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ABSTRACT
Over the past year, IEEE CEDA DATC has continued to improve
the DATC Robust Design Flow (RDF) while also advancing open in-
frastructure for research, including machine learning for electronic
design automation (ML EDA). The 2024 RDF release includes new
standalone and integratedglobal placement andmacroplacement en-
gines, as well as a CCS-based delay calculator. Advances in baselines
and benchmarks include the addition of new benchmarks for macro
placement and logic gate sizing, as well as further efforts to establish
calibrations of both optimizations and analyses to aid assessments
of research progress in EDA. Additional efforts to promote open and
reproducible research include refined proxy research enablements
and enhanced ML EDA infrastructure through the development and
use of new formats, the release of datasets, and the development of
Python APIs in OpenROAD.
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1 INTRODUCTION
The Design Automation Technical Committee (DATC) within the
IEEE Council on EDA (CEDA) [45] seeks to address critical issues,
needs, and community strategies in design automation. Since 2016,
DATC has overseen the development of the Robust Design Flow
(RDF), a comprehensive academic reference flow from RTL to GDSII,
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integrating multiple award-winning point tools alongside the Open-
ROAD [2] toolchain. RDF was created with two primary aims: (i) to
preserve and integrate cutting-edge academic research tools, and
(ii) to stimulate research in design flow optimization and cross-stage
integration. A series of invited papers has chronicled updates to
RDF [5–7, 13–15, 17–19] and highlighted DATC’s evolving strategic
priorities and development efforts.

In 2020 [6], with the development of OpenROAD, RDF integrated
the OpenROAD app [56], creating a single open-source tool-based
RTL-to-GDSII implementation flow, alongside a cross-stagemultiple
tool-based flow. The scope and mission of RDF were also updated,
bringing attention to analysis and verification research; validation of
research in a full-flow context; and infrastructure (from obfuscation
and anonymization to metrics collection) to support ML-enabled
EDA (MLEDA) research. RDF is currently built uponmany academic
tools, as shown inTable 1. This year, RDF includes the updates shown
in bold. In this paper and our GitHub repository [43], we highlight
improvements in the flow as well as new foundations for IC physical
design and ML EDA research, including updates to baselines, bench-
marks, ML EDA formats, and datasets. The main directions of DATC
efforts in the past year include the following.
• Recent improvements of RDF. In its 2024 release, RDF has
added a new dataflow-driven GPU-accelerated placement engine,
DG-RePlAce, for global placement and macro placement, as well
as the newmulti-bit flip-flop clustering feature in OpenROAD and
a composite current source (CCS) delay calculator in OpenSTA.
These RDF improvements are available in open source through
OpenROAD integration.

• Advances in benchmarks and baselines. This year, DATC ef-
forts have added MemPool Cluster, a 10.5M-instance benchmark,
as well as scaled versions (2x and 4x) of Ariane (in .v, .def for-
mat) and CT-Ariane [42] (in protobuf format) to the MacroPlace-
ment repository [57]. Additionally, we have revisited the MET-
RICS2.1 [16]workand seededa “leaderboard”of calibration results
for AES, IBEX, and JPEG designs in NanGate45 enablement, using
OpenROAD-flow-scripts and obfuscated results from unnamed
commercial synthesis and place-and-route (P&R) tools. These cal-
ibrations and initial leaderboard results are available in our RDF
GitHub repository [43].

• Foundations forMLEDAresearch.Previousworks such as [49]
have emphasized the need for an open infrastructure for ML EDA.
DATC efforts this year have included improved proxies and other
key ML EDA enablements. Developments in 2024 feature bench-
marks for logic gate sizing and a refined calibrationmethod aimed
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at bridging the gap between an open-source process design kit
(PDK) and a commercial PDK. This year also saw efforts to make
RDF more compatible with ML through Python APIs and support
for NVIDIA’s CircuitOps format. DATC activities have released
a dataset for several benchmarks in this format. DATC also high-
lights initiatives such as the creation of artifact evaluation stan-
dards, applied to papers submitted to theMLCADsymposium [48],
which are being adopted by other venues (e.g., LAD [46]) to en-
courage open and reproducible research.

Table 1: RDF-2024 Components.

Component Tools
RTL generator Chisel/FIRRTL
RTL obfuscation ASSURE
Logic synthesis Yosys, ABC
Hypergraph partitioning SpecPart, TritonPart
DFT insertion Fault
Floorplanning TritonFP

Macro placement TritonMP, RTL-MP, Hier-RTLMP, AutoDMP,
DG-RePlAce-AutoDMP

Global placement RePlAce, FZUplace, NTUPlace3, ComPLx, Capo, Eh?Placer,
FastPlace3-GP, mPL5/6, DREAMPlace,DG-RePlAce

Detailed placement OpenDP, MCHL, FastPlace3-DP, DPO
Flip-flop clustering Mean-shift, FlopTray
Clock tree synthesis TritonCTS
Global routing FastRoute4-lefdef, NCTUgr, CUGR
Detailed routing TritonRoute, NCTUdr, DrCU
Layout finishing KLayout, Magic
Gate sizing Resizer, TritonSizer
Parasitic extraction OpenRCX
STA OpenSTA, iTimerC
Database OpenDB
Libraries/PDK GF180MCU, NanGate45, SKY130, ASAP7, NCTUcell, ASAP5
Integrated app OpenROAD
Benchmark conversion RosettaStone
DTCO PROBE3.0

In the following, Section 2 describes several recent advancements
in RDF. Section 3 discusses recent improvements to benchmarks and
baselines. Section 4 highlights recent advancements in ML EDA in-
frastructure for open and reproducible research. Section 5 describes
a roadmap of planned DATC efforts over the next several years. We
conclude in Section 6 with a summary of the past year’s progress.

2 RECENT IMPROVEMENTS OF RDF
In this section, we highlight three main improvements made in RDF-
2024: a dataflow-driven GPU-accelerated global placement frame-
work, the newmulti-bit flip-flop clustering feature in OpenROAD,
and the calibration efforts in OpenSTA. Details of new Python APIs
added toOpenROAD to supportMLEDAare discussed in Section 4.2.

