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ABSTRACT
A fundamental goal in modern physical design is for the post-route
layout to have a fixable number of remaining design rule violations
(DRVs). We study how to apply routing blockages to a fixed placement
solution, so as to “condition” the routing problem andminimize DRVs
in the post-route outcome. Motivated by the widening turnaround
time gap between early global routing (eGR) and detailed routing,
we propose placement tomography (that uses multiple views of a
placement from near-free eGR runs) as a new basis for generating
layer-wise route blockages and mitigating post-route DRVs. Our
framework includes (i) DRVNet, a machine learning model that
predicts layer-wise DRV hotspots; (ii) BlkgComp, a learning-based
model for assessing the relative effectiveness of two different routing
blockages in mitigating DRVs in hotspots; and (iii) a reinforcement
learning approach with BlkgComp to generate routing blockages for
the hotspots predicted by DRVNet. Experimental studies confirm
that our BlkgComp model achieves up to 73% accuracy and 0.53
Kendall rank on the testing dataset for open-source and commercial
enablements. Our framework produces routing blockage solutions
that reduce post-route DRVs by up to 88% compared to baseline
commercial tool flows and up to 21% compared to a human expert
baseline that was able to access detailed route outcomes.
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1 INTRODUCTION
Achieving zero design rule violations (DRVs) is a strict requirement
for tapeout. As design rules becomemore complex with each technol-
ogy node, back-end EDA tools have increasing difficulty satisfying
these rules, and human engineers often spend considerable time
manually resolving DRVs. The number of DRVs can explode as prod-
uct teams push density to achieve minimum die area, even as they
seek to also reduce power and maximizing performance (PPA) within
tight schedules. The time required to fix these DRVs is an increasing
function of the number of DRVs and their distinct types. Therefore, in
the physical design (PD) process, engineering teams keep or discard
post-route solutions based on whether they are fixable or unfixable.1
Discarding a solution as ‘unfixable’ adds to project schedule and
cost, which raises the question: Do we give up on placement solutions
that actually permit fixable routing outcomes? This paper proposes a

1The threshold is determined by schedule and PD resource. Note that we use DRV to
indicate a layout design rule violation. The term is sometimes used to indicate electrical
rule violations (maxtran, maxcap, etc.), but that is outside our present scope.
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new methodology to “condition” the input to the routing tool so as
to shift the border between unfixable and fixable outcomes from a
given placement.
The routing blockage lever. Modern P&R tools offer a “routing
blockage” mechanism to reduce the track supply that is assumed
by the router, as a percentage of the default supply, within a speci-
fied layout region.2 Routing blockage of ‘100’ means the router can
assume that the entire default track supply is available; ‘70’ means
that 30% of the supply is removed from consideration.

Fig. 1: Effect of routing blockages on DRV count: (l-r) no blockage
(default); flat blockage; and concentric blockage.

The routing blockage lever is both powerful and complex. Rout-
ing blockages in a DRV hotspot will reduce the number of routed
nets in the region, making it easier for the detailed router to route
the nets with fewer DRVs. However, adding routing blockages will
change the detouring of nets and shift DRV hotspots. Fig. 1 shows
post-route DRV markers in the Cadence Innovus 21.1 tool for default
(no blockage), best-found flat blockage, and best-found concentric
blockage. The example is from the class of “PROBE” layouts in Nan-
gate45 enablement described in Subsection 5.1 below. The figure
shows that (i) routing blockages can potentially shift the outcome of
a placement solution from unfixable to fixable, and (ii) their optimal
application is non-obvious.

Recent studies [17, 24] have introduced methods for predicting
hotspots and strategies for managing them, either by altering the
placement solution or by incorporating routing blockages across
all layers. Nevertheless, there has been no research focused on gen-
erating routing blockages with specific configurations tailored for
identified hotspots. In this paper, we address this gap, and our pri-
mary contributions are outlined as follows.
• We introduce a new type of routing blockage, the concentric routing
blockage. We study layer-wise flat and concentric routing blockages
to maximize the benefits in terms of DRV mitigation.

• We use a novel tomography [13] approach to feature extraction.
We extract the rich set of tomography features from multiple early
global routing (eGR) runs on a placed design. These tomography
features improve our ability to predict layer-wise DRV hotspots.

• We introduce a new machine learning-based (ML) routing block-
age comparator (BlkgComp) to compare routing blockages for
given hotspots. Our model takes two routing blockages and pre-
dicts their relative quality. We use DRVNet, a U-Net-based model
similar to [17, 30], for layer-wise DRV prediction. Our experi-
mental results show that our BlkgComp model achieves up to 73%
accuracy in predicting improved routing blockages, while DRVNet

2The command names (createRouteBlk, create_route_guide, etc.) and options/semantics
differ slightly across tools. In general, (i) control can be by direction (h or v) and/or by
layer, and (ii) the region can be polygonal or rectangular.
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predicts layer-wise hotspots with up to 99% accuracy and an F1
score of 0.79.

• We introduce a reinforcement learning (RL)-based approach that
uses tomography features along with DRVNet and BlkgComp
models to generate routing blockages for a given design. This
method can produce similar or superior routing blockages com-
pared to expert human baselines, achieving up to 21% reduction
in final DRV count even when the human is allowed to consult
detailed route outcomes.

• We validate our routing blockage generation using Cadence In-
novus 21.1, in Nangate45 (NG45) [37] and GlobalFoundries 12nm
(GF12) enablements. We develop competitive baseline solutions
and perform ablation studies to show the effectiveness of our
approach.
The rest of the paper is organized as follows. Section 2 reviews

motivating studies and related works; Section 3 introduces notations
and our problem statements; Section 4 describes our overall frame-
work; Section 5 presents experimental setup; Section 6 discusses
experiment results; and we conclude in Section 7.

