
Use Cases and Deployment of ML in IC Physical Design
Amur Ghose∗, Andrew B. Kahng∗†, Sayak Kundu†, Yiting Liu∗, Bodhisatta Pramanik†,

Zhiang Wang† and Dooseok Yoon†
UC San Diego Departments of CSE∗ and ECE†

{aghose,abk,sakundu,yil375,bopramanik,zhw033,d3yoon}@ucsd.edu

ABSTRACT
ML for IC physical design must be deployed in order to have busi-
ness impacts. However, deployment in production must navigate
many practical considerations, including choice of targets, skillsets
and infrastructure, expectations and resources, data, and “MLOps”.
Furthermore, usage of ML is not the same as IC design practice
and capability. In this invited paper, we give perspectives on basic
strategies for selecting applications and pursuing deployment for
ML in IC physical design. Example aspects include checklists for
data and MLmodels, evaluation of model performance and progress
on the path to deployment, the shifting landscape of MLOps, and
challenges of “LLM-ability”.

CCS CONCEPTS
• Hardware → Physical design (EDA); • Computing method-
ologies → Machine learning.

KEYWORDS
Integrated-circuit Physical Design, Machine Learning, MLOps

ACM Reference Format:
Amur Ghose, Andrew B. Kahng, Sayak Kundu, Yiting Liu, Bodhisatta Pra-
manik, Zhiang Wang and Dooseok Yoon. 2025. Use Cases and Deployment
of ML in IC Physical Design. In 30th Asia and South Pacific Design Automa-
tion Conference (ASPDAC ’25), January 20–23, 2025, Tokyo,Japan. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3658617.3703143

1 INTRODUCTION
In recent years, many IC design organizations have sought to ad-
dress the complexity, turnaround time and solution quality chal-
lenges of IC physical design (PD) through application of AI and
machine learning (ML) techniques [17] [23]. This has been spurred
by commercial EDA successes such as hyperparameter autotuning
[71] [79] [30], as well as ML EDA research that reports promising
results on numerous fronts [31] [43]. Prediction tasks in the litera-
ture (see [25]) span routing hotspot prediction [49], doomed run
prediction [32], and PPA prediction [12]. ML that produces helpful
design suggestions includes prediction of tool settings to improve
PPA [16], and creation of routing blockages to enhance routability
and PPA [24]. Progress on classical PD optimizations has been re-
ported for partitioning [6], clustering [33], macro placement [35],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3703143

placement [27], timing optimization [36] and more; see [18] and
[19] for recent reviews.

Large language models (LLMs) and other generative AI (GenAI)
methods further expand the scope of possibilities [50]. Nascent
applications of GenAI models include generating testbenches [41],
summarizing and diagnosing large collections of place-and-route
runs, and assisting engineers by recalling scripts and commands [45].
These hold promise to transform workflows, automate tedious pro-
cesses, and otherwise improve efficiency in IC PD.

Despite great interest in “AI-powered design flows”, challenges
to production deployment and business impact are seen in practice.
Cross-functional teams and enterprise-wide initiatives often fall
short of desired outcomes, which begs the question: Why have
so many efforts fallen short? Relevant factors span data, skillsets,
targets, resources and more. Resourcing of data and “MLOps” is a
first-class concern, but is often an afterthought. Strategies such as
targeting incremental improvement of existing design processes,
and early wins to build organizational confidence, are also essential.

In this paper, we give some perspectives on applications and
deployment for ML in IC physical design. Our discussion spans
(i) issues surrounding data for ML, (ii) high-level principles for
deployment, (iii) basic “checklists” for data, models and use cases,
and (iv) the rapidly shifting context for MLOps and LLM-based
application development.1 In the following, Section 2 discusses
issues surrounding data in IC design. Section 3 addresses deploy-
ment of ML in PD, Section 4 discusses implications of LLM-based
approaches and “LLM-ability”, and the paper concludes in Section 5.

2 DATA
Data is a first-class, up-front concern for ML success: quality, quan-
tity and relevance of data directly influence the reliability and
performance of ML models. We now discuss the data context for
ML applications and deployment in IC PD: (i) ML data outside vs.
inside IC design; (ii) challenges such as silos and multimodality;
and (iii) the spectrum of ongoing efforts to address data challenges.

2.1 Data Outside vs. Inside IC Design
Outside of IC design, Generative AI (GenAI) [14] [15] [48] has at-
tracted enormous attention and investment. GenAI models rely
heavily on extensive datasets that support unsupervised learning,
with five principal types of data: natural language, code, images,
video and audio. Leading models can generate high-quality artifacts

1For the most part, we focus on issues and challenges that apply to the ML-boosted
use of EDA tools in IC design organizations, not the application of ML methods by
EDA researchers and tool vendors. Commercial EDA companies have achieved notable
product successes based on AI/ML integration, for tool and flow autotuning (e.g.,
Synopsys DSO.ai [79] and Cadence Cerebrus [71]), acceleration of physics simulations
(e.g., Ansys SimAI [62] and Siemens Solido [77]), layout design optimization (e.g.,
Cadence Allegro X AI [70]), and other domains. However, a review of such commercial
EDA tooling is beyond our present scope.

https://doi.org/10.1145/3658617.3703143
https://doi.org/10.1145/3658617.3703143

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Ghose et al.

across a variety of natural language [10] [48] and image process-
ing [5] applications.

As noted above, IC design and EDA have also enthusiastically
embraced GenAI across a huge range of potential contexts, e.g., cod-
ing/scripting assistance; knowledge retrieval; verification, testing
and documentation tasks; and improvement of tool runscripts [27]
[29] [56]. However, data within the IC design universe is “different”:
it includes formal specifications, hardware description language
(HDL) code, graphical representations, hierarchical data structures,
tabular data and images. Data in IC design is typically also scarce
and proprietary. Unlike more common datasets that have massive
redundancy, IC design data typically presents unique instances with
minimal repetition.

2.2 Challenges
Varied forms and scales in IC design data present challenges to
traditional data handling and analysis methods.