2.1 DG-RePlAce: Dataflow-Driven GPU-
Accelerated Global Placement Framework

Global placement is a fundamental step in VLSI physical design
which determines the locations of standard cells andmacros in a lay-
out. The advent of largemachine learning accelerators withmillions
of standard cells, hundreds or even thousands of macros, and unique
dataflow and datapath architectures has introduced significant chal-
lenges, particularly in terms of runtime and quality of results (QoR).

DG-RePlAce in RDF-2024 is a dataflow-driven GPU-accele-rated
global placement engine integrated into OpenROAD. The flow of
DG-RePlAce is shown in Figure 1, and is distinguished by the follow-
ing key features. (i) In contrast to previous GPU-accelerated global

placers such as DREAMPlace [24], it is fully integrated within the
OpenROADRTL-to-GDSII flow, and implemented in CUDA andC++
to eliminate dependencies on external frameworks such as PyTorch,
which simplifies installation and deployment. (ii) It leverages both
dataflow information and datapath regularity to guide global place-
ment toward improvedQoR,making it particularly effective for early
architecture design space exploration. (iii) It is permissively open-
sourced and designed for scalability, which supports adaptation to
future problem instances.

Figure 1: Overview of the DG-RePlAce flow.

We also improve the performance of DG-RePlAce using DG-
RePlAce-AutoDMP,which autotunes the parameters ofDG-RePlAce
to boost performance, inspired by the approachused inAutoDMP[1].
Figure 2 shows the two main steps in DG-RePlAce-AutoDMP. (i) At
left: the multi-objective optimization engine explores the placement
space by tuning DG-RePlAce parameters. It evaluates placements
using post-placement metrics such as RSMT-based wirelength, den-
sity, and RUDY-based congestion (see [1] for details on each metric).
Along with the multi-objective Bayesian optimization algorithm
(MOTPE) used by AutoDMP authors, we also support the powerful
NSGA-II evolutionaryalgorithm[11].WedeployNSGA-II via theRay
Tune framework[26]. (ii)At right: after sampling, themostpromising
candidates from the Pareto front are evaluated using post-route met-
rics such as routedwirelength, total negative slack (TNS), and power.
These evaluations take placewithin a commercial EDA tool after tim-
ing optimization and routing. Figure 3 compares normalized metrics
of post-route layouts achieved using various tools, including DG-
RePlAce-AutoDMP, on theMemPoolGroup testcase [47]with a com-
mercial 12nm enablement. For this example, we employ the NSGA-
II optimization engine with 100 trials. We see that DG-RePlAce-
AutoDMP improves all PPAmetrics in comparison to DG-RePlAce.1

2.2 Multi-Bit Flip-Flop Clustering
Multi-bit flip-flops (MBFFs) are an important lever for power reduc-
tion. UsingMBFFs instead of single-bit FFs decreases the effective
number of clock sinks and total clock pin capacitance. As a result,
wirelength and the total number of clock buffers required for clock
distribution are both reduced, leading to clock power reduction. On
the other hand, flip-flop movement during the MBFF clustering pro-
cess can harm data path timing and increase combinational power.
1Permissively-licensed source code of DG-RePlAce-AutoDMP is available in [38].



Figure 2: Overview of the DG-RePlAce-AutoDMPflow.

(a) RePlAce (b) DREAMPlace

(c) DG-RePlAce (d) DG-RePlAce-AutoDMP

Figure 3: Post-route layouts of MemPool Group [47] in a commercial
12nm enablement. To protect foundry IP, all metrics are normalized:
wirelength and power are normalized relative toRePlAce, and total
negative slack (TNS) is normalized relative to the clock period.

Work reported in [21] has enabled flip-flop clustering in Open-
ROAD.Additionally, 2-bit and4-bitmulti-heightMBFF standard cells
for theASAP7 [10] enablementhavebeenadded toOpenROAD-flow-
scripts [51]. Figure 4 compares placements and corresponding clock
trees using (a) single-bit FFs and (b) MBFFs, for the JPEG [50] de-
sign in ASAP7. In the figure, the single-bit FFs are highlighted in
red, and the MBFFs are highlighted in green. The implementation
with MBFFs uses 181 clock buffers, while the implementation with
single-bit FFs uses 245 clock buffers.

2.3 OpenSTACalibrations
Dynamic Power Calibration. Last year’s DATC efforts [18] high-
lighted a recently-added dynamic power analysis capability of Open-
STA [54]. Given an input value change dump (VCD) file, OpenSTA
performs vectored dynamic power analysis. [18] showed differences

Figure 4: Visualization of the clock tree (left) and flip-flop placement
(right) for the JPEG design in ASAP7: (a) using single-bit flip-flops
only, and (b) withmulti-bit flip-flops.

in dynamic power reported by OpenSTA and an unnamed commer-
cial tool, using a VCD file for an Ariane-133 [36] RISC-V core imple-
mented in NanGate45 [40]. Improvements to dynamic power estima-
tionwere subsequentlymade; Figure 5 shows an updated calibration
against the same unnamed commercial tool for the same design.
CCS Timing Calibration. The OpenSTA static timing analysis en-
gine [54] now supports delay calculationwith the CCS timingmodel.
Figure 6(a) compares endpoint arrival times for the post-route JPEG
design using the corresponding ASAP7 CCS libraries [10]. The syn-
thesis and place-and-route are done using OpenROAD-flow-scripts
(ORFS). For each timing endpoint, the start-end timing path with
the worst slack, as identified by OpenSTA, is analyzed by both Open-
STA and an unnamed commercial timer. The error histogram in
Figure 6(b) shows the distribution of deviations between the two
timers. For these examples, all Verilog, DEF, SPEF and SDC files,
along with the 5-worst JSON, endpoints JSON, and timing report
viewer, are open-sourced in [44]. As described in [6], the 5-worst
JSON format contains detailed information for the top-5 worst tim-
ing paths, block-level worst negative slack (WNS), total negative
slack (TNS), and number of failing endpoints (FEP). The endpoint
JSON format includes setup slack values at every flip-flop D pin.
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Figure 5: Vectored dynamic power correlation between OpenSTA
and an unnamed commercial tool (Ariane design in NanGate45 with
bsg_fakeram SRAMmodels). Left: RDF-2023. Right: RDF-2024.

