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ABSTRACT
Today’s place-and-route (P&R) flows are increasingly challenged
by complexity and scale of modern designs. Often, heuristics must
trade off between turnaround time and quality of PPA outcomes.
This paper presents a clustered placement methodology that im-
proves both turnaround time and final-routed solution quality. Our
PPA-aware clustering considers timing, power and logical hierar-
chy during netlist clustering, effectively reducing problem size and
accelerating global placement runtime while improving post-route
PPA metrics. Additionally, our machine learning (ML)-accelerated
virtualized P&R methodology predicts the best cluster shapes (i.e.,
aspect ratios and utilizations) to use in P&R of the clustered netlist.
With the open-source OpenROAD tool, our methods achieve up to
47% (average: 36%) global placement runtime improvement with
similar half-perimeter wirelength (HPWL) and 90% (29%) improve-
ment in post-route total negative slack (TNS). With the commercial
Cadence Innovus tool, our methods achieve up to 3.92% (1%) im-
provement in power and 99% (49%) improvement in TNS.
ACM Reference Format:
AndrewB. Kahng, SeokhyeongKang, Sayak Kundu, KyungjunMin, Seonghyeon
Park, and Bodhisatta Pramanik. 2024. PPA-Relevant Clustering-Driven Place-
ment for Large-Scale VLSI Designs. In 61st ACM/IEEE Design Automation
Conference (DAC ’24), June 23–27, 2024, San Francisco, CA, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3649329.3655991

1 INTRODUCTION
The placement phase of physical design is central to optimization of
performance, power and area (PPA) outcomes, as well as to design
space exploration at floorplan/RTL levels and above. Complexity
and scale have rapidly increased, such that millions of instances
must be efficiently placed within stringent runtime limits. Thus,
placement tools rely on heuristics that are often challenged by prob-
lem scale, and by the tension between improvement of turnaround
time (TAT) and improvement of quality of results (QOR). Clustering
has long been seen as a solution to these challenges [20], [11], [9].
However, traditional clustering heuristics [12], [6] only optimize
a cutsize criterion and do not consider design information (logi-
cal hierarchy, timing, switching activity, etc.) that strongly affects
PPA outcomes. Recent works, such as [9] and [14], revisit the use
of netlist clustering to guide and improve placement flows. These
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works demonstrate that clustering can either reduce runtime but
with PPA degradation [9], or improve PPA but with runtime degra-
dation [14]. By contrast, our present work develops a PPA-aware
clustering methodology, and an improved clustered placement ap-
proach based on machine learning (ML)-accelerated virtualized
place-and-route (V-P&R), to improve both runtime and PPA relative
to baseline (academic and commercial) flat placement methods.

Following are the key contributions made by our work.
• PPA-aware clustering.We consider additional netlist informa-
tion – logical hierarchy, timing criticality of paths, and switching
activity of nets – to achieve PPA-aware clustering. In doing so,
we (i) apply a dendrogram-based approach to extract clusters
from the netlist logical hierarchy, and (ii) enhance the multilevel
clustering framework of [29] [5] to handle logical hierarchy and
switching activity of nets. We experimentally demonstrate that
our clustering approach achieves noteworthy PPA benefits, and
that it outperforms traditional clustering methods when applied
in OpenROAD and Cadence Innovus flows (Sections 3.1 and 4).
• ML-accelerated virtualized P&R. In the seeded placement ap-
proach, a seed placement of clusters is used to induce seed loca-
tions of instances, from which the flat P&R flow is continued.
Obtaining a high-quality seed placement of clusters requires two
elements: how to form the clusters, and how to feed the clus-
ters into a placer. To this end, we use our PPA-aware clusters,
and a novel V-P&R framework to determine cluster shapes (uti-
lizations and aspect ratios) to use in the cluster placement. We
accelerate the V-P&R framework using a graph neural network
(GNN)-based ML model that achieves mean absolute error (MAE)
of 0.131 (for label values in the range [0.564, 2.96]) and R2 score
of 0.638, (Sections 3.2 and 4.4).

Experimental confirmations.We evaluate our PPA-aware clus-
tering methodology and ML-accelerated V-P&R framework using
both OpenROAD and Innovus flows, along with open testcases
from the TILOS MacroPlacement [28] and OpenROAD-flow-scripts
[27] GitHub repositories. Our methods achieve (maximum, average)
percentage improvements of (47, 36) in global placement runtime
with similar half-perimeter wirelength (HPWL), compared to the
default (i.e., without any clustering or V-P&R) OpenROAD flow. We
also achieve (maximum, average) percentage improvements of (4, 1)
and (99, 49) in power and post-route total negative slack (TNS), re-
spectively, compared to a standard Innovus flow. To the best of our
knowledge, we are the first work to improve both global placement
runtime and post-route final PPA simultaneously (Section 4).
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Figure 1: Our overall approach, including PPA-aware clustering and
the ML-accelerated V-P&R framework.

