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ABSTRACT
Multi-bit flip-flop clustering is a well-studied optimization problem
in physical design: carefully merging multiple single-bit flip-flops
into a single multi-bit flip-flop can decrease the total power con-
sumption in a clock distribution network due to lower clock power
and routed clock wirelength. We propose a pointset decomposi-
tion heuristic that in conjunction with capacitated 𝑘-means [4]
enables a scalable, divide-and-conquer flow for multi-bit flip-flop
clustering. Our flow produces high-quality flip-flop clustering and
placement solutions with respect to total power consumption, area,
timing, and wirelength metrics evaluated after the post-routing
optimization (PRO) stage of P&R. We test our flow on five designs
of varying input size (0.5K to 64K clusterable single-bit flip-flops)
implemented using the ASAP7 7nm research enablement [3] [9].
Empirical results show that our new flow is competitive with cur-
rent state-of-the-art flows. Compared to MeanShift [2], we achieve
6.18% (resp. 1.90%) maximum (resp. average) reduction in total
power consumption, along with improved total negative slack and
wirelength. Compared to FlopTray [4], we achieve a 400× speedup
on larger designs such as VGA (17K single-bit flip-flops), but with
an average 1.12% degradation in total power consumption.
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1 INTRODUCTION
Multi-bit flip-flop (MBFF) clustering is a technique that reduces
power consumption in a clock distribution network. Each single-bit
flip-flop (FF) is mapped to a single slot in an MBFF, which results in
lower power consumption due to the reduced number of clock sink
pins and routed clock wirelength.1 For example, if every four single-
bit FFs are clustered into a single 4-bit MBFF, then the number of
clock pins in the network is reduced by 75%. Figure 1 illustrates the
clustering of two FFs into a 2-bit MBFF. Current state-of-the-art
works include FlopTray (FTray) [4] and MeanShift (MShift) [2].
FTray achieves high quality of results (QoR), but has long runtimes
1When a single-bit FF is mapped to a slot in an MBFF, the FF is removed from the
netlist and replaced with the MBFF slot.
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Figure 1: Two single-bit flip-flops are clustered into a 2 × 1
multi-bit flip-flop.

from solving large min-cost flow instances. MShift achieves cluster-
ing solutions very quickly but is oblivious to MBFF slot locations;
this potentially incurs power and timing overheads. Thus, in our
present work we seek a new method that can achieve high QoR
while also maintaining reasonable runtimes. Notably, we develop
a hierarchical pointset decomposition heuristic that creates much
smaller min-cost flow instances than in [4] without undue loss of
solution quality. Our contributions include the following.
• We propose a new pointset decomposition heuristic that enables
a scalable divide-and-conquer approach to MBFF clustering. In
particular, we enable very substantial speedups of min-cost flow
in the FTray method of [4].
• We recalibrate the 𝛼 and 𝛽 parameters of FTray’s integer linear
program (ILP) setup, to fit the ASAP7 7nm research enablement.
These parameters govern clustering and placement solutions, so
recalibration is needed to properly assess our methods.
• Extensive experimental evaluations using the ASAP7 enablement
show that our methods achieve high post-P&R quality of results,
as measured using Cadence Innovus v21.1.
• Our flow achieves up to 6.18%, and 1.90% on average, improve-
ment in total power consumption compared toMShift when using
up to 16-bit MBFFs. Timing (total negative slack) also improves
on average compared to MShift.
• Compared to FTray, our flow achieves an average speedup of
100×, and on larger designs such as VGA, it is up to 400× faster.

In the following, Section 2 reviews recent state-of-the-art MBFF
clustering works. Section 3 formulates our problem, and Section
4 describes our proposed method. Sections 5 and 6 respectively
present our experimental design and experimental results. We con-
clude in Section 7.