Figure 6: Correlation analysis results on JPEG with ASAP7 CCS
libraries: (a) endpoint arrival time comparison betweenOpenSTAand
commercial STA results, and (b) distribution of deviations from (a).

3 BENCHMARKINGANDBASELINES
In this section, we present updated macro placement benchmarks
and recent flow tuning efforts.

3.1 Updated Benchmarks forMacro Placement
RDF-2024 brings several additional public benchmarks for macro
placement. The MemPool Cluster [4] testcase in open enablement
augments MacroPlacement effort [8] [57], which was introduced in
RDF-2022. MemPool Cluster has 1,296 macros and approximately
10.5M instances in the NanGate45 enablement. Furthermore, the
well-studied Ariane-133 testcase [36], which has 133 macros and
approximately 117K instances in the NanGate45 enablement, has
been scaled into ×2 and ×4 derivatives as described for “quanti-
fied suboptimality” studies in [12]. Figures 7(a) and (b) show the
macro placements for Ariane-133×2 and Ariane-133×4, respectively.
Macro placements on the left of the figure are generated by Hier-
RTLMP [22], while macro placements on the right are produced by
DG-RePlAce [38]. As with previous open benchmarks, TCL flow
scripts are publicly available in theMacroPlacement repository [57],
to facilitate synthesis using CadenceGenus v21.1 and post-P&R eval-
uation of macro placement solutions using Cadence Innovus v21.1.
We also note that Google Brain’s Circuit Training for macro place-
ment [25] [41]publishedanother133-macroversionofArianedesign,
in protobuf format with cell names corresponding to a TSMC 7nm
(240nm cell height) library [42]. To provide additional testcases that

Figure 7: Macro placement solutions generated usingHier-RTLMP
(left) and DG-RePlAce (right) for (a) Ariane-133×2 and (b) Ariane-
133×4 in NanGate45.

reflect macro placement in sub-10nm technology, we have created
CT-Ariane-133×2 and CT-Ariane-133×4 derivatives (in protobuf for-
mat), which are also available in theMacroPlacement repository [57].

3.2 Flow Tuning for Calibration and Progress
The work in [16] presented an open-source script to tune hyperpa-
rameters for OpenROAD-flow-scripts (ORFS) using Ray Tune [26]
and demonstrated significant improvements in power, performance
and area (PPA) for different target designs. Over the past several
years, OpenROAD has introduced new features and added new flow
knobs (e.g., detailed placement optimizer, resizer, etc.) that enable
better PPA outcomes. We have revisited the study of [16], with auto-
tuning of the hyperparameters listed in Table 2. In the table, newly
added hyperparameters compared to [16] are highlighted in bold.
In each autotuning run, the search algorithm Optuna [3] is used to
generate 1,000 trials,with20at a time running inparallel, aimedat op-
timizing either performance or area. In our runs, the sweeping range
for CLOCK_PERIOD is 0.1ns to 10ns for performance optimization,
and 3ns to 10ns for area optimization.

The results in [16]donot shedany lighton the strengthof commer-
cial baselines. To address this gap, we also perform hyperparameter
tuning of commercial synthesis and place-and-route (P&R) tools.We
create a leaderboard (Table 3) for the AES [50], IBEX [50], and JPEG
designs using the NanGate45 [40] enablement, where the goal is to
improve performance or area metrics. Table 3 provides three base-
lines: (a) Comm: using unnamed commercial synthesis and P&R
tools, (b)OR: using OpenROAD-flow-scripts (ORFS), and (c)OR*:
using the best synthesized netlist from Commwith P&R executed
through ORFS. In the OR* flow, the best Comm synthesis netlist op-
timized for area is used for area-focused runs, while the best Comm
synthesis netlist optimized for performance is used for performance-
focused runs. To ensure consistent evaluation,we useOpenRCX [53]
for SPEF extraction and OpenSTA [54] for power and performance
reporting. In Table 3, the effective clock period (EffCP) is calculated



Table 2: Tunable Tool and Design Parameters. The sweeping range
for CLOCK_PERIOD is 0.1ns to 10ns for performance optimization
and 3ns to 10ns for area optimization.

Parameters Description Type Range

CLOCK_PERIOD Target clock period (ns) float −
CORE_UTIL Target core utilization (%) int [20, 99]
GP_PAD Cell padding for global placement (site) int [0, 4]
DP_PAD Cell padding for detailed placement (site) int [0, 4]
ENABLE_DPO Detailed placement optimization int [0, 1]

PIN_LAYER_ADJUST Layer resource adjustment during global float [0.2, 0.7]routing (%) for metal2 and metal3 layers

ABOVE_LAYER_ADJUST Layer resource adjustment during global float [0.2, 0.7]routing (%) for metal4 and above layers

PLACE_DENSITY_LB_ADDON Additional lower bound increase of the float [0.00, 0.99]target local global placement density (%)
FLATTEN Design hierarchy flattening int [0, 1]
PINS_DISTANCE Minimum IO pin distance (#tracks) int [1, 3]
CTS_CLUSTER_SIZE Target CTS sink cluster size int [10, 40]
CTS_CLUSTER_DIAMETER Target CTS sink cluster diameter (𝜇m) int [80, 120]
TNS_END_PERCENT Percentage of violating endpoints to repair int [0, 100]

as the target clock period minus the worst setup slack. The reported
area refers to the core area of the design, and power represents the
total power of the design computed at the effective clock period.

OpenROAD is evolving rapidly, and maintaining a leaderboard
will allow us to understand its limitations and track its progress [27–
29]. Our new leaderboard also enables proposed EDA algorithm
improvements to be easily assessed using standardized evaluators
for PPAmetrics, and in the OpenROAD full-flow context. To support
this purpose, we have uploaded our autotuning scripts, evaluation
flow and baseline solutions to the RDF GitHub repository [43]. For
anonymity, all design hierarchies are flattened, and all instances,
nets, and generated vias are renamed to generic identifiers (e.g., in-
stances as i1, i2, . . . ; nets as n1, n2, . . . ; and generated vias as via1,
via2, . . . ). In addition, all tool-specific headers and keywords are
removed from the Verilog, DEF, and SDC files.