Generalization across modalities. Leading GenAI models [2]
[72] have strong ability to understand multiple data modes such
as natural language, code and image. However, these models have
shown limited transferability when applied to IC data. A primary
method for handling structured data is transformation into a com-
mon form of structured text, such as code and its derivatives. Thus,
constrained output specifications are expressed using formats such
as JSON or XML, rather than by enabling specialized formal rules
or design representations. As a result, IC-related data – such as
specification sheets, technical diagrams and circuit artifacts – re-
main challenging for GenAI to interpret.2 Another challenge arises
with graph-level analysis, which is ubiquitous in EDA workflows
given the underlying hypergraph representation of circuits. Today’s
leading methods in graph ML, e.g., for drug discovery or theorem
proving, typically operate independently of LLMs, and integrating
LLM-based methods with graph ML frameworks remains an open
challenge.3

Scarce and proprietary data. IC design data is costly to produce,
and high-quality public data is scarce [22] [39]. This limits oppor-
tunities to train (sharable) large-scale ML models. The proprietary
nature of IC design-related data further complicates unsupervised
learning and data ownership, and brings many legal and ethical
complexities. For example, EDA licenses prevent the upload to pub-
lic LLMs of tool outputs, as well as any sharing of benchmark results
for EDA tools. Process design kit (PDK) data, commercial library
and soft IP data, and EDA vendor data (tool documentation, logfiles,
reports, command syntax, etc.) are all unsharable, per the IP rights
assertions of companies that have spent billions developing these
technologies. Building a public IC design foundation model that
integrates leading commercial EDA tools and workflows is difficult
under current constraints, leaving the industry to balance between
protecting intellectual property and promoting innovation through
shared data and models.

2Several startups have emerged to generate generic CAD samples beyond circuits (e.g.,
for architectural, engineering drawings, etc.) [68] [76]. However, no commercially
viable product has been realized as of this writing.
3For example, AlphaFold 3 [1] employs a diffusion-based approach rather than relying
on LLMs. How LLM and graph ML approaches might be merged in practical imple-
mentations is currently unclear even in relatively well-researched domains such as
drug design, and more so for EDA applications.

Data quality. Even with large amounts of data, the development
of superior ML models is not guaranteed. Several challenges still
prevent the effective use of data in training ML. Data can become
outdated or “stale”, or incomplete in its coverage, given the rapid
evolution of IC technology, design enablements, design tools, and
product designs themselves. These gaps lead to biases and inability
to generalize. Other vulnerabilities such as data poisoning can also
degrade the reliability and performance of ML models.

2.3 Ongoing Efforts
Efforts in both academia and industry have been directed towards
building ML infrastructure and shared datasets to enhance ML re-
search and applications in IC design.These initiatives have captured
significant international attention.

Academic efforts. To overcome data scarcity, academic works
such as [47] [26] have proposed artificial netlist generators that
match characteristics of real-world designs, to enhance ML model-
ing for IC PD applications.The open-sourceOpenROAD toolchain [4]
[57] continuously updates its baselines and benchmarks, and has
been the basis of works such as [8] [52] [28] as well as multiple
academic contests. ML EDA formats, datasets and “proxy” design
enablements (e.g., [9]) to unblock ML for PD are also seen in efforts
of the IEEE CEDA DATC [7] [55]. The SLICE project [59], an out-
growth of the March 2023 NSF workshop [39], also seeks to develop
a sharable and extensible ML infrastructure toward open collabo-
ration and standardized data-sharing practices. Numerous aligned
efforts span reproducibility badge initiatives at MLCAD-2024 to a
recent “ImageNets” for EDA workshop [38].

Industry efforts. Notable industry-driven projects and collabo-
rations include the recent GT-NVIDIA contest [40], which sought
global engagement to enable LLM-assisted design automation. Si2’s
“AI/ML Schema Open Standards Working Group” (OSWG) is de-
veloping a standardized schema specification to support AI/ML
methods and advanced data analytics, enabling academia-industry
collaboration that avoids disclosure of proprietary data [58]. Google
researchers open-sourced an Ariane RISC-V core in protobuf format,
as part of “Circuit Training” [35] [53]; this enabled scaled versions
in LEF/DEF to be published [7] [60] as new PD benchmarks that
reflect sub-10nm (apparently, TSMC 7nm) process technology.

Vision: An AI flywheel. An overarching goal is to realize an “AI
Flywheel” for IC design, so as to achieve the explosive innovation
that has been created through “frictionless reproducibility” [11],
Hugging Face, and other hallmarks of the broader AI/ML domain.
In the AI Flywheel, increased participation from users will generate
more data, which in turn drives the development of superior ML
models.These improvedmodels enable the creation of more efficient
tools and high-performance chips. As better chips attract more
users, the cycle accelerates, creating a self-reinforcing loop that
continuously advances and transforms the field.

Implicit in “frictionless reproducibility”, which entails data shar-
ing, code sharing and competitive challenges [11], is benchmarking.
We note that development and use of benchmarks for ML mod-
els in IC PD will require careful consideration of relevance and
scalability. For instance, techniques validated on smaller designs,
or on older technology nodes, may not directly transfer to larger
designs or more advanced nodes. To this end, benchmarks must

Use Cases and Deployment of ML in IC Physical Design ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

be periodically updated and diversified to reflect a broad range of
technology nodes, design complexities, and real-world scenarios.
Continuous curation is essential to ensure that ML models remain
both accurate and robust. Additionally, benchmarking should pri-
oritize representative datasets, consensus evaluation metrics, and
standardized testing protocols to facilitate meaningful comparisons
and drive progress. Fortunately, there is a groundswell of efforts –
including open and proxy design enablements, open-source tools
and open-source designs – to enable this future.

3 ML DEPLOYMENT
In this section, we begin by examining high-level strategy elements
for ML deployment in an IC design organization. We then discuss
two further aspects of ML deployment: (i) key performance indica-
tors (KPIs) and “checklists” that measure progress and systemati-
cally assess project feasibility, and (ii) machine learning operations
(MLOps) that unite ML with software and data engineering skillsets
to support deployment.