2 BACKGROUND AND MOTIVATING STUDIES
Ensuring routability is one of the most important goals in physical
design, particularly during floorplanning and placement. Here, We
review related works and three motivating studies.
2.1 Related Works
Related works on routing blockage prediction and generation include
(i) analytical methods, (ii) machine learningmethods, and (iii) routing
blockage generation techniques.
Analytical methods often include the use of superposed MST or
heuristic RSMT constructions for congestion estimation. [14, 22] ap-
ply probabilistic methods to improve routing congestion estimates.
[12] introduces a modified Rent parameter to identify tangled logic
structures, along with mitigations by cell inflation and logic restruc-
turing. [27] presents a fast routing demand estimator along with
its use in congestion-aware placement. Mitigations before detailed
routing are exemplified by [20], which uses 3D pattern routing to
reduce the probability of layer-wise congestion in global routing.
Machine Learning (ML) methods dominate the recent literature,
given the rapid advance of hardware and methods, as well as in-
creased design rule complexity which challenges analytical methods.
[4] uses an SVM-based prediction framework to redistribute white
space in detailed placement to reduce post-route DRVs. Works such
as [6, 7, 28, 30] use convolutional neural networks (CNNs) to predict
congested routing regions, while [11, 18, 19] use CNNs to predict
Gcell-based DRV hotspots.3 On the other hand, [3, 5, 10] use graph
neural networks (GNNs) for congestion and short violation predic-
tion. Similar to [12], the work in [23] uses GNNs to predict tangled
logic cells in a netlist and employs cell padding during placement
for congestion mitigation. [29, 31] exploit both Gcell properties and
netlist connectivity for congestion prediction, while [21] uses corre-
lation with neighboring Gcells to improve accuracy of congestion
prediction. In general, while such previous methods can accurately
predict DRV hotspots, the proposed mitigations modify the place-
ment and/or cost functions in global routing. By contrast, we do not
touch the placement, and we treat the router as a “black box”.
Use of routing blockages. Two recent works study the routing
blockage mechanism. [24] introduces an explainable AI method to
discern root causes of DRV hotspots (e.g., high cell or pin density, or
high routing congestion). The authors implement routing blockages

3A Gcell is a unit gridcell in global routing, with side length equal to 15 M3 track
pitches [35].

and placement density screens to reduce DRVs. [17] uses CNNs to
predict congestion, and demonstrates that applying routing block-
ages at the coarse granularity of 25, 50, or 75 percent can reduce
DRVs in predicted hotspots. However, these works do not propose
any means to optimize routing blockages, such as our layer-wise
routing blockage definition with different partial densities and types.
Nor do they explore methods to extract more relevant features that
improve model performance, such as our placement tomography.

2.2 Motivating Studies
Three motivating studies demonstrate the effectiveness of layer-wise
routing blockage, benefits of placement tomography features, and
challenges associated with routing blockage generation.

Fig. 2: Effect of layer-wise routing blockage vs. all-layer routing
blockage. (a) No blockage; (b) all-layer blockage; and (c) layer-wise
blockage. Testcase: CA53 in NG45 enablement.

Layer-wise routing blockage. Fig. 2(a) shows post-routing DRV
markers for Arm Cortex-A53 (CA53) in NG45, where the majority
of DRVs occur on the𝑀2,𝑀3,𝑀5, and𝑀6 layers. The figure shows
two sets of routing blockages: (b) across all layers, and (c) limited
to these four specific layers. These respectively decrease total DRV
count from 3,308 in (a) to 1,175 in (b), and to 519 in (c), demonstrating
substantial potential benefit from layer-wise routing blockages.

Fig. 3: Congestion report for routing blockage with varying partial
density. Note: All screenshots are from the Innovus 21.1 GUI.

Placement tomography. The concept of placement “tomography”
was first noted in [13], but its detailed application was not explored.
Here, tomography – typically used for cross-sectional views of solid
objects – offers a useful analogy. We use placement tomography to
denote extraction of many views of a given placement, usingmultiple
runs of eGR or other post-placement analyses. Fig. 3 shows seven
congestion maps from Innovus generated using earlyGlobalRoute
followed by reportCongestion, each produced in less than one second
of runtime. By contrast, obtaining the final DRV markers at lower-
right requires 1.5 hours of detailed router runtime. The congestion
map for routing blockage with partial density 97 aligns best with
post-route DRVs, but having multiple eGR reports affords a rich set
of placement features (cell density, pin density, overflow, etc.) toward
ML-enabled “conditioning” of the routing problem.
Interaction betweenhotspots. Fig. 4 shows how two closely placed
hotspots affect each other, and how the best routing blockages for
individual hotspots become less useful when jointly applied. A key
challenge is to find the best blockages for multiple hotspots with
consideration of such proximity effects.
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Fig. 4: Interaction between hotspots. (a) No blockage; (b) blockage
on upper right hotspot; (c) blockage on lower left hotspot; and (d)
blockage on both hotspots.

3 PRELIMINARIES
3.1 Notations
We use the following terms in our work.
• A Gcell is a rectangular tile that is a unit gridcell for global routing.
• A congested Gcell has at least one design rule violation (DRV) after
detailed routing.

• A hotspot is a cluster of congested Gcells. In our implementation,
a hotspot has at least 16 congested Gcells, each of which has at
least six other congested Gcells within a three-Gcell radius in the
same cluster (Section 4.2).

• A routing blockage (Blkg) reduces the available routing resources
for one or more layers in its region. We apply Blkgs to hotspots.

• The partial density of a Blkg is the percentage of total routing
resource that is available in the Gcells covered by the Blkg.

• A flat blockage (fBlkg) is a routing blockage with a constant partial
density 𝑑 for layer 𝑙𝑖 , denoted as fBlkg(𝑑 , 𝑙𝑖 ).

• A concentric blockage (cBlkg) consists of multiple fBlkgs, each
having a rectangular cutout, except for the central one, which is
solid. All of these blockages share a common center, and their
dimensions and partial densities vary linearly. We denote the
configuration of a cBlkg on routing layer 𝑙𝑖 as cBlkg(𝑑𝑜 , 𝑑𝑖 , 𝑐 ,
𝑙𝑖 ), where the outermost blockage is fBlkg(𝑑𝑜 , 𝑙𝑖 ), the innermost
blockage is fBlkg(𝑑𝑖 , 𝑙𝑖 ), and the total number of blockages is 𝑐 .

• A set of blockages (BlkgSet) contains one or more Blkgs (flat or
concentric), with one for each hotspot region of a given design.

3.2 Problem Formulation
Our approach to layer-wise routing blockage generation entails
solving three distinct problems. For a fixed placement and a given
set of Gcell-based features {𝑥1, 𝑥2, . . .}, these are as follows.
• Problem 1: Train an ML model (DRVNet) to predict layer-wise
congested Gcells in hotspots.