4 MLDATAANDRESEARCHENABLEMENTS
Wenowdescribe progressmade inMLEDAdata and research enable-
ment, including proxy design enablement, data formats and datasets
for ML EDA, and ML gate sizing benchmarks. We also highlight the
use of LLMs for physical design, and efforts toward reproducible ML
EDA research.

4.1 Proxy Design Enablement:
BEOL Parameters andMulti-PVT Tuning

Calibration of proxy design enablement was introduced in [18],
which used [26] to autotune scaling factors for standard-cell tim-
ing and power models. This work narrowed the gap between the
open-source ASAP7 enablement and an unnamed leading-edge com-
mercial 7nm technology node by scaling internal power, switching
power, and cell delay in Liberty files. In RDF-2024, we add setup/hold
timing and pin capacitance, as well as BEOL resistance and capac-
itance, to the set of autotuned scaling factors.

Figure 8 shows the updated autotuning flow and impact of the
added BEOL RC scaling factors. Synthesis and P&R are performed
using Cadence Genus v21.1 and Innovus v21.1, respectively. Loss
is the average of Mean Absolute Percentage Error (MAPE) of total
power and MAPE of effective clock period, across all target clock
periods. While the addition of BEOL RC scaling factors reduces loss

Table 3: Calibration ("leaderboard") of performance and area
outcomes achievable by Comm: (unnamed) commercial synthesis
and P&R tools, OR: OpenROAD-flow-scripts [51] (commit: 3b4c59a),
and OR*: the best synthesis netlist from Comm with P&R using
OpenROAD-flow-scripts. Diff (%) indicates the percentage difference
from outcomes of the best commercial result.

Case Goal Tool
EffCP
(𝑛𝑠)

Diff
(%)

Area
(𝜇𝑚2)

Diff
(%)

Power
(𝑚𝑊 )

AES

Perf
Comm 0.582 NA 40679 NA 349.8
OR 0.915 57.1 65861 61.9 396.9
OR* 0.694 19.1 58995 45.0 236.1

Area
Comm 1.285 NA 14166 NA 85.1
OR 1.098 -14.55 27433 93.7 326.8
OR* 1.628 26.7 20512 44.8 90.8

IBEX

Perf
Comm 1.123 NA 68843 NA 794.9
OR 2.313 106.0 44825 -34.9 92.0
OR* 1.654 47.3 47969 -30.3 473.9

Area
Comm 4.273 NA 22331 NA 39.3
OR 4.346 1.7 37699 68.8 50.4
OR* 4.134 -3.3 28077 25.7 56.6

JPEG

Perf
Comm 0.616 NA 156700 NA 752.2
OR 1.360 120.7 310723 98.3 970.1
OR* 0.899 45.9 182624 16.5 441.8

Area
Comm 14.725 NA 59521 NA 20.3
OR 1.602 -89.1 117217 96.9 811.1
OR* 2.138 -85.5 68694 15.4 132.8

by only 0.33%, it enables autotuning solutions with less-extreme
standard-cell scaling factors.

We confirm the robustness of our autotuning-based proxy enable-
ment at multiple PVT (Process, Voltage, Temperature) targets. That
is, we vary process from FF (fast NMOS and fast PMOS) to SS (slow
NMOS and slow PMOS); voltage from UHV (ultra-high voltage) to
ULV (ultra-low voltage); and temperature fromHT (high tempera-
ture) to LT (low temperature). To protect the foundry’s IP, specific
numbers are not disclosed. Figure 9 shows power-performance out-
comes for JPEG implementationacross a rangeof target clockperiods
(CP), for autotuned enablements. Part (a) of the figure shows combi-
nations of fast process, high voltage and high temperature. Part (b)
shows combinations of slow process, low voltage and low temper-
ature. The loss values for all four PVT corners are below 10%, with
three of them under 2%.We have also performed autotuning runs for
the more traditional best corners (FF-(U)HV-LT) and worst corners
(SS-(U)LV-HT), obtaining loss values under 4.6% for the best corners
and under 2.5% for the worst corners. Our results suggest that the
open-source PDK at a single PVT corner (i.e., ASAP7’s (TT, 0.7V,
25C) corner in our studies) can be effectively tuned to cover a wide
range of PVT corners in a closed-source PDK.Wehave open-sourced
the autotuning scripts for proxy enablement in the RDF GitHub
repository [43].

4.2 Data Formats and Datasets forML EDA
A year ago, RDF-2023 [18] presented a roadmap of Python APIs in
OpenROAD,with an end goal of OpenROADbecoming a playground
for EDA researchers where ML algorithms can be easily integrated
into EDA tools. Since then, there have been several advancements
toward this goal. (1) CircuitOps [23], a standard data format to store



design data in an AI-friendly way, was developed. In CircuitOps, the
design data is represented as Labeled PropertyGraphs (LPGs) backed
by intermediate representation tables (IR Tables), simplifying the
process of custom dataset generation for ML applications. (2) Nu-
merous Python APIs in OpenROAD have been developed, offering
faster dataset generation when compared to TCL interfaces [9]. The
newly-developed APIs include reading design files, querying tim-
ing properties from OpenROAD (e.g., slacks, load capacitances, and
arrival times of pins in the design), and back-annotating properties
into OpenROAD. These APIs not only enable the direct training of
MLmodels using design data within OpenROAD, but also establish
a feedback loop from ML algorithms to design, feeding ML infer-
ence results back into OpenROAD by modifying the OpenROAD
database through the APIs. This infrastructure using CircuitOps
is shown in Figure 10. A detailed overview of all newly developed
APIs is available at the ASP-DAC24-Tutorial GitHub repository [34].
(3) Using these Python APIs, as a part of DATC activities, we have
created IR tables using data from post-route DEF for eight designs in
NanGate45 [40], five designs in SKY130HD [55], and four designs in
ASAP7 [10]; all of these designs are available in theOpenROAD-flow-
scripts repository. The post-route DEF data is produced by running
the OpenROAD-flow-scripts default flow, and the IR tables are made
available to boost research onML EDA applications and seed further
data generation by the community. Details of these designs and the
IR tables are available at the CircuitOps GitHub repository [58].