For successful deployment of ML in IC design organizations,
de-risking and building management confidence are essential. To
this end, three basic strategy elements are as follows.
• Focus on optimizing existing design processes. Examples could

include tuning synthesis knobs, leveraging netlist and flow ana-
lytics, or autotuning tool parameters – e.g., to obtain simplified
versions of commercial offerings such as Cadence Cerebrus [71]
or Synopsys DSO.ai [79]. These offer measurable improvements
while building trust in the integration of ML. Early wins or “short
ropes” can be pursued by using supervised learning and predic-
tive models in areas where domain experts already have insights
into appropriate feature sets and loss functions.

• Aim for incremental improvements (as opposed to high-risk, large-
scale methodology shifts). “Bolt-on” enhancement of existing
methodologies with ML brings less risk, as it minimizes resource
costs and allows for simpler rollbacks if needed.

• Treat data as a first-class, up-front concern – as robust data man-
agement forms the foundation for success of any ML initiative.

Beginning With the End in Mind. IC design organizations must
also understand that deploying ML at scale and in production is sub-
stantially different from developing research prototypes. An August
2022 Gartner report noted that only 54% of AI projects successfully
transit from prototype to production in organizations with some
level of AI experience [13]. It has also been estimated that over
80% of AI projects fail, which is twice the failure rate of corporate
information technology (IT) projects without AI involvement [21]
[44]. In this light, perhaps the most critical guiding principle is the
second of Covey’s “seven habits”: Begin with the end in mind.

Successful deployment of ML in IC design requires a clear under-
standing of the end-goal objectives and the key factors driving its
adoption. (i) Misunderstandings of the project’s intent and objec-
tives are among the most common reasons for failures. For example,
while GenAI tools such as chatbots and copilots have the potential
to enhance productivity, their primary role in IC design should be to
enhance design methodologies and improve heuristics, rather than
attempting to replace existing EDA flows. (ii) Successful projects
should focus on the problem to be solved instead of the technology
to be used. Since every ML approach has inherent limitations, it

is crucial to select the ML approach that best fits the problem’s
requirements, rather than simply pursuing the latest and most ad-
vanced ML innovations. (iii) ML projects need time and patience
to achieve success. Keeping the end goals in mind helps balance
the development of long-term capabilities and the pursuit of short-
term gains. (iv) A clear understanding of the ultimate goals enables
efficient allocation of limited resources to foundational infrastruc-
tures, such as cloud computing services, accelerated computing
platforms, and standardized metrics collection and design process
recording [20]. Ultimately, a well-defined vision, coupled with clear
strategic objectives and realistic expectations, is the cornerstone
for the successful deployment of ML in EDA.

3.1 KPIs and Checklists
Key Performance Indicators. KPIs enable objective assessment
and tracking of progress toward expected outcomes, and provide
feedback to help adjust ensuing project phases. Commonly used
KPIs for ML projects include [3] [81] (i) operational efficiency KPIs
(latency, error rate, accuracy rate) that measure how ML improves
business processes; (ii) customer or user satisfaction KPIs (system
latency, adoption rate, frequency of use, abandonment rate, service
quality) that measure how ML tools enhance user engagement
and satisfaction; and (iii) revenue growth KPIs (contributions to
sales) that measure AI-driven improvements to sales and marketing.
KPIs specific to ML deployment in IC design and PD teams might
include improvements in license utilization or efficiency of license
usage; number of RTL or P&R iterations achieved per week; ratio of
(automated vs. human) explorations of floorplan or timing closure
recipes; etc.
Checklists. When considering any potential ML project, feasibility
must be systematically assessed. Since ML projects are data-driven
and different ML techniques have different data requirements, a
first checklist applies to data and ML methods.
• Does the desired output follow from all the input data? Plans should

be checked for implicit assumptions and for human biases or
unjustified optimism. It can be a red flag if ML models seem to
“magically” solve complex problems (e.g., NP-hard optimizations,
partial differential equations, etc.). ML can provide approximate
solutions, but absent external function or solver calls is limited
in providing exact answers.

• Does the training data fully capture the functionality? ML models
rely on quality and diversity of training data. Uncovered corner
cases, biases in training data, distribution shifts and other factors
can degrade model performance.

• Does a given ML method work well with a given data type? For
example, LLMs handle textual information efficiently but struggle
with numerical data and graphs. Similarly, deep learning methods
may not do well with large structured and/or multiscale data.

• Is there enough training data to train a given ML model? Dif-
ferent ML approaches vary significantly in their data require-
ments. GenAI and deep RL methods are data-hungry, while
gradient-boosted decision trees (e.g., XGBoost) leverage ensem-
ble techniques to perform effectively on relatively small datasets.
Bayesian methods are also effective with limited data.

• Is there too much data for a given ML model? Overwhelming an
ML model with excessive data may reduce efficiency. Techniques

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Ghose et al.

such as Retrieval-Augmented Generation (RAG) or Mixture of
Experts can dynamically manage data and improve scalability.

• Are the model’s training speed and cost consistent with updates to
data? ML models should be updated as data changes. In the IC
design context, the retraining cost needed for adaptation to new
tools, design ECOs, updated library models or technology nodes,
etc. must be considered.

Other checklist items apply to the outputs from ML models.
• What are the comparisons to existing baselines? Making a fair com-

parison between ML methods and robust baselines is essential to
accurately measure improvement. A well-noted pitfall is the lack
of strong baselines and public, reproducible benchmarking.4

• How do output errors scale with size? For instance, an ML model
might perform well on simple designs but fail to handle designs
withmillions of instances, hundreds of macros, or tight utilization
and timing requirements.

• Must output errors be found? ML models deployed at final, signoff
stages of physical designmust detect all errors accurately to avoid
compromising the tapeout. By contrast, ML models deployed
during early design space exploration and implementation flow
steps might tolerate some inaccuracy.

• How are output errors tolerated? Different applications require
different error-handling strategies: “verify and fail,” “verify and
retry,” or hot-patching mechanisms such as hallucination correc-
tion and statistical adjustment.

• Will model outputs be consumed by people? Outputs for human
consumption should be concise, clearly confirmable as well-
formed (and correct), easy to fix, and timing-saving for human
engineers.

• Will model outputs be consumed by tools? For outputs that will
be fed directly to tools, questions such as the following arise:
(i) are there too many errors that will stop tools in their tracks
– especially in large designs?; (ii) are there efficient checkers
and correctors that handle model output errors automatically?;
and (iii) does the ML model output ultimately improve quality of
results from the design process?