2 RELATEDWORK
Clustering has been widely used in various stages of VLSI physical
design, such as partitioning [5], placement [17] and clock tree syn-
thesis [18]. Popular hypergraph clustering heuristics include First
Choice (FC) [12], Best Choice (BC) [1] and cut-overlay [6]. FC and
BC find clusters of vertices with stronger intra-cluster connectivity
compared to inter-cluster connectivity. The cut-overlay method
combines multiple clustering solutions to generate better clusters.
These methods predominantly rely on local criteria when finding
candidate vertices to cluster. By contrast, community detection
algorithms such as Louvain [4] and Leiden [19] adopt a more global
perspective, identifying clusters that maximize a modularity score.

Several works show benefits of clustering in global placement.
[11] proposes a clustering metric that correlates well with post-
place wirelength. When applied in clustering-based placement, the
metric speeds up placement generation, albeit with some wire-
length degradation. [2] integrates BC clustering with placement
and demonstrates superior performance over edge-coarsening (EC)
and FC. When compared to a standard flow, BC-based placement
achieves similar-quality HPWL but with improved placement speed.
Similarly, [20] uses clustering in a fast placement methodology.
More recently, [9] has proposed a ‘blob placement’ strategy where
placement-relevant clusters are found using Louvain clustering.
Integration with RePlAce [7] achieves faster placement runtimes
with minor HPWL degradation. Last, the authors of [14] propose
an ML-driven clustering framework for PPA optimization. By rep-
resenting PPA metrics as optimizable loss functions, their method
achieves improved PPA results albeit with increased runtime.

With the exception of [14], the above-mentioned works focus on
improving global placement runtime. Other gaps are apparent in
the literature, e.g., some of the clustering methods used (e.g., BC and
Louvain/Leiden) do not scale to large design sizes. Moreover, previ-
ous clustering criteria based on cutsize and/or modularity are not
well-correlated with PPA outcomes. While [14] proposes a cluster-
ing framework that considers additional netlist information for PPA
optimization, their approach requires a placed netlist as an input
and is runtime-intensive. Our present work addresses these gaps
by incorporating PPA-aware clustering and ML-accelerated V-P&R
within a clustering-based placement framework that improves both
turnaround time and PPA outcomes over strong baseline methods.

3 OUR APPROACH
Our clustering-based placement approach is detailed in Algorithm 1.
Figure 1 illustrates the two main components: (i) PPA-aware cluster-
ing and (ii) ML-accelerated virtualized P&R. The input is a netlist

Algorithm 1: Our overall approach.
Inputs: Netlist (.v, .lib, .lef, .def, .sdc), |𝑃 | (number of paths), Tool
Outputs: HPWL, rWL, WNS, TNS, Power

1 /* Extract logical hierarchy, timing, and power info */

2 if logical hierarchy is present then
3 𝑇 (𝑉 ′, 𝐸′ ) ← Read logical hierarchy using OpenDB and generate logical hierarchy

tree
4 𝑃 ← Extract top |𝑃 | timing paths using OpenSTA
5 𝑆 ← Extract switching activity of all nets using OpenSTA
6 𝐶← Run hierarchy-based clustering of𝑇 using Algorithm 2
7 𝐶𝑚𝑡𝑦 ← Generate grouping constraints based on𝐶
8 /* PPA-aware clustering */

9 𝐶𝑒𝑛ℎ ← Run enhanced multilevel clustering using 𝑃 , 𝑆 and𝐶𝑚𝑡𝑦

10 𝑁𝑒𝑡𝑙𝑖𝑠𝑡𝑐𝑙𝑢𝑠𝑡 ← Generate clustered netlist from𝐶𝑒𝑛ℎ

11 /* ML-accelerated V-P&R */

12 𝐶𝑠ℎ𝑎𝑝𝑒𝑠 ← Generate cluster shapes with ML-accelerated V-P&R for clusters containing
more than 200 instances

13 𝑁𝑒𝑡𝑙𝑖𝑠𝑡𝑐𝑙𝑢𝑠𝑡 ← Create .lef using𝐶𝑠ℎ𝑎𝑝𝑒𝑠

14 /* Seeded placement */

15 if Tool == Innovus then
16 𝑃𝑙clust ← Run placement on 𝑁𝑒𝑡𝑙𝑖𝑠𝑡𝑐𝑙𝑢𝑠𝑡
17 Place instances in 𝑁𝑒𝑡𝑙𝑖𝑠𝑡 at their respective cluster centers
18 Build region constraints using 𝑃𝑙clust and𝐶𝑠ℎ𝑎𝑝𝑒𝑠

