill helpmaintain consistency and
reliability, and support the growingneeds of theMLEDAcommunity.

4.3.3 Leaderboards for standard benchmarks. Standard benchmarks
enable leaderboards that provide a consistent framework for evalu-
ating newmethodologies. The ML EDA Commons must implement
live, CI/CD-based leaderboards that are dynamically and automat-
ically updated to assess submissions with the latest builds of ML
EDAmodels and tools. An example template can be based on nightly
builds of OpenROAD-flow-scripts [44]. By tracking livemetrics such
as runtime and power-performance-area (PPA), these leaderboards
promote frictionless reproducibility and research innovation.

4.4 Accessibility and reproducibility
Accessibility refers to the easewithwhich researchers canobtain and
utilize essential EDA tools, flows, models, PDKs, compute resources,
and datasets. Open-source resources are pivotal as they are ready
to use, lowering barriers to entry for newcomers. Addressing chal-
lenges related to computational resources is essential to making ML
EDA broadly accessible, and not limited to groups that can afford the
computing resources. ML EDA Commons efforts can also promote
reproducibility of research through open sharing of data and code.

4.4.1 Role of open source in accessibility. Open-source tools [14],
flows [44, 45], PDKs [15–17], and models are vital for accessibility.
Tools, flows, and PDKs.Open-source EDA tools play a pivotal role in
enabling scalable data generation for ML EDA research, offering the
freedom to run multiple tool instances without license restrictions,
thereby supporting parallelized data generation. Moreover, these
tools provide a unique opportunity to integrate ML directly within
EDAworkflows – an area traditionally inaccessible to anyone out-
side of EDA tool vendors. This capability has the potential to drive
significant advancements in EDA optimizations. For example, Open-
ROAD [14] has been extensively used in prior ML EDA research [46,
63] for scalable data generation and has recently been leveraged for
integrating ML inside the tool using Python APIs [64] for timing op-
timization. Establishing aCommons that incorporates standards and
open resources can further incentivize the adoption of these tools.

Open-source workflows [44, 45] allow researchers to replicate
studies and validate results. These workflows are particularly ben-
eficial for newcomers, as they provide comprehensive flows that
wouldbe challenging todevelopwithout extensive chipdesignexper-
tise. They also enable cross-stage ML EDA research, such as in [63],
where OpenROAD-flow-scripts was used to predict post-detailed

routing timing during the global routing timing optimization stage,
demonstrating howML can enable flow-specific improvements.

Furthermore, open-source flows and tools facilitate benchmark-
ing, which is often limited in commercial counterparts. With CI/CD
pipelines, flows such as OpenROAD-flow-scripts and the RDF repos-
itory [45] enable tracking the best achievable PPA for specific bench-
marks and flows, providing a transparent foundation for research.
Open-sourceMLEDAmodels.Open-source foundationmodels forML
EDAwill be crucial in a data-scarce domain, much as open-source
foundationmodels havepropelled research inotherMLfields.AnML
EDACommons can play a pivotal role in guiding the development of
suchmodels by establishing standardized practices for hosting them
in a shared environment. It can also provide clear guidelines for ac-
cessing andutilizing thesemodels, enablingusers to easily download,
fine-tune, or run inference through simple, well-documented APIs.
Such an approach will ensure accessibility and encourage adoption.

4.4.2 Cloud compute resources. The ML EDA Commons should
provide accessible computing resources for researchers. When large
AI models require extensive training times on state-of-the-art GPUs,
ML EDA research can be out of reach for smaller groupswith limited
budgets. The Commons must establish partnerships with industry
cloud providers, such as NVIDIA, Google Cloud, AWS, and Azure.
These resources will be available for Commons users, as well as for
hosting and maintaining Commons infrastructure.

By leveragingacademicprograminitiatives fromleadingproviders,
theCommons can offer credits and resources to democratize comput-
ing. Additionally, these resources can be allocated to the community
for hosting AE and reproducibility challenges [65].

4.4.3 Artifact evaluation and reproducibility contests. Artifact eval-
uation is a critical initiative to promote open, reproducible research.
The process allows authors to submit the codes, datasets, training
scripts, and inference scripts used to produce the key results of their
accepted papers. These submitted elements, known as artifacts, un-
dergo peer evaluation to check if they meet standards of availability
(available badge), functionality (functional or reviewed badge), and
reproducibility (reproducible badge) defined by ACM/IEEE. Papers
that meet these standards are awarded badges. In 2024, the MLCAD
symposium [54] adapted ACM badges and developed AE standards
based onMLCommons [66] to create criteria tailored to theML EDA
community [67]. However, the above taxonomy itself merits further
discussion. For instance, the “available” badge alone may hold limited
value without confirmation of “functional” or “reproducible” artifacts.
TheML EDA Commons must refine these standards.

In addition to AE, peer-reviewed reproducibility challenges such
as [65] can serve as examples of efforts that prioritize reproducibility.
The ML EDA Commons must partner with conference organizers
to support and organize such efforts to elevate reproducibility to a
first-order priority in research publishing.