By systematically checking such aspects, the deployment and eval-
uation of ML models in EDA can achieve greater robustness and
reliability, paving the way for transformative improvements in
design processes.

3.2 Machine Learning Operations
Machine Learning Operations (MLOps) integrate core ML activities
such as model development, testing, and deployment with best prac-
tices from software engineering (DevOps) and data engineering
[83]. Historically, large enterprises (Databricks, Snowflake, Ama-
zon etc.) offered end-to-end MLOps platforms that encompassed
continuous integration/delivery, advanced observability, and in-
frastructure management. Early tools such as Weights & Biases
(WandB) [82] and TensorBoard [64] played a foundational role in
establishing observability and monitoring within MLOps pipelines
that catered to the individual software engineer, beginning a trend

4This lack can lead to overestimated performance and controversy (cf. [35] [34]). The
crucial role of “code with data” (i.e., reproducibility) and benchmarking as foundations
of technical progress is highlighted in Google’s research philosophy [46] and such
influential publications as [11] [37].

towards lowering the barriers of entry and subsequent commodi-
tization. Today, the growing influence of Large Language Models
(LLMs) is driving a further shift towards commoditization, enabling
organizations of various sizes to adopt MLOps more readily. With
increasingly specialized domains such as chip design likely to incor-
porate ML-based optimizations in the future, organizations should
consider these operational principles proactively. To guide such
integration, the following checklist highlights key considerations
for introducing MLOps practices into chip design environments.
• How will data be archived from runs? Determine whether data

should be archived per-run (streaming) or in larger aggregated
batches.

• What elements of run data? Identify which logs, scripts, reports,
and collaterals are essential to retain.

• How to manage the lifecycle of design data, or the model store?
Establish policies for creating, updating, and deprecating stored
models and relevant datasets.

• Who creates VectorDBs (for RAG) and fine-tuned models – and
when? Clearly define team responsibilities and timelines for cre-
ating and maintaining these resources.

• Where is the compute? Consider data volume, privacy, latency, and
overall complexity when selecting on-premise or cloud resources.

How do LLMs aid commoditization? As LLM-based services
come to the fore, a new paradigm emerges – LLMOps [42]. Funda-
mentally, deploying a LLM via API is a much more lightweight pro-
cess than training, fine-tuning, validating and deploying a classical
ML model, requiring much less Ops-level expertise. What remains
is observability, middleware integration, error tracking and so forth,
all of which is now being commoditized under LLMOps. Service
providers such as OpenAI handle routing, batching, and load bal-
ancing, while newer tools such as LangSmith [63] streamline the
creation and maintenance of LLM-centric workflows.The combined
effect is that formerly enterprise-only capabilities, ranging from
continuous integration/delivery to comprehensive observability,
have become more widely accessible. By offloading substantial op-
erational burdens to external platforms, organizations can reduce
infrastructure requirements and accelerate ML adoption without
incurring the overheads once needed to stand up full-scale MLOps
environments. This commoditization is heightened by plugins such
as LiteLLM [65] that build atop existing pipelines, e.g., those from
OpenAI or Databricks. The relatively low prices of LLMOps have a
knock-on effect on pricing of other MLOps tools.

The commoditization of MLOps has fostered a more level com-
petitive landscape. Platforms such as DataDog [74] and enterprise-
grade frameworks such as MLflow (Databricks) and SageMaker
(Amazon) have begun to incorporate advanced LLM features. As a
result, smaller organizations that could not previously afford the
complexity and cost of robust ML infrastructures can now piece
together leaner, modular solutions from both newer entrants (e.g.,
LangSmith, DataDog) and older established solutions (e.g., Ama-
zon). ML-driven innovation and experimentation are thus more
accessible to smaller enterprises, including both MLOps vendors
and customers. Now, a broader range of entities – including those in
the IC design ecosystem – can leverage state-of-the-art ML method-
ologies for improved latency, robustness and observability at lower
operational thresholds.

Use Cases and Deployment of ML in IC Physical Design ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Despite the overall positive economic effects of LLM develop-
ment and LLMOps on the MLOps sector, it is not straightforward
to merge LLMOps with IC design and EDA. LLMOps tools are ulti-
mately specialized for a particular ML paradigm – that of LLMs. As
we discuss next, it is still not clear how to integrate the most cut-
ting edge LLM agents with EDA codebases and create cross-domain
deployments that bridge IC design and LLMs.

4 CHALLENGES FOR LLM DEPLOYMENT
Over the past two years, approaches based on LLMs have exerted a
substantial influence on software engineering workflows, yielding
a diversity of automated tools that assist human developers. Code
completion, type checking, and debugging represent common use
cases. GitHub Copilot [85], along with recently emerged startups
such as Magic [80], Anysphere [67], and Cognition [84] (all attain-
ing valuations exceeding one billion dollars), has introduced LLM-
based solutions that operate at varying levels of granularity. For
instance, Cognition’s agent “Devin” can generate comprehensive
pull requests from scratch, request clarification from the developer,
execute intermediate analyses through shell or browser-based runs
for debugging, and devise longer-term development plans. In con-
trast, tools such as Copilot and Cursor [73] (from Anysphere) focus
primarily on smaller, more precise modifications (e.g., debugging,
completion of isolated code segments). Intermediate-scale players
such as Supermaven [86] (now integrated into Anysphere) and
Aider [61] occupy positions between these two extremes. How-
ever, the deployment of LLMs in EDA software is difficult. We now
expound on the various obstacles, arising from codebase-level ar-
chitectural differences, that give rise to these issues and make LLMs
less than ideal for EDA at the moment.