(𝐻, 𝐿) = 𝐷𝑅𝑉𝑁𝑒𝑡 (𝑥1, 𝑥2, . . .); 𝐻, 𝑥𝑖 ∈ Rℎ×𝑤 , 𝐿 ∈ Rℎ×𝑤×𝑙 (1)
Here, ℎ and 𝑤 represent the number of Gcells along the height
and width of the design, respectively, while 𝑙 denotes the number
of layers. 𝐻 is a matrix where each entry is a binary variable
corresponding to a Gcell in the design. For Gcells located within
a hotspot, the corresponding entry in 𝐻 is set to 1. 𝐿 is a matrix
where each entry consists of a list of binary variables indicating
the layer-wise congestion of the corresponding Gcell.

• Problem 2: Train an ML model (BlkgComp) to predict the relative
effectiveness of two BlkgSets, 𝑒1 and 𝑒2.

(𝑝1, 𝑝2) = 𝐵𝑙𝑘𝑔𝐶𝑜𝑚𝑝 (𝑥1, 𝑥2, . . . , 𝑒1, 𝑒2, 𝐿) (2)
Here, 𝑝1 > 𝑝2 indicates that the BlkgSet 𝑒1 results in fewer DRVs
than 𝑒2, and 𝑝1 < 𝑝2 indicates the opposite.

• Problem 3: Train a reinforcement learning agent (RL-agent) to
sample BlkgSets for the layer-wise hotspots predicted by the

DRVNet model, where the RL-agent evaluates the quality of the
BlkgSet using the BlkgComp model.

(𝐸) = RL-𝑀𝑜𝑑𝑒𝑙 (𝑥1, 𝑥2, . . . , 𝐿) (3)

𝐸 is the sampled BlkgSets expected to mitigate DRVs.

Design Features

DRVNet

Layer-wise Marker

Environment

30 BlkgSets BlkgComp

BlkgSet
RL Agent

(Actor-Critic)

State 
Info.

Reward

Fig. 5: Overall flow for BlkgSets generation.

4 OUR APPROACH
Fig. 5 presents the overall flow for routing blockage generation. We
first extract features of a given design. Next, we use these features and
the DRVNet model to predict layer-wise routing hotspots. We then
use the design features, predicted layer-wise hotspot information,
the BlkgComp model, and the RL agent to sample better BlkgSets
for the design. We now describe these features and our models.

4.1 Features
We divide the feature list into design and tomography features. We
extract the following design features of each Gcell.
• Cell and macro density: ratio of total standard cell and macro
area overlapping with the Gcell to the Gcell area.

• Pin count: number of standard cell and macro signal pins over-
lapping with the Gcell.

• Horizontal and vertical resource: total number of usable hori-
zontal and vertical routing tracks in the Gcell.

We extract the following per-layer design features of each Gcell when
there are no Blkgs covering the whole design.
• Layer-wise resource: total number of usable routing tracks for
the routing layer in the Gcell.

• Layer-wise via: total number of used vias in contact with the
routing layer in the Gcell, e.g., for the M3 layer, the layer-wise via
count is the total number of V2 and V3 vias in the Gcell.

We extract the following tomography features of each Gcell:
• Horizontal (vertical) routing resource usage: fraction of hori-
zontal (vertical) routing tracks used in the Gcell by eGR at varying
partial densities of Blkgs.

• Layer-wise resource usage: fraction of routing tracks for each
layer used in the Gcell by eGR at varying partial densities of Blkgs.

To capture this information, we add a flat routing blockage and then
run eGR to capture the horizontal and vertical routing resource us-
age features. We do this seven times, varying the partial density
of the routing blockage from 70% to 100% in increments of 5%. For
each layer and routing blockage, we pass the layer-wise resource,
usage, and via as different channels to the model. In modern tech-
nology nodes, each routing layer has a preferred routing direction.
Separately providing the horizontal and vertical resource and usage
features helps the model distinguish different types of hotspots.

4.2 DRVNet Model
For the DRVNet model, we use the U-Net [25] architecture, which is
often used for image segmentation tasks. We consider each Gcell as
a pixel of the image. Unlike images, which typically have only three
channels, here the channel count equals the number of features.
Fig. 6 shows the input and output details of DRVNet. For model
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Fig. 6: Input and output of DRVNet and BlkgComp model.
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Fig. 7: Removal of routing blockage overlap.

training we use binary cross-entropy with logits loss.

𝑙𝑜𝑠𝑠𝐷𝑅𝑉𝑁𝑒𝑡 = log(1 + exp(−𝑦 · 𝑧)) (4)
Initially, the routing blockages predicted by our DRVNet were not
large enough to adequately cover the hotspots. Hence, we compute
the mean (𝜇) and standard deviation (𝜎) of the negative values pre-
dicted by DRVNet, and use a threshold of 𝜇 + 3𝜎 (instead of 0) to
determine whether a Gcell is a hotspot. After obtaining all the Gcell
predicted labels using this threshold, we use Algorithm 1 to generate
layer-wise non-overlapping Blkg bounding boxes.
Label generation for DRVNet model. For label generation, we
first capture the DRV count in each Gcell and find the DRV hotspots.
For hotspot detection, we use DBSCAN [9] clustering over k-means
because DBSCAN can identify clusters of varying shapes and does
not require a predefined number of clusters. In Algorithm 1:
• Line 3 executes DBSCAN clustering for the Gcells with DRV
count greater than the input threshold, using the specified 𝑒𝑝𝑠 and
𝑚𝑖𝑛_𝑠𝑖𝑧𝑒 values. We use 𝑒𝑝𝑠 = 3 and𝑚𝑖𝑛_𝑠𝑖𝑧𝑒 = 6 as it generates
the intended clusters of the DRV markers for our experiments.

• Lines 4-12 discard clusters that have fewer than 16 Gcells with
DRVs, considering these as too small for a hotspot. Conversely,
if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑢𝑡𝑖𝑙 , the ratio of the number of Gcells in the cluster to
the total number of Gcells in the rectangular bounding box of the
cluster, is less than 0.05, then we break the cluster as most of the
Gcells in the box do not have any DRVs.

• Line 13 removes overlaps from cluster bounding boxes using the
removeOverlap function.

The removeOverlap function breaks input overlapping boxes into
non-overlapping boxes. It first sorts all boxes by area and checks
for box overlaps. If two boxes overlap, it breaks the smaller box
into one or more boxes that do not overlap with the larger box. re-
moveOverlap recursively calls itself until no boxes overlap. Fig. 7
shows 𝑟𝑒𝑚𝑜𝑣𝑒𝑂𝑣𝑒𝑟𝑙𝑎𝑝’s sequential removal of overlaps among block-
ages A, B and C. It first resolves overlap between A and B by breaking
B into smaller boxes. It then removes overlap of A and C by breaking
C. The function goes on to similarly eliminate overlaps between B’
and other blockages. Fig. 8 illustrates how Algorithm 1 identifies
DRV hotspots and creates Blkg outlines from DRV markers.