19 Run place_design -incremental
20 Remove region constraints

21 else if Tool == OpenROAD then
22 𝑁𝑒𝑡𝑙𝑖𝑠𝑡𝑐𝑙𝑢𝑠𝑡 ← Scale weights on IO nets by 4
23 Run placement on 𝑁𝑒𝑡𝑙𝑖𝑠𝑡𝑐𝑙𝑢𝑠𝑡
24 Place instances in 𝑁𝑒𝑡𝑙𝑖𝑠𝑡 at their respective cluster centers
25 Run globalPlacement -incremental

26 /* Placement evaluation */

27 HPWL← Record HPWL
28 Run CTS and route 𝑁𝑒𝑡𝑙𝑖𝑠𝑡

29 rWL, WNS, TNS, Power← Record post-route wirelength, worst negative slack, total
negative slack and power from Tool

30 return HPWL, rWL, WNS, TNS, Power

file (.v, .lib, .lef, .def1, .sdc) and a choice of implementation tool (in
this work, either OpenROAD [25] or Cadence Innovus [23]).
Lines 2-7:We use OpenDB [25] to parse the input netlist, extract
the logical hierarchy and construct a hierarchy tree𝑇 that captures
the hierarchical relationship of instances in the netlist. We then
use 𝑇 and Algorithm 2 to find a hierarchy-based clustering of the
instances. These clusters are used to induce grouping constraints [5].
We also extract the top 𝑃 most critical timing paths, along with
vectorless switching activity of nets, using OpenSTA [26].
Lines 9-10: Enhanced multilevel clustering adds PPA-awareness
to the open-source FC implementation of [29]. Hierarchy-based
grouping constraints and path timing criticality (slacks) are applied
similarly to [5]. We also introduce hyperedge switching costs to
distinguish nets with high switching activity.2
Lines 12-13: Given the clustered netlist, we estimate the best
choices of individual cluster shapes (aspect ratios and utilizations)
using an ML-accelerated V-P&R framework (Section 3.2). We run
ML-accelerated V-P&R only for clusters that contain more than 200
instances.3 Cluster shapes are then updated in the cluster .lef file.
Lines 15-25: The clustered netlist is placed to obtain a seed place-
ment, according to the choice of Tool. The coordinates of the seed
placement are then used to induce a flat seeded placement. When
Tool is Innovus, we generate the seeded placement through a three-
step process (Lines 16-20): (i) placing all instances in a cluster at
the cluster center; (ii) setting region constraints for clusters whose
1The .def file provides floorplan bounding box, pin placements and macro preplace-
ments.
2The enhanced FC-based multilevel clustering often generates several singleton clus-
ters. Our background studies show that merging these singleton clusters into a single
larger cluster can significantly degrade post-route PPA, hence we do not merge them.
3Hyperparameter tuning studies established that a lower bound of 200 instances leads
to the best PPA outcomes.
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Figure 2: Illustration of hierarchy-based clustering.

shapes were estimated using ML-accelerated V-P&R; and (iii) run-
ning incremental placement. When Tool is OpenROAD (Lines 22-
25), we first scale IO net weights by 4 [9], then generate the seeded
placement using the above steps (i) and (iii) only, since OpenROAD
cannot handle region constraints.
Lines 27-30: To assess quality of the seeded placement, we collect
post-place wirelength (HPWL), then execute CTS and routing to
obtain post-route PPA metrics: routed wirelength (rWL), worst
negative slack (WNS), total negative slack (TNS) and total power.

3.1 PPA-aware Clustering
Our PPA-aware clustering considers logical hierarchy, timing and
power information in addition to physical connectivity. Logical
hierarchy is obtained using OpenDB, while timing and power infor-
mation is obtained using OpenSTA.
Logical hierarchy. Netlist clustering based on logical hierarchy is
natural to consider, since functionally ‘similar’ or ‘related’ instances
are often in spatial proximity in the final placement. However, clus-
tering based only on the logical hierarchy can lead to suboptimali-
ties, since other factors such as timing or connectivity also affect
the placement and hence the final PPA. Thus, we use the hierarchy-
based clusters as clustering guides (or, grouping constraints), as
in [5]. Algorithm 2 formally describes our hierarchy-based cluster-
ing; see also Figure 2. Additional details are as follows.
Lines 2-5:We interpret the logical hierarchy tree 𝑇 as the output
of hierarchical clustering and construct a dendrogram, 𝑇𝑑𝑒𝑛 , to
visualize the hierarchical relationships derived from𝑇 (see Figure 2).
Lines 7-12:We levelize 𝑇𝑑𝑒𝑛 such that all leaf nodes in 𝑇𝑑𝑒𝑛 are at
the same level (i.e., having the same path distance from the root).
The levelization process replicates all leaf nodes that have levels
less than 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥 , the largest level of any leaf node of 𝑇𝑑𝑒𝑛 . For
example, node 𝑥1 in Figure 2 is replicated once.
Lines 14-24: We evaluate 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥 − 1 clusterings of the netlist,
respectively corresponding to the 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥−1 levels of𝑇𝑑𝑒𝑛 . Evalua-
tion is according to a weighted average Rent exponent criterion [8],
defined by