4.1 LLM × EDA: Software Engineering Issues
LLM-driven models exhibit their strongest performance in widely
prevalent programming languages (e.g., Python, React) and in con-
texts where structure is standardized and broadly observed across
codebases. They rely heavily on canonicalized structural representa-
tions, such as JSON-mode or XML-based outputs. Deviations from
such established formats introduce rapid error propagation. For
example, even rendering LaTeX, with its more stringent formal
syntax and less JSON-like structure, presents increased difficulty
for LLMs. Similarly, one may define the “depth” of a JSON object
as the maximum hierarchical level at which a leaf node resides.
LLMs characteristically favor “shallower” structures, and when op-
erating at scale—spanning large codebases—they generally fail to
maintain reliable performance. Current mainstream LLM agents
perform best on loosely typed, medium-scale monorepositories
comprising at most two widely adopted languages in a common
stack (e.g., a MERN stack), and they particularly struggle when
asked to handle extended reasoning chains across an entire, more
complex codebase.

This scenario, when applied to EDA codebases, effectively forms
a near-complete “anti-endorsement” for the use of LLMs in that
domain. State-of-the-art EDA tools, whether from Cadence or Syn-
opsys, remain closed-source. The LLM cannot inspect underlying
source code to diagnose errors, undermining the established LLM-
based debugging paradigm that relies on source-level observability.

The notion of a “hybrid” action-observation workflow – iteratively
modifying source code and then observing the resulting behavior
in a fully transparent repository – is thus obstructed. Modeling
proprietary EDA tools as black-box APIs might appear viable, but
in practice these tools differ significantly from standard web-based
APIs in their payload structures, response latencies, and computa-
tional overheads.

Considering an open-source alternative such as OpenROAD does
not fully resolve these issues. OpenROAD is predominantly writ-
ten in C++ with TCL and some Python as extension (scripting)
languages, for a Verilog-to-GDSII (or, -routed DEF) use domain.
Although the TCL scripts constitute a small fraction of the code-
base’s lines of code, they exert substantial influence on the work-
flow’s execution.This structural configuration is atypical and differs
markedly from the software environments upon which LLMs are
predominantly trained. Neither Verilog nor TCL shares the same
order-of-magnitude popularity as more conventional languages
found in widely available training corpora.5 Errors in the Open-
ROAD flow (ORFS) may originate from virtually any point in the
repository.

Besides, in contrast to a webserver’s APIs, which are often neatly
modularized, EDA toolflows are complex and highly interdependent.
Disrupting any stage of the RTL-to-GDSII flow – ranging from
synthesis through detailed routing – may cause failures. Unlike in a
setting such as React, where incremental changes yield immediate
feedback and can be traced to a specific offending line using built-
in browser tooling, OpenROAD errors often surface as terminal
messages devoid of clear causality. Worse, the flow can fail silently,
producing a final circuit that meets completion criteria but exhibits
suboptimal Power, Performance, and Area (PPA) metrics. Such
silent failures are rare in typical software development and, when
present, are generally easier to diagnose. (We note that making any
analogous commentary on commercial EDA tools is prohibited by
terms of their license agreements.)

4.2 Challenges from EDA Flows
The current EDA flows present several obstacles to the adoption of
LLMs at scale. First, the complexity of EDA output formats poses
great challenges for LLMs. The structural requirements inherent
in EDA workflows greatly surpass the relatively simple adherence
to JSON-based formats. LLMs, which already struggle with deeply
nested JSON outputs, currently lack foundation models for more
complex data forms such as hypergraphs (i.e., circuit netlists). Such
representational gaps severely limit the applicability of LLM-based
methods in IC design and EDA contexts.

Second, tool latencies and iterations seen in EDA flows substan-
tially diminish the practicality of LLM-driven copilot techniques.
Consider, for example, Cognition’s Devin operating on a front-
end repository using React: it might request clarification from the
human expert every five minutes, with each cycle yielding mean-
ingful progress. An LLM-based EDA agent, by contrast, may need
to wait anywhere from minutes to days for observable results of its
source code-level changes – and then decide whether the results

5While RTL copilots are being developed (e.g., Silimate [78]), achieving robust and
generalizable performance may be challenging.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Ghose et al.

require clarification. Such prolonged and variable iteration cycles
are frustrating impediments to development.

Third, Devin and other LLM-based agents will also struggle
when confronted with code dispersed across multiple reposito-
ries or when incorporating unknown black-box tools – but such
scenarios are pervasive in IC design and EDA. The introduction
of a new Process Design Kit (PDK) or design database can be as
disruptive as adding a new framework, a scenario for which current
LLM agents are ill-prepared. Finally, the ecosystem of EDA and IC
design relies heavily on manuals and siloed documentation formats,
rather than the docstrings and inline comments that are standard
in modern software engineering practices.

State of Play. As of late 2024, integrating LLMs with EDA remains
challenging both technically and culturally. Technical barriers in-
clude incompatible data formats, lack of standard code structures,
and the monolithic nature of EDA repositories, which differ greatly
from the microservices-driven architecture of modern software
engineering. The absence of modularity and composable APIs (cf.
the “Bezos API mandate”) further complicates LLM applications in
EDA.

In software engineering, modular APIs and microservices enable
developers to quickly integrate and scale systems. Frameworks
such as React and Python packages simplify development, while
backend tasks can be outsourced to services such as Firebase [75].
Projects often start with minimal capital, sometimes as open-source
hobby efforts, and grow through subscriptions. Generous startup
credits provide millions in free resources, reinforcing a flywheel of
open-source contributions and economic incentives.This ecosystem
attracts a diverse range of participants, including outsiders such
as finance professionals turned entrepreneurs. EDA, in contrast,
operates with monolithic, tightly coupled frameworks that lack
modularity or open standards. It demands high capital investment,
functions in oligopolistic markets, and provides few opportunities
for entry. This cultural and economic disparity creates significant
hurdles, resulting in technical complexity and “culture shock” for
ML engineers accustomed to the agility of web-oriented develop-
ment environments.

5 CONCLUSIONS
In this paper, we have presented several perspectives on applica-
tion selection and deployment of ML in IC physical design. Despite
some progress in recent years, the adoption of AI/ML in production
remains limited. We outline the challenges inherent in IC design
data, along with ongoing efforts to mitigate these challenges. Our
discussion includes high-level precepts for successful deployment
of AI/ML in IC design, e.g., “begin with the end in mind”; the use of
well-chosen KPIs to assess and track progress; and basic “checklists”
for effective ML deployment. We furthermore discuss potential chal-
lenges and opportunities for LLM-enhanced EDA and IC design
methods, where integrating software and data engineering prac-
tices such as MLOps and LLMOps can automate and standardize
processes across the ML lifecycle.