Figure 8: Addition of BEOL RC parameter tuning: (a) autotuning flow
and (b) results of power and performance autotuning. “4-parameters”
indicates tuning of four standard-cell scaling factors (delay, power,
setup/hold timing, andpin capacitance). “4+RCparameters” indicates
the addition of BEOL resistance and capacitance scaling factors.

4.3 MLGate Sizing Benchmarks
The 2024 ICCAD Contest Problem C on gate sizing [31] spurs devel-
opment of newalgorithms tominimize leakage powerwhilemeeting
timing and electrical constraints. The contest objective is a function
of runtime, leakage power, total negative timing slack, and slew and
load violations. The contest benchmarks [33] include eight designs
from theMacroPlacementGitHub repository [57], alongwith twode-
signs fromOpenCores [50], all implemented inASAP7. These bench-
marks are provided in two formats: (1) standard EDA files, which
consist of SDC, LIB, LEF, DEF and gate-level netlist Verilog files, and
(2) NVIDIA’s CircuitOps [23] IR Table format. The benchmarks are
created from post-placement solutions produced by an unnamed

Figure 9: Power-Performance of ASAP7 autotuned atmultiple PVT
corners, relative to an unnamed commercial 7nm technology: (a) FF
corners and (b) SS corners.

Figure 10: Integration of ML algorithms with OpenROAD Python
APIs and CircuitOps.



commercial tool. The contest alsoprovides example scripts that lever-
age OpenROAD’s Python APIs, to illustrate the use of OpenROAD
and its integration with ML approaches. The contest benchmarks,
along with supporting scripts and examples, are available at [33].

4.4 Large LanguageModels for Physical Design
The EDA Corpus dataset [32] [39] is the first open-source dataset
designed to support large language model (LLM) based research
(e.g., chatbot development and script generation) in physical de-
sign. EDACorpus includes 943OpenROADprompt-script data pairs,
comprising 373 pairs of prompts and OpenROAD Python scripts
corresponding to various stages of the physical design flow, along
with 570 pairs of prompts and OpenROAD Python scripts to query
information from the OpenROAD database. The dataset also 590
question-answer pairs, including 181 pairs related to general Open-
ROADmodules, 190pairs related to theOpenROADtoolusermanual,
and 219 pairs related to the OpenROAD flow. All data pairs in EDA
Corpus have been reviewed by OpenROAD experts and are format-
ted as prompt-script or question-answer pairs, making them easy
to integrate into LLM training workflows.

The OpenROAD-Assistant project [30] [52] is an open-source
LLM built on the EDA Corpus dataset. It is designed to help Open-
ROAD users learn the tool, and/or to reduce engineering efforts
for physical designers who use OpenROAD. OpenROAD-Assistant
answers questions related to OpenROAD and can generate Python
scripts to perform physical design tasks or to query information
from the OpenROAD database, with natural language prompts.

4.5 Toward ReproducibleML EDAResearch
Artifact evaluation is a critical initiative to promote open, repro-
ducible research within the EDA/CAD community. The process
allows authors to submit the codes, datasets, training scripts, and
inference scripts used to produce the key results of their accepted
papers. These submitted elements, known as artifacts, undergo peer
evaluation to check if they meet standards of availability (avail-
able badge), functionality (functional or reviewed badge), and repro-
ducibility (reproducible badge) defined by ACM/IEEE. Papers that
meet these standards are awarded badges. In 2024, the MLCAD sym-
posium adapted ACM badges [35] and developed artifact evaluation
standards based onMLCommons [37] to create standards tailored to
the ML EDA community. These standards address challenges such
as the use of proprietary tools and PDKs, as documented in [48].
The DATC sees this process as a model for other conferences, en-
couraging a broader adoption of artifact evaluation criteria across
the EDA/CAD research landscape. DATC activities in the next year
will refine these standards by working with IEEE CEDA based on
community inputs and past experiences.

5 IEEE CEDADATCROADMAP
The mission of DATC is to serve as a central organization and plat-
form that addresses key challenges in design automation, facilitates
collaboration on public design flows and testcases, and organizes
relevant workshops, meetings, and publications. In recent years,
RDF efforts have focused on building public design flows, defining
key metrics, and enabling ML EDA. The overarching goal is to en-
sure continuous progress in EDA research by maintaining baseline

calibrations, tracking metrics, and integrating point CAD tools into
a cohesive flow to promote cross-stage research and innovation, as
highlighted in [20].
Challenges.Despite notable progress, several challenges must be
addressed as DATC continues its efforts to accelerate innovation and
the advancement of EDA research. In reviewing the history of past
DATC RDF efforts, the following challenges are apparent.
• Limited external contributions to DATC activities. External contri-
butions to DATC RDF have been limited, mainly due to a lack of
communityawareness, establishedcontributionguidelines, and in-
centives for maintaining open-source repositories. The absence of
diverse academic contributions also limits the definition of best re-
sults possible on specific benchmarks, impeding research progress.

• Fragmented repositories and tools.Over the past years, DATC has
annually released new repositories to showcase its activities. How-
ever, this approach has proven ineffective, asmaintainingmultiple
fragmented repositories complicates updates and weakens the
impact of the research enablement efforts.

• Reproducibility of research. EDA research continues to face chal-
lenges of reproducibility due to issues related to proprietary de-
signs, PDKs, and commercial EDA tools. Furthermore, varying
flows with different parameters, along with the computational
demands of ML-driven EDA, exacerbate these reproducibility
challenges. The closed nature of certain research practices further
limits open-source contributions and collaboration.

Short-term activities. DATC will take the following short-term
actions to address these challenges:
• Unified RDF GitHub repository with continuous integration (CI).
Beginning this year, DATCwill maintain a single, well-organized
GitHub repository to facilitate community contributions and en-
sure long-term sustainability. This repository will provide clear
documentation and contribution standards, and will feature two
flows: one integrating OpenROAD tools, and the other based on
individual tools (and file-based IO) via precompiled binaries or
submodules.ACI systemwill be implemented to streamline contri-
butions andmaintain flow quality. Annual releases will document
baselines, benchmarks, and ML EDA enablements in this central
repository.