𝑅𝑐𝑖 =
ln(𝐸 (𝑐𝑖 )/(𝐼𝑛𝑡 (𝑐𝑖 ) + 𝐸𝑥𝑡 (𝑐𝑖 )))

ln( |𝑐𝑖 |)
+ 1; 𝑅avg =

∑
𝑐𝑖 ∈𝐶 (𝑅𝑐𝑖 × |𝑐𝑖 |)

|𝑉 |
(1)

Here,𝑅𝑐𝑖 is the Rent exponent for cluster 𝑐𝑖 [8]; 𝐸 (𝑐𝑖 ) is total external
hyperedges (i.e., that connect to vertices in other clusters); 𝐸𝑥𝑡 (𝑐𝑖 )
is total pins in 𝑐𝑖 that connect to external hyperedges; 𝐼𝑛𝑡 (𝑐𝑖 ) is total
pins that connect to internal hyperedges (i.e., that only connect
vertices within 𝑐𝑖 ); and |𝑐𝑖 | is the number of vertices in 𝑐𝑖 . A “good”
cluster has a lower value of 𝑅𝑐𝑖 . We pick the clustering solution
with minimum 𝑅𝑎𝑣𝑔 over all 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥 − 1 clustering solutions.
Timing and power.We extract timing information (top |𝑃 | timing-
critical paths and net slacks) and net switching activity using the
OpenSTA tool. We use the findPathEnds function from Search.hh
available at [26], with group count (|P|) = 100000, endpoint count =

Algorithm 2: Hierarchy-based clustering.
Inputs: Hypergraph𝐻 (𝑉 , 𝐸 ) , Logical hierarchy tree𝑇 (𝑉 ′, 𝐸′ )
Output: Cluster assignments𝐶

1 /* Construct the dendrogram */

2 𝑇𝑑𝑒𝑛 (𝑉𝑑𝑒𝑛 , 𝐸𝑑𝑒𝑛 ) ← Initialize dendrogram using𝑇
3 𝑙𝑒𝑎𝑓 _𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← Leaf vertices in𝑇𝑑𝑒𝑛
4 𝑙𝑒𝑣𝑒𝑙𝑠 ← Generate levels of each node in𝑇𝑑𝑒𝑛
5 𝑙𝑒𝑣𝑒𝑙max ← max(𝑙𝑒𝑣𝑒𝑙𝑠 )
6 /* Levelizing the dendrogram by replicating leaf nodes */

7 for each 𝑣 ∈ 𝑉𝑑𝑒𝑛 do
8 if 𝑣 is a leaf node and 𝑙𝑒𝑣𝑒𝑙 (𝑣) < 𝑙𝑒𝑣𝑒𝑙max then
9 for 𝑘 ← 𝑙𝑒𝑣𝑒𝑙 (𝑣) ;𝑘 < 𝑙𝑒𝑣𝑒𝑙max ;𝑘 ← 𝑘 + 1 do
10 𝑣copy ← Create a copy of node 𝑣
11 Assign 𝑣𝑐𝑜𝑝𝑦 to be 𝑣’s child
12 𝑣 ← 𝑣copy

13 /* Find best clustering */

14 𝐶 ← Initialize array of cluster assignments for𝑉
15 𝑅𝑎𝑣𝑔𝑏𝑒𝑠𝑡 ←∞
16 for 𝑘 ← 0;𝑘 < 𝑙𝑒𝑣𝑒𝑙𝑚𝑎𝑥 − 1;𝑘 ← 𝑘 + 1 do
17 𝑉𝑑𝑒𝑛𝑘

← All vertices in𝑉𝑑𝑒𝑛 that have level 𝑘
18 𝐶𝑘 ← Clustering solution at level 𝑘
19 𝑅𝑎𝑣𝑔𝑘 ←Weighted average of Rent’s parameter (Equation 1)
20 if 𝑅𝑎𝑣𝑔𝑘 < 𝑅𝑎𝑣𝑔𝑏𝑒𝑠𝑡 then
21 𝑅𝑎𝑣𝑔𝑏𝑒𝑠𝑡 ← 𝑅𝑎𝑣𝑔𝑘
22 𝐶 ← 𝐶𝑘

23 /* Return best clustering */

24 return𝐶

1, unique pins = true, and sort by slack = true. Net switching power
is obtained from vectorless power analysis with default tool settings.
In particular, we use the findClkedActivity function from Sta.hh
available at [26]. We leverage the timing information in our PPA-
aware clustering by calculating (i) timing cost 𝑡𝑝 for critical path 𝑝

and (ii) timing cost 𝑡𝑒 of hyperedge 𝑒 , as in [5]. We consider power
and switching activity by defining a switching cost of hyperedge 𝑒:

𝑠𝑒 = (1 + 𝜃𝑒∑
𝑒∈𝐸 𝜃𝑒

)𝜇 (2)

where 𝜃𝑒 is the switching activity of a hyperedge 𝑒 and 𝜇 (default=2)
is a scaling factor. The heavy-edge rating function of [5] is then
extended as:

𝑟overall (𝑢, 𝑣) =
∑︁

𝑒∈𝐼 (𝑣)∩𝐼 (𝑢 )

⟨𝛼,𝑤𝑒 ⟩ + 𝛽𝑡𝑒 + 𝛾𝑠𝑒
|𝑒 | − 1 (3)

where 𝑢 and 𝑣 denote the pair of cluster candidates while 𝐼 (𝑣)
denotes the incident hyperedges of 𝑣 . The parameters 𝛼, 𝛽 and 𝛾
are scaling factors.

3.2 V-P&R and ML-based Acceleration
Cluster shapes (utilization and aspect ratio) significantly impact
seed placement and PPA outcomes, as documented in Section 4.4
below.We therefore introduce a virtualized P&R (V-P&R) framework
to determine the best shape for each cluster. We further apply GNN-
based ML modeling to accelerate the V-P&R framework.
Virtualized P&R. The basic idea of V-P&R is that by running
place-and-route on the sub-netlist induced by a cluster, we can
gain insight into how to model that cluster during seed placement.
Figure 3 shows our V-P&R framework. For each given cluster, we
first induce the sub-netlist over the instances in the cluster. For
each inter-cluster net that is incident to the given cluster, we create
input (output) ports in the sub-netlist, corresponding to any sinks
(driver) in the cluster. This sub-netlist is passed to the V-P&R frame-
work, along with 20 different combinations of 5 aspect ratios and 4
utilizations. For each combination of aspect ratio and utilization,
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we initialize the floorplan of a “virtual die”, then run placement
and global routing on the sub-netlist using the default OpenROAD
flow script [27]. We then record HPWL and routing congestion.4 To
identify a combination of aspect ratio and utilization that achieves
both good HPWL and low congestion, we define HPWL Cost as

𝐶𝑜𝑠𝑡𝐻𝑃𝑊𝐿 =
𝐻𝑃𝑊𝐿𝑎𝑣𝑔

𝑊𝑖𝑑𝑡ℎ𝐶𝑜𝑟𝑒 + 𝐻𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑟𝑒
(4)

where𝐻𝑃𝑊𝐿𝑎𝑣𝑔 is the average HPWL of nets in the sub-netlist, and
𝑊𝑖𝑑𝑡ℎ𝐶𝑜𝑟𝑒 and 𝐻𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑟𝑒 are respectively the width and height
of the virtual die. We also define Congestion Cost as

𝐶𝑜𝑠𝑡𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 =

∑𝑇𝑜𝑝𝑋% 𝐺𝐶𝑒𝑙𝑙𝑠 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

𝑇𝑜𝑝𝑋% 𝐺𝐶𝑒𝑙𝑙𝑠
(5)

where 𝑋 is a hyperparameter (default = 10). Following [13], we de-
fine overall Total Cost as:𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝐻𝑃𝑊𝐿+𝛿∗𝐶𝑜𝑠𝑡𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 ,
where 𝛿 is a normalization factor (default = 0.01). The (aspect ratio,
utilization) combination that achieves best Total Cost is used to
create the cluster’s .lef model during seed placement.
ML Modeling to Accelerate V-P&R. As described above, V-P&R
determines each cluster’s ideal shape by running OpenROAD 20
times through the end of global routing (each run can require as
much as 3 seconds). This effort grows linearly with design size, and
can reach undesirable levels. To address this, we implement an ML-
based strategy that in practice accelerates our V-P&R framework
by approximately 30×. Specifically, we use a GNN-based model to
predict Total Cost, replacing execution of OpenROAD in Figure 3.

Our ML model training uses a diversity of clusters generated
by perturbing seed and coarsening hyperparameters [29] in our
PPA-aware clustering. The training, validation and testing datasets
respectively consist of 22700, 5600 and 3200 clusters. Following [9],
we sweep aspect ratio in the range [0.75, 1.75] with step size 0.25,5
and sweep utilization in the range [0.75, 0.90] with step size 0.05.
This results in 20 distinct (aspect ratio, utilization) combinations,
i.e., 20 candidates for the cluster shape. For each candidate, we run
(i) V-P&R, (ii) calculate Total Cost, and (iii) use Total Cost as a label.