5 Roadmap to anML EDACommons
As adjacent ecosystems such as [27, 28, 30] – alongwithmany others
worldwide – continue to emerge, now is an opportune time to estab-
lish anML EDACommons and capitalize on the existingmomentum
in the semiconductor and design domains.Wenowoutline roadmaps
and proposed metrics of success for development of the ML EDA
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Commons components highlighted in Section 4. These roadmaps
and metrics are designed to guide development, establish priorities,
and ensure sustained efforts over time.
(1) Maturing ML EDA infrastructure. The development of ML
EDA infrastructure can occur incrementally and in parallel for each
component (dataset, models, etc.). As an example, we propose a
roadmap and metrics for the development of datasets, divided into
three phases, with foci for each stage detailed as follows.
• Early stage (Years 1 and 2). Focus on building datasets that are large
enough in scale to support the training of large models. Metrics
for evaluation can include the number of updated and newly in-
troduced benchmark suites, and the number that use agreed-upon
evaluators; additionally, community engagement can include con-
tributors, pull requests, papers, and contests that use the datasets.

• Intermediate stage (Years 3 and 4). Prioritize high-quality datasets,
with emphasis on completeness and reproducibility.Metrics at this
stage include the number of benchmarks equipped with golden
checkers and evaluators; the number of benchmarks supported
by live leaderboards; and metrics that capture dataset diversity,
such as coverage of different design classes and PDKs.

• Advanced stage (Years 4 and beyond). Ensure that datasets remain
relevant by addressing real-world challenges and aligning with
industry advancements. Metrics include support of new (manu-
facturable or proxy) PDKs; the number of new or updated designs
and IPs; and ongoing monitoring of community engagement and
broader impacts of the datasets.
Some aspects of development in each stage, such as creating and

updating datasets, can be achieved by individual research groups.
On the other hand, infrastructure efforts such as maintaining live
leaderboards with CI/CD require engineering support and adher-
ence to standards. These are areas where theML EDACommons can
invest resources to ensure robust and sustainable infrastructure.
(2) Efforts toward standardization and governance. Standard-
izing and establishing a governance structure for the ML EDA Com-
mons can also be performed in three stages, as follows.
• Early stage (Years 1 and 2).Define basic data formats, benchmarks,
and protocols to ensure interoperability across tools and work-
flows. Collaborative efforts with organizations such as Si2 can
help formalize initial standards for formats and evaluationmetrics.
This phase should encourage contributions from individuals, re-
search groups, and companies to promote consensus and up-front
adoptability of these early standards.

• Intermediate stage (Years 3 and 4). Expand governance activities, in-
cluding formationofanadvisoryboard tooversee themaintenance
ofCommons-related standards.Policies for contributionsofany in-
frastructure component or updates to standards should also be im-
plemented. Centralized infrastructure, such as repositories or plat-
forms to host datasets, benchmarks, etc., is essential at this stage.

• Advanced stage (Years 4 and beyond). Create a self- sustaining and
relevantecosystem supportedbya formalizedgovernancestructure.
Standards and policies should remain adaptable to accommodate
emerging advancements in ML EDA. Ongoing collaboration be-
tween academia, industry, and the open-source community will
be critical to ensuring relevance of these standards.

Success metrics include measures of standards adoption, e.g.,
number of papers and contests that use the format. Other metrics
could include feedback from the community regarding usability and
interoperability, and the number of users and contributors to the
centralized infrastructure. Activities in standardization and gover-
nance must proactively and systematically solicit inputs from the
community and stakeholders.
(3) Efforts toward accessibility and reproducibility.Activities
toward accessibility and reproducibility can also proceed in stages.
For example, AE efforts for research publications can be advanced
according to the following roadmap.
• Early stage (Years 1 and 2). Early activities include establishing AE
practices at conferences, guided by IEEE/ACM badging policies.
Conferences can begin by encouraging authors to submit artifacts
alongside their papers and awarding badges to recognize excel-
lence in reproducibility. Hosting of reproducibility challenges,
modeled after successful examples such as [65] can further pro-
mote community participation and collaboration.

• Intermediate stage (Years 3 and 4).Activities in this stage focus on
updating the use of badge taxonomy to incentivize meaningful ar-
tifacts. Conference organizers can integrateAEmore formally into
their processes, e.g., requiring artifact submission and/or the use
of standard benchmarks for specific tracks or research categories.

• Advanced stage (Years 4 and beyond).More advanced efforts would
pursue culture changes for ML EDA research, such as changing
the peer review process to evaluate submitted papers not only for
scientific merit but also for the completeness and reproducibility
of artifacts. Conferences should also provide long-term infrastruc-
ture to host artifacts, leaderboards for reproducibility challenges,
and tools to track the impact of artifacts on the community.
Progress metrics include the number of conferences adopting AE

processes, the number of papers receiving badges, and participation
in theAEreviewprocess. Impactmetrics, suchas the reuseof artifacts
in subsequent research and the number of reproducibility challenges
hosted, will highlight the broader influence of these efforts.

6 Conclusion
This paper emphasizes the urgent need for anML EDACommons to
unify and advance ML EDA research for the RTL-to-GDSII flow.We
highlight existing initiatives that can help to seed Commons infras-
tructure, as well as critical gaps in ML EDA research. The paper out-
lines the main components of an ML EDA Commons which focuses
on maturing existing infrastructure and establishing governance,
standardization, accessibility, and reproducibility as core principles.
We also outline a roadmap toward establishing the ML EDA Com-
mons.These efforts aim tobridge thedividebetween theopenculture
of ML research and the traditionally closed EDA domain, ultimately
enabling the community to accelerate innovation in ML EDA.
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