4.3 BlkgComp Model
We need an evaluator to assess the quality of BlkgSet. A vacuous
evaluator would run detailed routing with BlkgSet and obtain a

Original DRC Marker DRV Clusters  Non-Overlapping Boxes

Fig. 8: DBSCAN clustering and Blkg outline creation processes.

Algorithm 1: DRV Hotspot Detection.
Input: Indices, threshold = 0, eps = 3, sample_size = 6
Output: Boxes – List of non-overlapping regions

1 Function runDBSCAN(indices, threshold, eps, sample_size):
2 𝑏𝑜𝑥𝑒𝑠 = [ ];
3 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝐷𝐵𝑆𝐶𝐴𝑁 (𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [‘drv’] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ) ;
4 for each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
5 if Size(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) < 16 then
6 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
7 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑢𝑡𝑖𝑙 = len(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )/#(Gcells in the bounding box of

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 );
8 if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑢𝑡𝑖𝑙 < 0.05 then
9 𝑎𝑣𝑔_𝑑𝑟𝑣 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [‘drv’] ) ;

10 𝑏𝑜𝑥𝑒𝑠.𝑒𝑥𝑡𝑒𝑛𝑑 (𝑟𝑢𝑛𝐷𝐵𝑆𝐶𝐴𝑁 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑎𝑣𝑔_𝑑𝑟𝑣,
𝑒𝑝𝑠, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 + 1) ) ;

11 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
12 𝑏𝑜𝑥𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(bounding box of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 );
13 return 𝑟𝑒𝑚𝑜𝑣𝑒𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑏𝑜𝑥𝑒𝑠 ) ;

final DRV count. However, this is prohibitively time-consuming.
Instead, we train a BlkgComp model that lets us evaluate BlkgSets
without running the router. As shown in Fig. 6, for a given design
and two BlkgSets, the BlkgComp model predicts the probability of
which BlkgSet is better. Specifically, for BlkgSets 𝑒1 and 𝑒2 with DRV
counts 𝑛1 and 𝑛2, we want our model to predict 𝑝1 = 𝑛2/(𝑛1 + 𝑛2)
and 𝑝2 = 𝑛1/(𝑛1 + 𝑛2), where 𝑝1 and 𝑝2 indicate the relative quality
of 𝑒1 and 𝑒2. Note that we model the comparison of two BlkgSets as
a soft classification: the probability value provides more information
about the relative quality of the BlkgSets instead of just indicating
which one is better. Table 5 in Section 6.1 shows that using soft labels
(i.e., continuous probability values) improves the performance of the
BlkgComp model compared to using hard labels (i.e., 0 or 1).

We use ResNet-50 with ImageNet pre-trained weights as the base
model for our BlkgComp. We update the number of channels in the
input convolutional layer to match the number of features. During
our model training, we use cross-entropy loss. Additionally, we add
a term to the loss function to enforce model symmetry. Specifically,
if the outputs corresponding to inputs 𝑒1 and 𝑒2 are 𝑜11 and 𝑜12
respectively, and the outputs for inputs 𝑒2 and 𝑒1 are 𝑜22 and 𝑜21,
then it is required that 𝑜11 = 𝑜21 and 𝑜12 = 𝑜22.

𝑙𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

2∑︁
𝑖=1

crossentropy({𝑝1, 𝑝2}, {𝑜𝑖1, 𝑜𝑖2}) (5)

𝑙𝑜𝑠𝑠𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =

2∑︁
𝑖=1

𝑀𝑆𝐸 (𝑜1𝑖 , 𝑜2𝑖 ) (6)

We compute 𝑙𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 and 𝑙𝑜𝑠𝑠𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 using Eqs. (5) and (6).
The total loss for our model training is 𝑙𝑜𝑠𝑠𝐵𝑙𝑘𝑔𝐶𝑜𝑚𝑝 = 𝑙𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 +
𝛼 · 𝑙𝑜𝑠𝑠𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 . We found that for 𝛼 = 0.1, our BlkgComp model
achieves the best accuracy and Kendall rank, and increasing 𝛼 slows
down the training speed and degrades the performance.
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Algorithm 2: Sorting BlkgSets using BlkgComp.
Input:𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐵𝑙𝑘𝑔𝐶𝑜𝑚𝑝 , 𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 , 𝐹𝑒𝑎𝑡𝑢𝑒𝑟𝑠
Output: 𝑆𝑜𝑟𝑡𝑒𝑑𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 – Sorted BlkgSets based on predicted

hotspot mitigation capability.
1 Function SortBlkgSets(TrainedBlkgComp, BlkgSetList, Features):
2 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡 = [0] ∗ 𝑙𝑒𝑛 (𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 ) ;
3 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛 (𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 ) − 1; 𝑖 + + do
4 for 𝑗 = 𝑖 + 1; 𝑗 < 𝑙𝑒𝑛 (𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 ) ; 𝑗 + + do
5 𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑝𝑢𝑡 = {𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 [𝑖, 𝑗 ] };
6 𝑝1, 𝑝2 =𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐵𝑙𝑘𝑔𝐶𝑜𝑚𝑝 (𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑝𝑢𝑡 ) ;
7 if 𝑝1 < 𝑝2 then
8 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡 [𝑖 ]+ = 1;
9 else
10 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡 [ 𝑗 ]+ = 1;

11 𝑆𝑜𝑟𝑡𝑒𝑑𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝑠 = Sort 𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 based on 𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ;

Algorithm 2 uses the BlkgComp model to sort BlkgSets based on
their predicted hotspot mitigation outcomes. In Algorithm 2:
• Line 2 initializes𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡 = 0 for all BlkgSets in 𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 .
• Lines 3-10 use the 𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐵𝑙𝑘𝑔𝐶𝑜𝑚𝑝 model to compare all pairs
of BlkgSets from 𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 , and also keep track of the number of
cases in which each BlkgSet has a better probability for congestion
mitigation.

• Line 11 sorts BlkgSets in 𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 in ascending order of the
corresponding𝑤𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , and returns the 𝑆𝑜𝑟𝑡𝑒𝑑𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝐿𝑖𝑠𝑡 .