Figure 4 shows our GNN-based model architecture. We convert a
cluster’s sub-netlist to an undirected graph (“Cluster Graph”) using
standard clique expansion with edge weight 1/(|𝑒 | − 1) for each
hyperedge 𝑒 [16]. Each node in the graph has 28 features, extending
[15] with two new features italicized below. These features are:
• Design parameters: floorplan utilization and aspect ratio.
• Cluster-level features: #cells, #nets, #pins, #nets w/ fanout 5-
10, #nets w/ fanout > 10, #internal nets, #border nets, total cell
area, average cell degree, average net degree, average clustering

4Based on aspect ratio and utilization, a floorplan .lef is created for P&R of the sub-
netlist. The IO ports are placed with the OpenROAD pin placer; in the Nangate45
enablement these use the metal2 (vertical) and metal3 (horizontal) layers.
5More extreme cluster aspect ratios (< 0.75 or > 1.75) generally result in poor PPA.
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Figure 4: GNN-based architecture to predict Total Cost.

coefficient, density, diameter, radius, edge connectivity, #colors
for greedy coloring and average global efficiency.
• Cell-level features: Cell area, cell degree, average neighbor-
hood degree, betweenness centrality, closeness centrality, degree
centrality [21], clustering coefficient, eccentricity and cell type.

Our model takes as input a cluster graph and a candidate shape.
Structurally, ourmodel comprises four distinct convolution branches,
with each branch containing three convolution blocks (Figure 4).
Dimensions of the input, hidden and output layers of the convo-
lution branches are 35, 64 and 32, respectively. The convolution
blocks are implemented with hypergraph convolution [3], batch
normalization, and skip connections that are specifically used when
the input and output dimensions match. As the input data passes
through each convolution branch, the results from these branches
are accumulated; then, global mean pooling is applied to generate
an embedding vector for the cluster. This vector is subsequently
passed to a prediction module that predicts the Total Cost. Our
prediction module is built with two linear layers, batch normaliza-
tion and an activation function (Figure 4). Here, dimensions of the
input, hidden and output layers are 32, 64 and 1, respectively. After
predicting the Total Cost for all candidates, the candidate with the
lowest Total Cost is returned as the output of the ML-accelerated
V-P&R framework. (Full details and scripts can be seen at [22].)

4 EXPERIMENTAL EVALUATION
Our PPA-aware clustering framework is written in C++ and built
on the OpenROAD infrastructure. Our ML model is implemented
using PyTorch Geometric. We make available all codes and scripts
at our GitHub repository [22]. We run all experiments on a server
with four 2.4 GHz Intel Xeon(R) Gold 6148 processors and 376 GB
RAM. For evaluation we use testcases that are publicly available in
the MacroPlacement [28] and OpenROAD [27] GitHub repositories.
We use six designs (aes, ariane, BlackParrot, jpeg, MegaBoom and
MemPool Group) and the NanGate45 [24] open enablement in our
experiments. Table 1 lists the main statistics of these benchmarks.
We evaluate our PPA-aware clustering and ML-accelerated V-P&R
with OpenROAD and Innovus v.21.1.6 For clarity, we divide our
validation efforts into two categories: (i) validation of runtime and
PPA with OpenROAD (Section 4.1) and (ii) validation of PPA with
Innovus (Section 4.2). To show the benefits of our PPA-aware clus-
tering and ML-accelerated V-P&R methods, we present ablation
studies in Sections 4.3 and 4.4. Finally, we explore the tuning of
hyperparameters in Section 4.5.

4.1 PPA and Runtime Validation (OpenROAD)
We evaluate our PPA-aware clustering and ML-accelerated V-P&R
methods using OpenROAD. We compare our post-place HPWL and
6We do not perform any benchmarking of commercial EDA tools. Further, to avoid
inadvertent benchmarking, we mask the target clock period values TCP𝐼𝑛𝑣 in Table 1.
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Table 1: Specifications of benchmarks.
Design (NG45) #Insts #Nets *TCP𝑂𝑅

*TCP𝐼𝑛𝑣
aes 15547 16338 0.55 -
jpeg 53042 58898 0.80 -
ariane 119256 142226 1.80 -
BlackParrot (BP) 768851 998716 2.30 -
MegaBoom (MB) 1086920 1443755 NA -
MemPool Group (MP-G) 2729729 3087191 NA -

*TCP𝑂𝑅 (ns) and TCP𝐼𝑛𝑣 denote the target clock periods used in the OpenROAD and Innovus
flows, respectively. TCP𝐼𝑛𝑣 is masked to avoid inadvertent benchmarking of the Innovus tool.

runtime with [9] and the default OpenROAD flow [27] in Table 2.
We do not compare with [14] as code was not available from the
authors. We first report the cumulative runtimes of clustering and
seeded placement (for [9] and our approach) and then normalize
these numbers by the placement runtime recorded from the default
flow. We observe that our methods achieve up to: (i) 60% improve-
ment in runtime and 5% improvement in HPWL compared to [9]
and (ii) 47% improvement in runtime and 1% improvement in post-
place HPWL. For MegaBoom and MemPool Group, the clustering
runtime of [9] is significantly larger (∼2X) than the placement run-
time of OpenROAD. We hence omit these with “NA” (in Table 2).
We separately give the runtime breakdown of our approach in [22].
We also measure the post-route PPA in Table 3. Here, we exclude
MegaBoom and MemPool Group since OpenROAD fails to route
for these designs. In Table 3, we exclude [9] in our post-route PPA,
since we evaluate our method using a superior community detec-
tion algorithm (Leiden) in Section 4.3. We observe that our methods
achieve maximum (average) percentage PPA improvements of 5 (2),
63 (26), 90 (29) and 0.7 (0.2) in rWL,WNS, TNS and Power, respec-
tively, when compared to the default flow. We observe marginal
improvement in power compared to the default flow. However,
when compared to clustering methods with no PPA-awareness, our
method achieves up to 5% improvement in power (Section 4.3).