Through replication of the “AI flywheel” and culture of friction-
less reproducibility seen in the broad AI/ML community [11], the
IC design and EDA ecosystem has the potential to break free from

its constraints, enabling seamless ML integration. Unified frame-
works, analogous to PyTorch or TensorFlow, could promote modu-
lar, reusable workflows and move away from monolithic codebases.
Standardized benchmarks, such as the recent “ImageNets” for EDA
[38] effort, would provide better progress metrics and encourage
rapid experimentation. Open-source datasets and models, coupled
with user-friendly tools, could lower entry barriers and potentially
reduce reliance on proprietary data. Beyond technical innovations,
cultural shifts toward openness and collaboration will bridge gaps
between EDA and ML experts, driving the field forward. While an
“AI singularity” for EDA is likely years away, advances that the
community can anticipate include (i) AI agents boosting engineer-
ing productivity, and (ii) AI agents learning from human-driven
innovations to optimize design processes.

ACKNOWLEDGMENTS
This paper draws from the “Deployment” section of an IEEE Learn-
ing Network webinar, “Artificial Intelligence and Machine Learning
in Chip Design”, presented by the second-listed author (ABK) in Au-
gust 2024. For that webinar, many colleagues (notably, Igor Markov
andThomas Andersen at Synopsys (data and checklists), ScotWeber
at AMD (MLOps), Rod Thorne and Steve Brown at Cadence, Sid-
dhartha Nath at Intel, and Tuck-Boon Chan at Qualcomm, among
others) generously provided discussion and inputs. We thank Pro-
fessor Youngsoo Shin of KAIST and the ASP-DAC 2025 committee
for organizing this special session and inviting this paper.

REFERENCES
[1] J. Abramson, J. Adler, J. Dunger et al., “Accurate Structure Prediction of

Biomolecular Interactions with AlphaFold 3”, Nature, 2024, pp. 493–-500.
[2] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. Leoni Ale-

man, D. Almeida et al., “GPT-4 Technical Report”, arXiv preprint 2303.08774,
2023.

[3] N. Aggarwal and A. Liu, “KPIs for Gen AI: Why Measuring Your New AI
Is Essential to Its success”, 2023. https://cloud.google.com/transform/kpis-
for-gen-ai-why-measuring-your-new-ai-is-essential-to-its-success

[4] T. Ajayi, V. A. Chhabria, M. Fogaça et al., “Toward an Open-Source Digital
Flow: First Learnings from the OpenROAD Project”, Proc. DAC, 2019, pp.
1–4.

[5] M. Chen, S. Mei, J. Fan, and M. Wang, “An Overview of Diffusion Models:
Applications, Guided Generation, Statistical Rates and Optimization”,
arXiv preprint 2404.07771. 2024.

[6] M. Chen and T.-C. Wang, “A Hypergraph Partitioner Utilizing a Novel
Graph Generative Model”, Proc. ICCAD, 2024.

[7] V. A. Chhabria, V. Gopalakrishnan, A. B. Kahng, S. Kundu, Z. Wang, B.-Y.
Wu and D. Yoon, “Strengthening the Foundations of IC Physical Design
and ML EDA Research”, Proc. ICCAD, 2024.

[8] V. A. Chhabria, W. Jiang, A. B. Kahng, R. Liang et al., “OpenROAD and
CircuitOps: Infrastructure for ML EDA Research and Education”, Proc.
VTS, 2024.

[9] S. Choi, J. Jung, A. B. Kahng, M. Kim, C.-H. Park, B. Pramanik and D. Yoon,
“PROBE3.0: A Systematic Framework for Design-Technology Pathfinding
with Improved Design Enablement”, IEEE Trans. CAD 43(4) (2024), pp.
1218–1231.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”, Proc. ACL,
2019.

[11] D. Donoho, “Data Science at the Singularity”,Harvard Data Science Review,
2024. https://doi.org/10.1162/99608f92.b91339ef

[12] H. Esmaeilzadeh, S. Ghodrati, A. B. Kahng, J. K. Kim et al., “An Open-
Source ML-Based Full-Stack Optimization Framework for Machine Learn-
ing Accelerators”, TODAES 29(4) (2024), pp. 68:1–68:33.

[13] “Gartner Survey Reveals 80% of Executives Think Automation Can Be
Applied to Any Business Decision”, Gartner, August 2022.

https://cloud.google.com/transform/kpis-for-gen-ai-why-measuring-your-new-ai-is-essential-to-its-success
https://cloud.google.com/transform/kpis-for-gen-ai-why-measuring-your-new-ai-is-essential-to-its-success
https://doi.org/10.1162/99608f92.b91339ef

Use Cases and Deployment of ML in IC Physical Design ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

[14] I. J. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. W. Farley, S. Ozair, A.
Courville and Y. Bengio, “Generative Adversarial Nets”, NeurIPS 27 (2014).

[15] J. Ho, A. Jain and P. Abbeel, “Denoising Diffusion Probabilistic Models”,
Proc. NeurIPS, 2020, pp.6840–6851.

[16] H.-H. Hsiao, Y.-C. Lu, P. Vanna-Iampikul and S. K. Lim, “FastTuner: Trans-
ferable Physical Design Parameter Optimization using Fast Reinforcement
Learning”, Proc. ISPD, 2024, pp. 93–101.

[17] J. Hu and A. B. Kahng, “The Inevitability of AI Infusion Into Design
Closure and Signoff”, Proc. ICCAD, 2023, pp. 1–7.

[18] J. Hu and H. Ren, eds., Machine Learning Applications in Electronic Design
Automation, Springer, 2022.

[19] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen et al., “Machine Learning
for Electronic Design Automation: A Survey”, TODAES, 26(5) (2021), pp.
1–46.

[20] J. Jung, A. B. Kahng, S. Kim and R. Varadarajan, “METRICS2.1 and Flow
Tuning in the IEEE CEDA Robust Design Flow and OpenROAD”, Proc.
ICCAD, 2021.