4.4 RL Model
We require efficient generation of layer-wise BlkgSets for a given
design. As our BlkgCompmodel can only compare two BlkgSets for a
given design, we develop an RL model that can efficiently choose an
appropriate Blkg for each hotspot and generate BlkgSets to mitigate
DRVs. Details of the RL environment are as follows.
• The environment includes a trained BlkgCompmodel, 30 randomly
sampled BlkgSets as initial reference, design feature and DRVNet
predicted hotspot markers.4

• The state consists target hotspot encodings predicted usingDRVNet,
the number of BlkgSets to be sampled, and enumeration of the
current samples.

• The action space of the RL agent is fixed. The agent chooses a Blkg
configuration from a predefined set of configurations that is used
to train the BlkgComp model.

• To calculate the reward, the environment compares the BlkgSet
generated by the RL-agent against reference BlkgSets. The 𝑟𝑒𝑤𝑎𝑟𝑑

is then determined based on the 𝑟𝑎𝑛𝑘 of the RL-generated BlkgSet
using the equation: 𝑟𝑒𝑤𝑎𝑟𝑑 = 15−𝑟𝑎𝑛𝑘

15 .
We use an actor-critic RL framework, with detection transformer

[2] as a base architecture. We first use ResNet-50 to extract a 2D rep-
resentation, then flatten it and pass it through a transformer along
with learned positional encodings. The output of the transformer de-
coder is passed through a shared feed forward network that predicts
the Blkg configuration and the corresponding value.

Our RL agent generates a BlkgSet in each step, and a single episode
consists of a fixed number of steps (for our experiment, it is five). If
the sampled BlkgSet is not the worst one, the environment adds this
new BlkgSet to its reference list and removes the lowest rank BlkgSet.
At the end of the episode, the environment resets the reference

4For the given hotspots, we use 30 randomly sampled BlkgSets as a reference to compute
the rank of the RL-generated routing blockage. Here, if we increase the number of
BlkgSets in our reference list, then the rank predicted using Algorithm 2 will be more
reliable, but the runtime for rank computation will increase. We observe that for 30
BlkgSets, the computed rank is reliable while the runtime remains low.

BlkgSets to their initial state. We use the Monte Carlo reward update
with 𝛾 = 0.9. If the agent samples the same BlkgSet, we penalize it
by setting 𝑟𝑒𝑤𝑎𝑟𝑑 = −2 for each duplicate BlkgSet. For a given state
𝑠𝑡 , actual return 𝐺𝑡 , estimated value from the critic 𝑣 (𝑠𝑡 ) and action
𝑎𝑡 , actor and critic loss are defined in Eqs. (7) and (8), respectively.

𝐿𝑎𝑐𝑡𝑜𝑟 = − log(𝜋 (𝑎𝑡 |𝑠𝑡 )) · (𝐺𝑡 − 𝑣 (𝑠𝑡 )) − 𝜆𝐻 (7)
𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = (𝑣 (𝑠𝑡 ) −𝐺𝑡 )2 (8)

Here 𝜆 is the entropy weight, and 𝐻 is the entropy of the policy
distribution as shown in Eq. (9). We add the regularization term 𝜆𝐻

to the actor loss to promote exploration by discouraging the policy
from being deterministic.

𝐻 = −
∑︁
𝑎∈𝐴

𝜋 (𝑎 |𝑠𝑡 ) log(𝜋 (𝑎 |𝑠𝑡 )) (9)

During our model training, we reduce the entropy weight linearly
from 1.0 to 0.01 to allow for initial exploration.

5 EXPERIMENTAL SETUP
Our experimental setup spans data generation, model training, base-
line setup, and evaluation flow, all of which are public in [32].

5.1 Data Generation
We use the PROBE method [8, 15] to generate standard cell-based
testcases with DRV violations, and modified Artificial Netlist Gener-
ator (ANG) [16, 33] code to create small design datasets with macros.

Table 1: PROBE [8, 15] parameters for data generation.
Parameters Values Description
𝑆𝑖𝑧𝑒 100, 150, 200 Size of the square mesh
𝑆𝑖𝑧𝑒𝑠𝑢𝑏 10, 15, 20, 25, 30 Size of the square subregion
#𝑆𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛 [0-4] Number of the subregion
#𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 [4, 8] Number of location combination
𝐾1 [0-5] Normalized swap count for the whole region
𝐾2 [3, 5, 8, 10, . . , 20] Normalized swap count for the subregion

Fig. 9: Visualization of subregions according to parameter settings.
(a) #Subregion=1, 𝑠𝑖𝑧𝑒𝑠𝑢𝑏=5; (b) #Subregion=2, 𝑠𝑖𝑧𝑒𝑠𝑢𝑏=3.

PROBE. We apply PROBE [8] with a 3-input base cell and knight’s
tour-based topology, using parameters in Table 1. We create rout-
ing (DRV) hotspots with subregion swapping, i.e., additional ran-
dom neighbor swaps in designated subregions created according
to Table 1 parameters, as illustrated in Fig. 9. As documented in
[32], training data uses 𝑠𝑖𝑧𝑒𝑠𝑢𝑏 = {10, 20, 30}, and testing data uses
𝑠𝑖𝑧𝑒𝑠𝑢𝑏 = {15, 25}. When #Subregion = 1, we use #locations = 4. When
#Subregion > 1 and there are multiple (randomly chosen) 𝑠𝑖𝑧𝑒𝑠𝑢𝑏
values, we use #locations = 8.
ANG. Our studies in NG45/GF12 below use Arm CA53 to reflect
real designs with macros. As CA53 is too large for training data
generation, we augment ANG [16] to create artificial netlists with
macros that are 20% the size of CA53, while maintaining the same
combinational cell ratio and distributions of net bounding box, path
depth, and net degree. As detailed in [32], for a prescribed selection
of macros, we (i) calculate total macro input (𝑆𝑈𝑀𝑖𝑛𝑝𝑢𝑡 ) and out-
put (𝑆𝑈𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ) pins; (ii) add 𝑆𝑈𝑀𝑖𝑛𝑝𝑢𝑡 (𝑆𝑈𝑀𝑜𝑢𝑡𝑝𝑢𝑡 ) to the block’s
target output (input) pin count; (iii) generate an artificial netlist by
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Fig. 10: Macro locations change with IO pin locations.
running ANG; and (iv) connect the netlist’s output (input) pins to
macro input (output) pins. Cases with DRVs are obtained by varying
design aspect ratio, utilization, and IO pin locations. Fig. 10 shows
how macro locations change with IO pin locations.
Data for BlkgCompmodel training.BlkgCompmodeling requires
data with Blkg-induced DRV labels. We add Blkg impact data to
PROBE-based data used for DRVNet modeling, via four steps. (i)
From the PROBE-based data used for DRVNet, we sample 400 data
points (300 for training, 100 for testing) with DRV count between
800 and 3,000. (ii) We use DBSCAN to create Blkg outlines and
extract layer information (𝑙𝑖 ) from DRV markers. (iii) For BlkgComp
data generation, the Blkg space comprises six fBlkgs with partial
densities ranging from 70 to 95 with step 5, and eight cBlkgs with
configurations {(80, 98, 10, 𝑙𝑖 ), (80, 99, 20, 𝑙𝑖 ), (70, 97, 10, 𝑙𝑖 ), (70, 98,
15, 𝑙𝑖 ), (98, 90, 10, 𝑙𝑖 ), (99, 80, 20, 𝑙𝑖 ), (97, 70, 10, 𝑙𝑖 ), and (98, 70, 15,
𝑙𝑖 )}. (iv) We limit the number of sampled BlkgSets for data point
𝑖 as #𝐵𝑙𝑘𝑔𝑆𝑒𝑡𝑖 = 𝑚𝑖𝑛(20, #ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑖 · 5). (iv) We generate data for
BlkgComp from the sampled BlkgSets (4,500 for training, 1,500 for
testing). For GF12 modeling, we apply transfer learning from NG45
to GF12 and fine-tune the model using GF12 data. With this strategy,
(training, testing) dataset sizes in GF12 are (75, 30) for PROBE-based
data, and (820, 280) for sampled BlkgSets.