Table 2: Evaluation of post-place results with OpenROAD.

Design [9] Ours
HPWL CPU HPWL CPU

aes 1.007 1.567 1.000 0.802
jpeg 0.973 1.000 1.011 0.524
ariane 1.046 0.931 0.989 0.604

BlackParrot 0.996 1.824 0.989 0.738
MegaBoom NA NA 0.997 0.664

MemPool Group NA NA 1.001 0.533

Table 3: Evaluation of post-route results with OpenROAD.

Design Flow Post-route PPA
rWL WNS TNS Power

aes Default 1.00 -220 -32.08 0.296
Ours 0.98 -210 -31.85 0.294

jpeg Default 1.00 -410 -130.45 0.441
Ours 0.95 -470 -177.73 0.438

ariane Default 1.00 -200 -139.21 0.655
Ours 0.99 -100 -14.21 0.661

BP Default 1.00 -410 -1441.24 4.93
Ours 0.99 -150 -563.69 4.91

The unit of WNS is 𝑝𝑠 , the unit of TNS is 𝑛𝑠 , and the unit of Power is𝑊 .

4.2 PPA Validation (Cadence Innovus)
In this section, we validate our PPA-aware clustering and ML-
accelerated V-P&R methods with Cadence Innovus v.21.1. Table 4
compares post-route PPA metrics to those obtained with the stan-
dard Innovus flow [28]. For all designs, our methods significantly
improve most PPA metrics. We achieve maximum (average) per-
centage improvements of 1.9 (0.2), 98 (35), 99 (49) and 4 (1) in rWL,
WNS, TNS and Power, respectively. We observe similar runtime
compared to the standard Innovus flow.

Table 4: Evaluation of post-route results with Innovus.

Design Flow Post-route PPA
rWL WNS TNS Power

aes Default 1.000 -72 -7.94 0.050
Ours 1.014 -60 -7.37 0.050

jpeg Default 1.000 -41 -1.17 0.284
Ours 1.005 -6 -0.06 0.273

ariane Default 1.000 -97 -52.73 0.841
Ours 0.998 -80 -39.86 0.842

BP Default 1.000 -134 -548.74 4.492
Ours 0.999 -165 -372.80 4.481

MB Default 1.000 -28 -1.34 1.611
Ours 0.981 -5 -0.014 1.586

MP-G Default 1.000 -37 -0.96 2.671
Ours 0.994 -29 -0.63 2.679

The unit of WNS is 𝑝𝑠 , the unit of TNS is 𝑛𝑠 , and the unit of Power is𝑊 .

4.3 Comparison of PPA-awareness
We now assess the PPA-relevance of our clustering method, relative
to Leiden clustering and TritonPart’s default clustering method
(multilevel FC, denoted as MFC in Table 5). We use post-route
PPA metrics obtained from using Leiden and multilevel FC in our
overall flow. Table 5 presents evaluation with OpenROAD (more
results are available in [22]). Routed wirelength is normalized to
the value obtained with the default OpenROAD flow. We observe
that compared to Leiden, our clustering approach leads to better
PPA outcomes – up to 5% improvement in rWL, WNS and TNS and
up to 2% improvement in Power. Compared to the multilevel FC,
our clustering achieves better percentage PPA improvements (up
to 6, 13, 10 and 2, respectively) on the same metrics. These results
indicate that consideration of additional netlist information (logical
hierarchy, timing path slacks, and switching activity of nets) during
clustering helps to improve the final PPA. Thus, the Table 5 data
confirm PPA-relevance of our proposed clustering methodology.

Table 5: Evaluation of our PPA-aware clustering framework.

Design Method Post-route PPA
rWL WNS TNS Power

aes
Leiden 0.991 -211 -33.41 0.295
MFC 1.028 -214 -42.42 0.311
Ours 0.980 -210 -31.85 0.294

jpeg
Leiden 0.998 -472 -177.82 0.446
MFC 1.011 -542 -196.42 0.459
Ours 0.950 -470 -177.73 0.438

ariane
Leiden 0.996 -105 -14.29 0.672
MFC 1.001 -134 -16.28 0.669
Ours 0.972 -100 -14.21 0.661

The unit of WNS is 𝑝𝑠 , the unit of TNS is 𝑛𝑠 , and the unit of Power is𝑊 .