• Incentives for external contributions.DATCwill incentivize exter-
nal contributions by offering developer certificates and certificates
of recognition, whichwe plan to award annually at ICCAD during
the ICCADContest Special Session. This approachwill encourage
greater participation fromdiverse contributors across the research
community.

• Support for open-source research artifacts.DATCwill lead the ar-
tifact evaluation processes at key conferences such as LAD and
MLCAD. Expanding these efforts to other venues, DATC will
establish reproducibility challenges and award badges based on
EDA-specific IEEE and ACM artifact evaluation policies, thus
promoting open and reproducible research.

Long-term activities. In the long term, DATCwill focus on:
• Expanding community awareness and engagement.DATCwill in-
crease its presence through presentations, invited talks, and out-
reach. This will help raise awareness of DATCRDF and encourage
contributions from a broader audience.

• Continuous improvement of testcases and tools. By enhancing test-
cases integrated with the CI system, DATC will strengthen the



RDF while also providing benchmarks and baselines for academic
research.

• Refining artifact evaluation standards.As the artifact evaluation
process matures, DATCwill engage with key stakeholders to en-
hance policies for badge allocation in EDA research. This will
include organizing peer-reviewed reproducibility challenges to
further incentivize open and reproducible research practices.

Metrics of success. To measure the success and impact of these
activities, DATCwill track several key metrics, such as the number
of external contributions to the RDF GitHub repository, the number
of developer certificates and contributions recognized annually at
ICCAD, the number of reproducibility badges awarded at EDA con-
ferences, the number of new point tools incorporated into the RDF
flow, and the number of testcases and designs integrated into the CI
system. These metrics will be compiled and reported annually (e.g.,
at ICCAD) to ensure transparency and continuous improvement.

6 CONCLUSIONS
In this paper, we have described several key DATC RDF efforts made
over the past year.

Recent improvements of RDF include a new dataflow-driven GPU-
accelerated global placement framework (DG-RePlAce), the new
multi-bit flip-flop clustering feature in OpenROAD, and calibration
of OpenSTA. DG-RePlAce creates an effective global placement by
leveraging dataflow information and regularity. The multi-bit flip-
flip clustering feature is an important lever for power reduction. For
OpenSTA calibrations, VCD-based dynamic power correlation has
improved since last year’s RDF, and CCS timing calibration data has
been added.

Advances in benchmarks and baselines include updated bench-
marks for macro placement and flow tuning for calibration and
progress tracking. A new design, MemPool Cluster (1,296 macros
and 10.5M instances), as well as 2x and 4x scaled versions of Ariane
(inNanGate45) andCT-Ariane (7nmdesign in protobuf format), have
been uploaded to theMacroPlacement repository. Furthermore, to
calibrate and track the progress of OpenROAD, a baseline leader-
board for performance and area has been established for the AES,
IBEX, and JPEG designs by autotuning the flow parameters of ORFS
and an unnamed commercial synthesis and P&R tools. Obfuscated
commercial tool results, alongwith theORFS designs and evaluation
scripts, are uploaded to the RDF GitHub repository for reference.

Foundations for ML EDA research have been strengthened on mul-
tiple fronts. Adding setup/hold constraints, pin capacitances and
BEOL RC values to the autotuning of proxy design enablements
leads to less-extreme scaling factors and robust matching of power-
performance across PVT corners. For an AI-friendly way of storing
design data, CircuitOps provides a standard data format that simpli-
fies custom data generation for ML applications. Additionally, nu-
merous Python APIs in OpenROAD enable fast data generation for
ML as well as seamless integration of ML inference results back into
OpenROAD. For LLM research in physical design, the open-source
EDACorpus dataset provides numerous, well-curated prompt-script
and question-answer data pairs which can be easily integrated into
LLM training workflows. EDA Corpus serves as the foundation of
OpenROAD-Assistant, the first open-source LLM designed to assist
OpenROAD users.

Last, the IEEE CEDADATC Roadmapwill frame and inform future
efforts to provide a central platform that addresses key challenges
in design automation. In recent years, RDF has focused on building
public design flows, defining metrics and calibrations, and enabling
ML-driven EDA. However, the accumulation of tools, codes and
other research infrastructure in RDF has exposed other problems,
such as lack of external contributions, fragmented repositories, and
limited progress toward reproducibility in EDA research. To address
these issues, DATCwill unify its GitHub repository, incentivize ex-
ternal contributions with certificates, and lead open-source artifact
evaluation efforts. Long-term goals include expanding community
engagement, improving test cases and tools, and refining repro-
ducibility standards, with success metrics such as contributions and
reproducibility badges.

7 ACKNOWLEDGMENTS
We thank Rongjian Liang from NVIDIA for supporting CircuitOps
infrastructure and the ML EDA dataset generation. We also thank
Matt Liberty from Precision Innovations, Inc. for his help with ad-
dressing issues inOpenROADandOpenSTA. Thiswork is supported
in part by the IEEE Council on Electronic Design Automation.

REFERENCES
[1] A. Agnesina, P. Rajvanshi, T. Yang, G. Pradipta, A. Jiao, B. Keller, B. Khailany

and H. Ren, “AutoDMP: Automated DREAMPlace-Based Macro Placement”, Proc.
ISPD, 2023, pp. 149-157.

[2] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny et al., “Toward an
Open-Source Digital Flow: First Learnings from the OpenROAD Project”, Proc.
DAC, 2019, pp. 76:1-4.

[3] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, “Optuna: A Next-generation
Hyperparameter Optimization Framework”, Proc. SIGKDD, 2019, pp. 2623-2631.

[4] M. Cavalcante, S. Riedel, A. Pullini and L. Benini, “MemPool: A Shared-L1Memory
Many-Core Cluster with a Low-Latency Interconnect”, Proc. DATE, 2021, pp.
701-706.