[21] J. Kahn, “Want Your Company’s A.I. Project to Succeed? Don’t Hand It
to the Data Scientists, Says This CEO”, 2022. https://fortune.com/2022/07/
26/a-i-success-business-sense-aible-sengupta/

[22] A. B. Kahng, “A Mixed Open-Source and Proprietary EDA Commons for
Education and Prototyping”, Proc. ICCAD, 2022, pp. 1–6.

[23] A. B. Kahng, “Solvers, Engines, Tools and Flows: The Next Wave for
AI/ML in Physical Design”, Proc. ISPD, 2024, pp. 117–124.

[24] A. B. Kahng, S. Kundu and D. Yoon, “Placement Tomography-Based
Routing Blockage Generation for DRV Hotspot Mitigation”, Proc. ICCAD,
2024.

[25] A. B. Kahng and Z. Wang, “ML for Design QoR Prediction”, in Machine
Learning Applications in Electronic Design Automation, Springer, 2022.

[26] D. Kim, S. Y. Lee, K. Min and S. Kang, “Construction of Realistic Place-
and-Route Benchmarks for Machine Learning Applications”, IEEE Trans.
CAD 42(6) (2022).

[27] V. Lee, C. Deng, L. Elzeiny, P. Abbeel and J. Wawrzynek, “Chip Placement
with Diffusion”, arXiv:2407.12282, 2024.

[28] R. Liang, A. Agnesina et al., “CircuitOps: An ML Infrastructure Enabling
Generative AI for VLSI Circuit Optimization”, Proc. ICCAD, 2023, pp. 1–6.

[29] R. Liang, S. Nath, A. Rajaram, J. Hu and H. Ren, “BufFormer: A Generative
ML Framework for Scalable Buffering”, Proc. ASP-DAC, 2023, pp. 264–270.

[30] R. Liaw, E. Liang, R. Nishihara et al., “Tune: A Research Platform for
Distributed Model Selection and Training”, arXiv preprint 1807.05118,
2018.

[31] D. S. Lopera, L. Servadei, G. N. Kiprit et al., “A Survey of Graph Neural
Networks for Electronic Design Automation”, Proc. MLCAD, 2021, pp. 1–6.

[32] Y.-C. Lu, S. Nath, V. Khandelwal and S. K. Lim, “Doomed Run Prediction
in Physical Design by Exploiting Sequential Flow and Graph Learning”,
Proc. ICCAD, 2021, pp. 1–9.

[33] Y.-C. Lu, T. Yang, S. K. Lim and H. Ren, “Placement Optimization Via
PPA-Directed Graph Clustering”, Proc. MLCAD, 2022, pp. 1–6.

[34] I. L.Markov, “ReevaluatingGoogle’s Reinforcement Learning for ICMacro
Placement”, Communications of the ACM, 2024.

[35] A. Mirhoseini, A. Goldie, M. Yazgan et al., “A Graph Placement Method-
ology for Fast Chip Design”, Nature 594 (2021), pp. 207–212.

[36] S. Nath, G. Pradipta, C. Hu, T. Yang, B. Khailany and H. Ren, “TransSizer:
A Novel Transformer-Based Fast Gate Sizer”, Proc. ICCAD, 2022, pp. 1–9.

[37] National Academies of Sciences Engineering and Medicine, Reproducibil-
ity and Replicability in Science, Washington, DC, The National Acade-
mies Press, 2019. https://www.nap.edu/catalog/25303/reproducibility-and-
replicability-inscience

[38] NSF Workshop on “ImageNets” for EDA, November 2024. https://wp.nyu.
edu/imagenets_eda/

[39] NSF Workshop on Shared Infrastructure for Machine Learning EDA,
March 2023. https://sites.google.com/view/ml4eda/home

[40] Nvidia Corp. and Georgia Tech, “ICCAD Contest on LLM-Assisted
Hardware Code Generation”, ICCAD, 2024. https://nvlabs.github.io/
LLM4HWDesign/

[41] R. Qiu, G. L. Zhang et al., “AutoBench: Automatic Testbench Generation
and Evaluation Using LLMs for HDL Design”, Proc. MLCAD, 2024, pp.
1–10.

[42] A. Quinn, “LLMOps vs. MLOps: Understanding the Differences”,
2024. https://www.iguazio.com/blog/llmops-vs-mlops-understanding-the-
differences/

[43] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf and J. Henkel,
“MLCAD: A Survey of Research in Machine Learning for CAD Keynote
Paper”, IEEE Trans. on CAD, 41(10) (2022), pp. 3162–3181.

[44] J. Ryseff, B. F. De Bruhl and S. J. Newberry, “The Root Causes of Failure
for Artificial Intelligence Projects and How They Can Succeed”, 2024.
https://www.rand.org/pubs/research_reports/RRA2680-1.html

[45] U. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria and A. Rovin-
ski, “OpenROAD-Assistant: An Open-Source Large Language Model for
Physical Design Tasks”, Proc. MLCAD, 2024, pp. 1–7.

[46] A. Spector and P. Norvig, “Google’s Hybrid Approach to Research”, Com-
munication of the ACM, 55(7), (2018), pp. 34–37.

[47] D. Stroobandt, P. Verplaetse and J. V. Campenhout, “Generating Synthetic
Benchmark Circuits for Evaluating CAD Tools”, IEEE Trans. CAD 19(9)
(2000).

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, L.
Kaiser and I. Polosukhin, “Attention is All You Need”, Proc. NeurIPS, 2017,
pp. 6000–6010.

[49] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren et al., “RouteNet: Routability
Prediction for Mixed-Size Designs Using Convolutional Neural Network”,
Proc. ICCAD, 2018.

[50] K. Xu, R. Qiu, Z. Zhao, G. L. Zhang, U. Schlichtmann and B. Li, “LLM-
Aided Efficient Hardware Design Automation”, arXiv preprint 2410.18582,
2024.