5.2 Model Training
We implement our models using PyTorch 2.0 and train them on a
server with 2.25 GHz AMD EPYC 7742 processor, 512 GB RAM, and
four NVIDIA A100 80GB GPUs. Details of the training are as follows.
DRVNet. For training the DRVNet model, we employ the Adam
optimizer with a learning rate of 0.0001 and a batch size of 64, uti-
lizing binary cross-entropy with logits loss. The model is trained
over 90 epochs, and we save the version that achieves the highest
F1-score on the validation dataset. The total training time for our
model is approximately 120 minutes for NG45. Additionally, we em-
ploy a decaying learning rate strategy with a decay factor of 0.5,
monitoring the loss on the validation dataset. For GF12, we begin
with the DRVNet model initially trained on the NG45 dataset and
then fine-tune it using the GF12 dataset.
BlkgComp. For the BlkgComp model, the training setup mirrors
that of DRVNet with a few adjustments: we use a learning rate of
0.001 and a batch size of 128. The model is saved based on its perfor-
mance as measured by the Kendall rank correlation coefficient on
the validation dataset. The training time is approximately 120 min-
utes on NG45 dataset. As with DRVNet, we fine-tune the BlkgComp
model initially trained on the NG45 dataset, using the GF12 dataset.
RLModel. For the RL model, we perform online training using three
PROBE designs, and employ the Adam optimizer with a learning
rate of 0.0001. We use a linearly decaying entropy weight, starting
at 0.5 and decreasing to 0.01, to train the model over 90 episodes,
which takes approximately 90 minutes. We save the weights that
deliver the highest combined reward across the three designs. For
design-specific fine-tuning, we train the RL model for an additional
10 episodes, which takes around 5 minutes.

5.3 Baseline Setup and Evaluation Flow
We now provide details of the designs and enablements, baselines,
and the evaluation flow used to assess our proposed framework.

Designs and enablements. We evaluate our framework on two
technology platforms: the open-source PDK NG45 and the industry
PDK GF12. We test BlkgSets across three designs (#instance, #macro):
NOVA (140k, 0), LDPC (50k, 0) and CA53 (300k, 25).
Baseline data setup. To evaluate the output of our framework, we
use two baselines: the default tool flow (without Blkg) and a human
baseline. For the human baseline, a human expert determines the
Blkg outline and layer based on post-route DRV markers from the
default tool flow. Several BlkgSets are created by varying the sizes of
Blkgs according to the DRV distribution (examples of human expert-
generated BlkgSets are shown in Fig. 13). We then evaluate all the
human-created BlkgSets and set the BlkgSet with the fewest DRVs
as our human baseline. Table 2 shows example data from layer-wise
BlkgSet tests, with ‘O’ representing associated layers.

Table 2: Human baseline layer-wise Blkg data (NG45-CA53).
M2 M3 M4 M5 M6 M7 M8 M9 M10 #DRV
O O O O O O O O O 1,175

O O O O 1,038
O O O O O 863

O O 1,612
O O 750
O O O O 701
O O O O O 646
O O O O 519

Synthesis Floorplan, Place,
Clock Tree Synthesis

Global Detail Route

ECO Route PPA Report
DRC Info.

Human Baseline 
Blkg Generation

Our Method Blkg
Generation

Feature Extraction

Add Blkg Add Blkg

Delete Blkg Delete Blkg

Default (no Blkg)

Our Method

Human Baseline

Fig. 11: Assessing default, human baseline, and our methods.

Evaluation flow. Fig. 11 shows the evaluation flow for three meth-
ods: default, human baseline, and our framework. Note that the
human expert uses the post-ECO-route DRV markers (location and
layer) from the default flow to generate the BlkgSets, whereas our
framework generates BlkgSets based on the post-CTS information.

6 EXPERIMENTAL RESULTS
We now present the performance of our DRVNet, BlkgComp, and RL
models across various design-specific choices, followed by results
from our framework, ablation studies, and a robustness test.

6.1 ML Model-Specific Choices
In this subsection, we discuss for DRVNet (i) the application of cross-
entropy class weight and (ii) the base model selection. For BlkgComp,
we examine (iii) the effectiveness of soft classification, (iv) the base
model selection, and (v) the top-k accuracy of the BlkgComp model.
We then present (vi) the training results of the RL model.
Cross-entropy class weight. The training dataset contains a small
fraction of Gcells in hotspots, leading to an imbalance. To address
this, Gcells in hotspots are given additional weight during training.
However, excessively high weights increase the false positive rate
(FPR), while too low weights reduce the true positive rate (TPR).
Therefore, finding the optimal weight is crucial. In Table 3, the best
results in terms of TPR and F1-score are observed for a weight of 5.
We use this weight for our DRVNet model training.
Choice of base model for DRVNet. For the DRVNet, we have
trained three base models: U-Net, RouteNet, and Detection Trans-
former (DETR) [2]. Since U-Net achieves the best results over Route-
Net and DETR, as shown in Table 4, we use U-Net as the base
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Table 3: Class weight effect on DRVNet model.
Enablement Weight TPR FPR F1 Accuracy

NG45
1 0.79 0.01 0.80 0.98
2 0.82 0.01 0.79 0.98
5 0.83 0.01 0.79 0.98
10 0.81 0.01 0.78 0.98

GF12
1 0.69 0.00 0.73 0.99
2 0.72 0.00 0.73 0.99
5 0.75 0.00 0.74 0.99
10 0.77 0.00 0.73 0.99

model for DRVNet. For GF12 enablement, when we train U-Net
from scratch, we observe that the final F1 score is 0.72. This suggests
that transfer learning from NG45 helps achieve better results.