[5] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li, S.-T. Lin andM.
Woo, “DATC RDF-2019: Towards a Complete Academic Reference Design Flow”,
Proc. ICCAD, 2019, pp. 1-6.

[6] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li, S.-T. Lin and
M.Woo, “DATC RDF-2020: Strengthening the Foundation for Academic Research
in IC Physical Design”, Proc. ICCAD, 2020, pp. 1-6.

[7] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, S. Kim, V. N. Kravets, Y.-L. Li, R.
Varadarajan and M. Woo, “DATC RDF-2021: Design Flow and Beyond”, Proc.
ICCAD, 2021, pp. 1-6.

[8] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang and Z. Wang, “Assessment of
Reinforcement Learning for Macro Placement”, Proc. ISPD, 2023, pp. 158-166.

[9] V. A. Chhabria, W. Jiang, A. B. Kahng, R. Liang, H. Ren, S. S. Sapatnekar and
B.-Y. Wu, “OpenROAD and CircuitOps: Infrastructure for ML EDA Research and
Education”, Proc. VTS, 2024, pp. 1-4.

[10] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Rama-
murthy and G. Yeric, “ASAP: A 7-nm FinFET Predictive Process Design Kit”,
Microelectronics Journal 53 (2016), pp. 105-115.

[11] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II”, Trans. on Evolutionary Computation 6(2) (2002),
pp. 182-197.

[12] L. Hagen, J. H. Huang and A. B. Kahng, “Quantified Suboptimality of VLSI Layout
Heuristics”, Proc. DAC, 1995, pp. 216-221.

[13] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li and V. N. Kravets, “DATC RDF:
An Academic Flow from Logic Synthesis to Detailed Routing”, Proc. ICCAD, 2018,
pp. 1-4.

[14] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, V. N. Kravets and G.-J. Nam,
“DATC RDF: An Open Design Flow from Logic Synthesis to Detailed Routing”,
Proc. Workshop on Open-Source EDA Technology, 2018, pp. 1-4.

[15] J. Jung, I. H.-R. Jiang, G.-J. Nam, V. N. Kravets, L. Behjat and Y.-L. Li, “OpenDesign
Flow Database: The Infrastructure for VLSI Design and Design Automation
Research”, Proc. ICCAD, 2016, pp. 42:1-6.

[16] J. Jung, A. B. Kahng, S. Kim and R. Varadarajan, “METRICS2.1 and Flow Tuning in
the IEEE CEDA Robust Design Flow and OpenROAD”, Proc. ICCAD, 2021, pp. 1-9.

[17] J. Jung, A. B. Kahng, R. Varadarajan and Z. Wang, “IEEE CEDADATC: Expanding
Research Foundations for IC Physical Design and ML-Enabled EDA”, Proc. ICCAD,



2022, pp. 1-8.
[18] J. Jung, A. B. Kahng, S. Kundu, Z.Wang andD. Yoon, “IEEE CEDADATCEmerging

Foundations in IC Physical Design and MLCAD Research”, Proc. ICCAD, 2023,
pp. 1-8.

[19] J. Jung, P.-Y. Lee, Y. Wu, N. K. Darav, I. H. Jiang, V. N. Kravets, I. H.-R. Jiang, and
V. N. Kravets, “DATC RDF: Robust Design Flow Database”, Proc. ICCAD, 2017,
pp. 872-873.

[20] A. B. Kahng, “Looking Into the Mirror of Open Source”, Proc. ICCAD, 2019, pp. 1-8.
[21] A. B. Kahng, S. Kundu and S. Thumathy, “Scalable Flip-Flop Clustering Using

Divide and Conquer For Capacitated K-Means”, Proc. GLSVLSI, 2024, pp. 177-184.
[22] A. B. Kahng, R. Varadarajan andZ.Wang, "Hier-RTLMP:AHierarchical Automatic

Macro Placer for Large-scale Complex IP Blocks", Trans. on CAD 42(5) (2023), pp.
1552-1565.

[23] R. Liang, A. Agnesina, G. Pradipta, V. A. Chhabria and H. Ren, “Invited Paper:
CircuitOps: An ML Infrastructure Enabling Generative AI for VLSI Circuit
Optimization”, Proc. ICCAD, 2023, pp. 1-6.

[24] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin and B. Yu, “DREAMPlace 4.0: Timing-Driven
Global Placement with Momentum-Based NetWeighting”, Proc. DATE, 2022, pp.
939-944.

[25] A. Mirhoseini, A. Goldie, M. Yazgan et al., “A Graph Placement Methodology for
Fast Chip Design”, Nature 594 (2021), pp. 207-212.

[26] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez and I. Stoica, “Tune: A
Research Platform forDistributedModel Selection andTraining”, arXiv:1807.05118,
2018. https://arxiv.org/abs/1807.05118

[27] I. M. Piatak, V. A. Antropov, O. T. De Laubenque and V. A. Yurchenko, “Open-
Source and Non-Commercial Software for Digital ASIC Design”, IEEE Intl. Conf.
on Electrical Engineering and Photonics, 2023, pp. 91-94.

[28] P. Sauter,T.Benz, P. Scheffler, F.K.GurkaynakandL.Benini, “Insights fromBasilisk:
Are Open-Source EDA Tools Ready for a Multi-Million-Gate, Linux-Booting RV64
SoC Design?”, arXiv:2405.04257, 2024. https://arxiv.org/abs/2405.04257

[29] P. Sauter, T. Benz, P. Scheffler, Z. Jiang, B. Muheim, F. K. Gurkaynak and
L. Benini, “Basilisk: Achieving Competitive Performance with Open EDA
Tools on an Open-Source Linux-Capable RISC-V SoC”, arXiv:2405.03523, 2024.
https://arxiv.org/abs/2405.03523

[30] U. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria and A. Rovinski,
“OpenROAD-Assistant: An Open-Source Large Language Model for Physical
Design Tasks”, Proc. MLCAD, 2024, pp. 1-7.

[31] B.-Y. Wu, R. Liang, G. Pradipta, A. Agnesina, H. Ren and V. A. Chhabria, “2024
ICCADCADContest Problem C: Scalable Logic Gate Sizing UsingML Techniques
and GPU Acceleration”, Proc. ICCAD, 2024.