[51] ASP-DAC 2024 Tutorial. https://github.com/ASU-VDA-Lab/ASP-DAC24-
Tutorial

[52] CircuitOps Repository. https://github.com/NVlabs/CircuitOps
[53] Google Brain Ariane testcase (protobuf). https://github.com/google-

research/circuit_training/tree/main/circuit_training/environment/test_
data/ariane

[54] IEEE CEDA DATC RDF 2023. https://github.com/ieee-ceda-datc/RDF-
2023

[55] IEEE CEDA DATC Robust Design Flow, 2024. https://github.com/ieee-
ceda-datc/Robust-Design-Flow

[56] IEEE Intl Workshop on LLM-Aided Design (LAD’24). https://www.islad.
org

[57] The OpenROAD Project. https://github.com/The-OpenROAD-Project/
[58] Si2, AI/ML Schema Open Standards Working Group (OSWG). https://si2.

org/q4-2024-ceo-message/
[59] SLICE: A Shared Machine Learning Infrastructure for the EDA Commu-

nity. https://slice-ml-eda.github.io
[60] TILOS AI Institute MacroPlacement GitHub repository. https://github.

com/TILOS-AI-Institute/MacroPlacement
[61] Aider. https://aider.chat/
[62] Ansys SimAI. https://www.ansys.com/products/simai
[63] LangSmith by LangChain. https://www.langchain.com/langsmith
[64] TensorBoard by TensorFlow. https://www.tensorflow.org/tensorboard
[65] LiteLLM by BerriAI. https://www.ycombinator.com/companies/berriai
[66] Anyscale. https://www.anyscale.com/
[67] Anysphere Inc. https://anysphere.inc/
[68] ArchiLabs. https://www.archilabs.ai/
[69] Astrus AI. https://www.astrus.ai/
[70] Cadence Allegro X AI. https://www.cadence.com
[71] Cadence Cerebrus. https://www.cadence.com
[72] Claude, 2023. https://www.anthropic.com/
[73] Cursor. https://www.cursor.com/
[74] DataDog LLM analytics. https://www.datadoghq.com/dg/monitor/llm/

llm-observability/
[75] Firebase. https://firebase.google.com/
[76] Hestus Inc. https://www.hestus.co/
[77] Siemens Solido. https://eda.sw.siemens.com/en-US/ic/solido/
[78] Silimate: The Copilot for Chip Designers. https://www.silimate.com
[79] Synopsys DSO.ai. https://www.synopsys.com/ai/ai-powered-eda/dso-ai.

html
[80] Magic Inc. https://magic.dev/
[81] “Measuring Success: Key Metrics and KPIs for AI Initiatives”.

https://chooseacacia.com/measuring-success-key-metrics-and-kpis-
for-ai-initiatives/

[82] Weights and Biases. https://wandb.ai/
[83] “What is MLOps?”. https://aws.amazon.com/what-is/mlops/
[84] Cognition Inc. https://www.cognition.ai/
[85] Github Copilot. https://github.com/features/copilot
[86] Supermaven. https://supermaven.com/

https://fortune.com/2022/07/26/a-i-success-business-sense-aible-sengupta/
https://fortune.com/2022/07/26/a-i-success-business-sense-aible-sengupta/
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-inscience
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-inscience
https://wp.nyu.edu/imagenets_eda/
https://wp.nyu.edu/imagenets_eda/
https://sites.google.com/view/ml4eda/home
https://nvlabs.github.io/LLM4HWDesign/
https://nvlabs.github.io/LLM4HWDesign/
https://www.iguazio.com/blog/llmops-vs-mlops-understanding-the-differences/
https://www.iguazio.com/blog/llmops-vs-mlops-understanding-the-differences/
https://www.rand.org/pubs/research_reports/RRA2680-1.html
https://github.com/ASU-VDA-Lab/ASP-DAC24-Tutorial
https://github.com/ASU-VDA-Lab/ASP-DAC24-Tutorial
https://github.com/NVlabs/CircuitOps
https://github.com/google- research/circuit_training/tree/main/circuit_training/environment/test_data/ariane
https://github.com/google- research/circuit_training/tree/main/circuit_training/environment/test_data/ariane
https://github.com/google- research/circuit_training/tree/main/circuit_training/environment/test_data/ariane
https://github.com/ieee-ceda-datc/RDF-2023
https://github.com/ieee-ceda-datc/RDF-2023
https://github.com/ieee-ceda-datc/Robust-Design-Flow
https://github.com/ieee-ceda-datc/Robust-Design-Flow
https://www.islad.org
https://www.islad.org
https://github.com/The-OpenROAD-Project/
https://si2.org/q4-2024-ceo-message/
https://si2.org/q4-2024-ceo-message/
https://slice-ml-eda.github.io
https://github.com/TILOS-AI-Institute/MacroPlacement
https://github.com/TILOS-AI-Institute/MacroPlacement
https://aider.chat/
https://www.ansys.com/products/simai
https://www.langchain.com/langsmith
https://www.tensorflow.org/tensorboard
https://www.ycombinator.com/companies/berriai
https://www.anyscale.com/
https://anysphere.inc/
https://www.archilabs.ai/
https://www.astrus.ai/
https://www.cadence.com
https://www.cadence.com
https://www.anthropic.com/
https://www.cursor.com/
https://www.datadoghq.com/dg/monitor/llm/llm-observability/
https://www.datadoghq.com/dg/monitor/llm/llm-observability/
https://firebase.google.com/
https://www.hestus.co/
https://eda.sw.siemens.com/en-US/ic/solido/
https://www.silimate.com
https://www.synopsys.com/ai/ai-powered-eda/dso-ai.html
https://www.synopsys.com/ai/ai-powered-eda/dso-ai.html
https://magic.dev/
https://chooseacacia.com/measuring-success-key-metrics-and-kpis-for-ai-initiatives/
https://chooseacacia.com/measuring-success-key-metrics-and-kpis-for-ai-initiatives/
https://wandb.ai/
https://aws.amazon.com/what-is/mlops/
https://www.cognition.ai/
https://github.com/features/copilot
https://supermaven.com/

	Abstract
	1 Introduction
	2 Data
	2.1 Data Outside vs. Inside IC Design
	2.2 Challenges
	2.3 Ongoing Efforts

	3 ML Deployment
	3.1 KPIs and Checklists
	3.2 Machine Learning Operations

	4 Challenges for LLM Deployment
	4.1 LLM EDA: Software Engineering Issues
	4.2 Challenges from EDA Flows

	5 Conclusions
	References