Table 4: Performance of different DRVNet base model.
Enablement Base TPR FPR F1 Accuracy

NG45
U-Net 0.83 0.01 0.79 0.98

RouteNet 0.96 0.04 0.65 0.97
DETR 0.94 0.03 0.71 0.97

GF12
U-Net 0.75 0.00 0.74 0.99

RouteNet 0.81 0.01 0.55 0.94
DETR 0.73 0.00 0.72 0.99

Effectiveness of soft classification for BlkgComp. We have
trained the BlkgCompmodel using hard labels and soft labels. Results
in Table 5 indicate that using soft labels leads to better results in
terms of accuracy and Kendall rank.

Table 5: BlkgComp model evaluation for different labels.
Enablement Labels Accuracy Kendall Rank

NG45 Soft 0.73 0.53
Hard 0.70 0.49

GF12 Soft 0.68 0.32
Hard 0.68 0.31

Choice of base model for BlkgComp.We study each of ResNet-
50, MobileNet-V2, and Vision Transformer (ViT) as a candidate base
model and use pretrained weights from ImageNet. Since we achieve
better accuracy and Kendall rank with the ResNet-50 base model
(Table 6), we use ResNet-50 for all of our reported experiments.

Table 6: Performance of different base model for BlkgComp.
Enablement Labels Accuracy Kendall Rank

NG45
ResNet-50 0.73 0.53

MobileNet-V2 0.73 0.51
ViT 0.73 0.42

GF12
ResNet-50 0.68 0.32

MobileNet-V2 0.67 0.31
ViT 0.68 0.31

Top-5 Accuracy of BlkgComp. Top-5 accuracy indicates the proba-
bility of finding the best BlkgSets within the top-5 BlkgSets predicted
using the BlkgComp model. To find the top-5 accuracy, we run a
Monte Carlo simulation with 10,000 samples. For 30 BlkgSets, our
simulation shows a top-5 accuracy of 0.91 at 0.73 accuracy, and 0.85
at 0.68 accuracy. This indicates that the reward computed using the
BlkgComp model is sufficient for the RL model.
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Fig. 12: RL pre-training (left) and fine-tuning (right) curves.

Performance of RL model. Fig. 12 shows the training curve of the
RL model on PROBE (NG45) designs and the fine-tuning curve for
the CA53 (NG45) design. Here, a human expert has generated Blkg

boundaries and layer information for CA53. For the PROBE designs,
the best reward of the model is around five, suggesting that almost
all the five sampled BlkgSets are predicted to be better than the
reference BlkgSets. For episode 0, the CA53 design shows negative
rewards; however, after fine-tuning, two out of five RL-generated
BlkgSets outperform all the reference BlkgSets.

6.2 Performance of Our Framework
We report model performance for NOVA, LDPC and CA53 designs
in NG45 and GF12. For each design, we fine-tune the RL-model for
10 episodes and select the top-5 BlkgSets generated by the RL-agent
using our BlkgComp model. As shown in Fig. 11, we then run glob-
alDetailedRoute with each BlkgSet, remove the Blkgs, run ecoRoute
-fix_drc and report the final DRV and PPA. Table 7 details our model
performance as compared to the default tool flow (i.e., when no Blkgs
are used) and human-generated BlkgSets. We highlight the best re-
sults with blue font. For GF12, wirelength (WL) and total power are
normalized with respect to the default tool flow, and worst negative
slack (WNS) and total negative slack (TNS) are normalized to the
target clock period.5 Fig. 13 presents DRV markers and Blkg outlines
for CA53 (NG45) and LDPC (GF12).
• In NG45, our framework-generated BlkgSet reduces DRV up to
88% (avg 59%) compared to the default tool flow and up to 21%
(avg 6%) compared to the human baseline.

• In GF12, our framework-generated BlkgSet reduces DRV up to
80% (avg 68%) compared to the default tool flow and up to 4% (avg
-2%) compared to the human baseline.

• In GF12, adding routing blockages improves wirelength and total
power. Our BlkgSet achieves up to 1.0% (avg 0.9%) and 2.0% (avg
1.3%) reductions in wirelength and total power, respectively, when
compared to the default tool flow. Compared to human baselines,
our BlkgSet yields similar wirelength and total power values.

• We observe that the blockage boundaries generated by DRVNet
do not adequately cover the hotspots for LDPC (NG45, GF12) and
NOVA (GF12) designs due to the highly scattered DRVs, preventing
our framework from outperforming the human baseline.
We emphasize that for human baselines, expert humans generate

routing blockages by analyzing final post-route DRV location and layer
information from the default tool flow, and then creating a BlkgSet
for each hotspot. In contrast, our approach generates BlkgSet based
on post-CTS features. We reduce turnaround time while producing
BlkgSets for DRV mitigation that are similar to or better than those
created manually, by experts who run the detailed router.

Table 7: Evaluation of our framework.

Tech Design Method #DRV WL
(mm)

WNS
(ns)

TNS
(ns)

Power
(mW)

NG45

NOVA
No Blkg 2,003 3,874 -0.634 -419 257.3
Human 898 4,016 -0.752 -512 259.8
Ours 814 3,931 -0.688 -435 258.1

LDPC
No Blkg 830 1,739 -0.209 -256 240.1
Human 516 1,741 -0.277 -245 240.3
Ours 583 1,739 -0.215 -261 240.1

CA53
No Blkg 3,308 11,344 -0.311 -690 484.1
Human 519 11,512 -0.571 -699 485.7
Ours 409 11,418 -0.480 -719 484.9

GF12

NOVA
No Blkg 1,242 1.000 -0.562 -782 1.000
Human 403 0.994 -0.655 -707 0.994
Ours 442 0.990 -0.475 -186 0.994

LDPC
No Blkg 1,739 1.000 -0.583 -632 1.000
Human 345 0.990 -0.472 -604 0.980
Ours 346 0.990 -0.438 -717 0.980

CA53
No Blkg 3,316 1.000 -0.369 -1,495 1.000
Human 942 0.992 -0.615 -783 0.986
Ours 902 0.991 -0.454 -696 0.986

5OurWNS values are high because we do not run post-route optimization, as we evaluate
on a fixed placement.
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Fig. 13: Comparison of DRV markers (white), DRV counts, and Blkg outlines (yellow). (a) CA53 in NG45; (b) LDPC in GF12.