[32] B.-Y. Wu, U. Sharma, S. R. D. Kankipati, A. Yadav, B. K. George, S. R. Guntupalli,
A. Rovinski and V. A. Chhabria, “EDA Corpus: A Large Language Model Dataset
for Enhanced Interaction with OpenROAD”, Proc. LAD, 2024.

[33] 2024_ICCAD_Contest_Gate_Sizing_Benchmark. https://github.com/ASU-VDA-
Lab/2024_ICCAD_Contest_Gate_Sizing_Benchmark

[34] ASP-DAC24-Tutorial. https://github.com/ASU-VDA-Lab/ASP-DAC24-Tutorial
[35] ACMArtifact Review and Badging. https://www.acm.org/publications/policies/

artifact-review-and-badging-current
[36] Ariane RISC-V CPU Repo. https://github.com/openhwgroup/cva6
[37] Artifact evaluation.

https://github.com/ctuning/artifact-evaluation/blob/master/docs/reviewing.md
[38] DG-RePlAce-AutoDMP.

https://github.com/ABKGroup/DG-RePlAce-AutoDMP/tree/main
[39] EDA-Corpus. https://github.com/OpenROAD-Assistant/EDA-Corpus
[40] FreePDK45. https://github.com/The-OpenROAD-Project/OpenROAD-flow-

scripts/tree/master/flow/platforms/nangate45
[41] Google Brain Circuit Training. https://github.com/google-research/circuit_

training/
[42] Google Brain Ariane testcase (protobuf). https://github.com/google-research/

circuit_training/tree/main/circuit_training/environment/test_data/ariane
[43] IEEE CEDADATC Robust Design Flow.

https://github.com/ieee-ceda-datc/Robust-Design-Flow
[44] IEEE CEDADATC Robust Design Flow Calibration.

https://github.com/ieee-ceda-datc/datc-rdf-calibrations
[45] IEEE CEDADesign Automation Technical Committee.

https://ieee-ceda.org/node/2591
[46] IEEE International Workshop on LLM-Aided Design (LAD’24).

https://islad.org
[47] MemPool Group. https://github.com/TILOS-AI-Institute/MacroPlacement/tree/

main/Testcases/mempool
[48] MLCAD2024 Artifact Evaluation.

https://github.com/ml-eda/artifact-evaluation
[49] NSFWorkshop on Shared Infrastructure for Machine Learning EDA, March 2023.

https://sites.google.com/view/ml4eda/home
[50] OpenCores. https://www.opencores.org/
[51] OpenROAD-Flow-Scripts.

https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
[52] OpenROAD-Assistant.

https://github.com/OpenROAD-Assistant/OpenROAD-Assistant
[53] OpenRCX. https://github.com/The-OpenROAD-Project/OpenRCX
[54] OpenSTA. https://github.com/The-OpenROAD-Project/OpenSTA
[55] SKY130-PDK. https://github.com/google/skywater-pdk
[56] The OpenROAD Project (GitHub). https://theopenroadproject.org and

https://github.com/The-OpenROAD-Project/OpenROAD
[57] TILOS-AI-Institute/MacroPlacement.

https://github.com/TILOS-AI-Institute/MacroPlacement
[58] NVlabs/CircuitOps.

https://github.com/NVlabs/CircuitOps

https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/2405.04257
https://arxiv.org/abs/2405.03523
https://github.com/ASU-VDA-Lab/2024_ICCAD_Contest_Gate_Sizing_Benchmark
https://github.com/ASU-VDA-Lab/2024_ICCAD_Contest_Gate_Sizing_Benchmark
https://github.com/ASU-VDA-Lab/ASP-DAC24-Tutorial
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/openhwgroup/cva6
https://github.com/ctuning/artifact-evaluation/blob/master/docs/reviewing.md
https://github.com/ABKGroup/DG-RePlAce-AutoDMP/tree/main
https://github.com/OpenROAD-Assistant/EDA-Corpus
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/platforms/nangate45
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/platforms/nangate45
https://github.com/google-research/circuit_training/
https://github.com/google-research/circuit_training/
https://github.com/google-research/circuit_training/tree/main/circuit_training/environment/test_data/ariane
https://github.com/google-research/circuit_training/tree/main/circuit_training/environment/test_data/ariane
https://github.com/ieee-ceda-datc/Robust-Design-Flow
https://github.com/ieee-ceda-datc/datc-rdf-calibrations
https://ieee-ceda.org/node/2591
https://islad.org
https://github.com/TILOS-AI-Institute/MacroPlacement/tree/main/Testcases/mempool
https://github.com/TILOS-AI-Institute/MacroPlacement/tree/main/Testcases/mempool
https://github.com/ml-eda/artifact-evaluation
https://sites.google.com/view/ml4eda/home
https://www.opencores.org/
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/OpenROAD-Assistant/OpenROAD-Assistant
https://github.com/The-OpenROAD-Project/OpenRCX
https://github.com/The-OpenROAD-Project/OpenSTA
https://github.com/google/skywater-pdk
https://theopenroadproject.org
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/TILOS-AI-Institute/MacroPlacement
https://github.com/NVlabs/CircuitOps

	Abstract
	1 Introduction
	2 Recent Improvements of RDF
	2.1 DG-RePlAce: Dataflow-Driven GPU-Accelerated Global Placement Framework
	2.2 Multi-Bit Flip-Flop Clustering
	2.3 OpenSTA Calibrations

	3 Benchmarking and Baselines
	3.1 Updated Benchmarks for Macro Placement
	3.2 Flow Tuning for Calibration and Progress

	4 ML Data and Research Enablements
	4.1 Proxy Design Enablement: BEOL Parameters and Multi-PVT Tuning
	4.2 Data Formats and Datasets for ML EDA
	4.3 ML Gate Sizing Benchmarks
	4.4 Large Language Models for Physical Design
	4.5 Toward Reproducible ML EDA Research

	5 IEEE CEDA DATC Roadmap
	6 Conclusions
	7 Acknowledgments
	References