4.4 V-P&R Model Evaluation
We evaluate the performance of our GNN-based model using two
metrics: (i) mean absolute error (MAE), which evaluates the average
magnitude of absolute prediction errors, aid (ii) R2 score, which
quantifies the amount of variance in the predicted values. The
values of the (Total Cost) labels lie in the range [0.564, 2.96] and
have a mean of 1.703 with standard deviation 0.727. Our results
show that we achieve an MAE of 0.105, 0.113, and 0.131 for the
training, validation, and test datasets, respectively. Our R2 score is
0.788, 0.753, and 0.638 for the three datasets. These metrics confirm
the model prediction accuracy of our GNN-based architecture.

Table 6 presents PPA benefits of our ML-accelerated V-P&R
framework, using Innovus, again with more results available in
[22]. In this study, we first substitute the ML-accelerated V-P&R
framework (denoted as V-P&R𝑀𝐿 in the table) with (i) random
cluster shape assignments (Random) or with (ii) fixed cluster shape
assignments where each cluster is assigned utilization = 0.9 and
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Table 6: Evaluation of our ML-based V-P&R framework.

Design Shape Post-route PPA
rWL WNS TNS Power

ariane
Random 0.992 -94 -59.80 0.840
Uniform 1.000 -103 -66.12 0.840
V-P&R𝑀𝐿 0.977 -80 -39.86 0.842

jpeg
Random 1.010 -11 -0.29 0.288
Uniform 1.000 -19 -0.33 0.279
V-P&R𝑀𝐿 0.996 -6 -0.06 0.273

MB
Random 0.999 -17 -0.71 1.596
Uniform 1.000 -14 -0.40 1.601
V-P&R𝑀𝐿 0.961 -5 -0.014 1.586

The unit of WNS is 𝑝𝑠 , the unit of TNS is 𝑛𝑠 , and the unit of Power is𝑊 .
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Figure 5: Hyperparameter validation.

aspect ratio = 1.0 (Uniform). Then, we run the clustering-driven
placement and collect the post-route PPAmetrics. In Table 6, all rWL
values for each design are normalized to the value obtained with
uniform cluster shape assignments. The results show that compared
to (random, uniform) assignments, ML-accelerated V-P&R achieves
(arithmetic) average percentage improvements of (2, 2), (44, 52),
(85, 73) and (2, 1) in rWL,WNS, TNS and Power, respectively,

4.5 Hyperparameter Selection
We have determined default values for the hyperparameters (𝛼 , 𝛽 ,
𝛾 and 𝜇) by performing a study involving three designs: aes, jpeg,
and ariane. We define the score value as the arithmetic mean of
the post-place HPWL improvement.7 In our experiments, for each
design, we: (i) vary each parameter while keeping the other three
constant8; (ii) run our flow with OpenROAD and record the post-
place HPWL; and (iii) normalize the HPWL to the value obtained
with our default hyperparameter settings (see Figure 5). From our
findings, we observe that our default setting of the hyperparameters
is a reasonable choice. A more detailed exploration of the hyperpa-
rameter space – with more designs and impact on post-route PPA–
is provided in our GitHub repository [22].

5 CONCLUSION
We have developed new PPA-aware clustering and ML-accelerated
virtualized P&R methods that improve seed placements for large-
scale global placement. For PPA-aware clustering, we adapt the mul-
tilevel clustering framework of [29] to consider logical hierarchy,
timing paths and switching activities. Our ML-accelerated V-P&R
framework efficiently predicts beneficial aspect ratios and utiliza-
tions to apply with clusters produced by the PPA-aware clustering.
As noted above, our ML-model accelerates the V-P&R framework
by 30× with a one-time training cost. Together, these elements en-
able generation of a high-quality seed placement that leads to final
7We consider HPWL for faster TAT and more extensive parameter space exploration.
8The x-axis in Figure 5 denotes multipliers applied to the default values of the hyper-
parameters. Our study assesses whether there are benefits to larger relative weighting
of the terms in Equation 3. Hence we sweep our multipliers of default values in the
range [1, 6] with step size 1.

placements with improved post-route PPA metrics. Experimental
results confirm both PPA and runtime benefits of our methods.
When integrated with the open-source OpenROAD tool, our meth-
ods can improve both PPA and runtime, with 29% average TNS
improvement and 36% runtime speedup. With the commercial Ca-
dence Innovus tool, we achieve better PPA, with 49% average TNS
improvement. Our ongoing research pursues confirmation of the
benefits from our methods on additional testcases, design enable-
ments and P&R tools. We are also studying the effects of different
cluster shapes (L-shaped, diamond, circle, etc.) on placement, and
enhancing power-awareness of our clustering methodology to fur-
ther improve the post-route power metric. Last, we plan to study
the benefits of our PPA-aware clustering and ML-accelerated V-P&R
framework in the context of 3D placement.
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