6.3 Ablation Studies
In this subsection, we conduct ablation studies to show the impor-
tance of various features in our model training and to assess the
performance of our RL model for zero-shot inference and fine-tuning.
Feature importance. To examine feature importance, we systemat-
ically remove one feature at a time and observe the impact on the
performance of the DRVNet model. The tomography feature includes
both vertical and horizontal layer usage when the available routing
resource for eGR is below 100%. The layer-wise feature includes
details specific to each layer. The eGR all layer feature includes in-
formation on layer-wise routing resources in scenarios where there
is no reduction in routing resources. Additional features evaluated
include pin density and cell density. Table 8 shows that layer-wise
information is crucial, and tomography features offer additional
benefits for DRVNet. However, eGR across all layers, pin, and cell
density have minimal impact, likely because tomography features
and layer-wise information serve as proxies for these attributes.
Table 8: Ablation study of DRVNet feature importance (NG45).

Tomography ✓ ✓ ✓ ✓ ✓
Cell Density ✓ ✓ ✓ ✓ ✓
Pin Density ✓ ✓ ✓ ✓ ✓
Layer-wise ✓ ✓ ✓ ✓ ✓
eGR All Layer ✓ ✓ ✓ ✓ ✓
F1 0.79 0.77 0.79 0.79 0.68 0.79
Accuracy 0.98 0.98 0.98 0.98 0.96 0.98
TPR 0.83 0.88 0.83 0.83 0.96 0.83
FPR 0.01 0.02 0.01 0.01 0.04 0.01

400 600 800 1000 1200
DRV Count

Fine 
Tune

Zero
Shot

Auto-
tuner

Min: 723
Mean: 1082
STD: 216
Runtime: 18s

Min: 571
Mean: 924
STD: 179
Runtime: 901s

Min: 431
Mean: 746
STD: 220
Runtime: 293s

Fig. 14: DRV counts of solutions generated using autotuner, RL-zero
shot, and RL-fine-tuning for CA53 in NG45.

Autotuner vs. RL zero-shot vs. RL fine-tuning. We compare the
performance of three different routing blockage generation meth-
ods – autotuner, RL zero-shot, and RL fine-tuning – using CA53 in
NG45 with human-generated Blkg boundary and layer information.
For autotuner, we employ HyperOpt [1] search to sample different
BlkgSets for the given layer-wise hotspots, conducting 150 iterations
that take approximately 15 minutes. For RL, we use the base model
pre-trained for 90 minutes on the PROBE design. The RL-zero shot
takes 18 seconds to generate five BlkgSets for our testcase. We then
fine-tune it over 10 episodes, which takes about 5 minutes. For all
three methods, we select the top five sampled BlkgSets and run our
evaluation flow. Fig. 14 shows that the DRV violation counts for the
best solutions from autotuner, RL zero-shot, and RL fine-tuning are
571, 723, and 431, respectively. Despite having an initial training
cost, RL fine-tuning outperforms autotuner in terms of both DRV
count and runtime.

6.4 Robustness Tests
Our robustness tests perturb BlkgSets and baseline design settings.
Perturbation on BlkgSets. We assess robustness of our generated
BlkgSets by applying the following perturbations selected uniformly
at random from the corresponding intervals: (i) shift the predicted
Blkgs both horizontally and vertically by [−2, 2] Gcells; (ii) change
Blkg height and width by [−2, 2] Gcells; and (iii) vary partial density
by [−2, 2]%. Across five randomly perturbed BlkgSets, we observe
(min, avg, max) DRV counts of (491, 558, 632) for CA53 in NG45 (ref:
409 DRVs), and (400, 423, 475) for LDPC in GF12 (ref: 346 DRVs).
Perturbation on design settings.We apply our Blkg generation
framework to different design settings. We perturb the floorplan
aspect ratio (AR) and utilization of the design by small amounts (1%
in AR, 0.1% in utilization), generate different post-CTS solutions, and
then apply our framework. Table 9 shows that our framework obtains
similar reductions in DRV count (min 78%, max 92%) compared to
baselines for both CA53 in NG45 and LDPC in GF12.

Table 9: Performance on different design versions.

Design Method DRV Count
Ref. AR1 AR2 Util1 Util2

CA53
(NG45)

Baselines 3,308 1,880 2,070 3,522 6,344
Ours 409 336 294 427 1,262

%Reduction 88% 82% 86% 88% 80%

LDPC
(GF12)

Baselines 1,739 1,765 6,187 1,401 1,155
Ours 346 371 522 267 251

%Reduction 80% 79% 92% 81% 78%

7 CONCLUSION
We have introduced a placement tomography-based Blkg generation
framework, which generates BlkgSets after the CTS stage. Our frame-
work comprises three main models. (i) DRVNet generates blockage
outline and layer information based on hotspot predictions. (ii) Blkg-
Comp assesses the quality of BlkgSets by comparing two BlkgSets
and predicting the probability of one BlkgSet winning over the other.
(iii) Our RL model efficiently chooses an appropriate Blkg for each
hotspot and generates BlkgSets to be compared using BlkgComp.
The DRVNet model achieves an F1 score of up to 0.79 and accu-
racy up to 0.99. The BlkgComp model achieves accuracy up to 0.74,
top-5 accuracy up to 0.91 and a Kendall rank of up to 0.52. Overall,
our framework generates BlkgSets that reduce DRVs by up to 88%
compared to the no-blockage tool default, and up to 21% compared
to an expert human baseline that accesses post-route DRV infor-
mation. Ongoing research seeks improved ML-based Blkg outline
and layer prediction in DRVNet, for improved BlkgSet generation.
Enhancing BlkgComp so that it can compare BlkgSets with differ-
ent outlines will also enhance our mitigation of post-route DRVs.
We also seek to confirm effectiveness of our approach using the
OpenROAD tool [36].
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