2 RELATEDWORK
Several works have addressed the problem of effective MBFF clus-
tering at the post-placement stage.
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[4] proposes a capacitated 𝑘-means flow (FTray) which starts by
finding a starting set of MBFF locations, based on multiple runs
of a single iteration of 𝑘-means++ [1]. The 𝑘-means++ run with
the highest Silhouette score [6] is chosen, and the selected loca-
tions are inputs for multiple iterations between minimum-cost flow
(MCF, whereby each FF is assigned to an MBFF slot), and linear
programming (LP, whereby each MBFF’s center location is adjusted
to minimize the total displacement of FFs to their assigned MBFF
slots). The flow terminates by solving an integer linear program
(ILP) that places MBFFs so as to minimize a weighted sum of total
power usage, total displacement of FFs to their assigned MBFF slot,
and total sum of relative displacements of launch-capture FFs in
timing-critical paths. This work yields high QoR, but is susceptible
to very long runtimes due to the massive search space from which
the MCF is induced.

[2] proposes a flow (MShift) which combines mean shift and sta-
ble matching. The flow starts with the execution of effective mean
shift, which determines fixed 𝑘-nearest neighbors (KNN) and band-
width parameters. The stable matching component then assigns
FFs to MBFFs; in the open-source implementation of MShift [18], a
separate “capacity” variable governs the tradeoff between runtime
and QoR.

Although MShift is scalable, the algorithm is oblivious to timing-
critical path information and MBFF slot locations. On the other
hand, [4] demonstrates that such information can be exploited to
improve timing and total power consumption outcomes of MBFF
clustering. Furthermore, with MShift large clusters can be formed
when FF-to-MBFF center displacements are reasonably small, since
actual slot locations are not considered; this can further spoil timing.

Last, [8] proposes a pointset decomposition-like algorithm to
locate potential MBFFs using 𝑘-means. This flow also risks creat-
ing very large clusters that can potentially spoil timing [2]. And,
poor clustering solutions can form as a result of 𝑘 values that are
influenced by a user parameter (max-split) rather than the intrinsic
characteristics of the given pointset.

Table 1: Notations.
Notation Definition

𝐿 Number of clusterable FFs.
𝐹 Set of all 𝐿 clusterable FFs, 𝐹 = { 𝑓1, 𝑓2, ..., 𝑓𝐿 }.

𝑋 ′
𝑙
, 𝑌 ′

𝑙
X and Y coordinates of 𝑓𝑙 .

𝑁 Number of candidate flop trays (MBFFs).
𝐶𝑖 Total cost (total power consumption) of MBFF 𝑖 .
𝑆𝑖 Size, i.e., number of bits (slots), of MBFF 𝑖 .
𝐸𝑖 Boolean value indicating if MBFF 𝑖 is used.

𝑋𝑖,𝑗 , 𝑌𝑖,𝑗 X and Y coordinates of slot 𝑗 in MBFF 𝑖 .
𝐵𝑙,𝑖,𝑗 Boolean value indicating if 𝑓𝑙 is mapped to slot 𝑗 in MBFF 𝑖 .

𝑀𝐶𝐹 (𝑙, 𝑖, 𝑗 ) Flow on the edge from 𝑓𝑙 to slot 𝑗 in MBFF 𝑖
in the minimum-cost flow solution.

𝑀 Number of timing-critical paths (i.e., to clusterable FF endpoints).
𝑃𝑚 The starting (launch) FF of the𝑚𝑡ℎ timing-critical path.
𝑃 ′𝑚 The ending (capture) FF of the𝑚𝑡ℎ timing-critical path.

𝑑𝑥 (𝑙 ) , 𝑑𝑦 (𝑙 ) X and Y displacements between 𝑓𝑙 and its assigned MBFF slot.

𝐷
Sum of absolute displacements for all
𝐹 FFs to their assigned MBFF slots.

𝑊 Total power consumption of all used MBFFs.
𝑅 Total relative displacements of all𝑀 timing-critical paths.

𝑈
Upper bound on pointset size (in the pointset
decomposition solution) in our proposed flow.

3 PROBLEM FORMULATION
We now define the flip-flop clustering problem and review the ILP
formulation of [4]. Notations are summarized in Table 1.

Problem: Given a set 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝐿} consisting of 𝐿 clusterable
FFs with placed locations and timing estimates, cluster every FF into
a placed MBFF of available size, e.g., from a set of sizes {1, 2, 4, 8, 16}.
Previous works focus on optimizing metrics such as area, power,
and timing [2][4][8].
Our objective function follows [4], i.e., we use an integer linear
program (ILP) to assign FFs to MBFF slots, so as to minimize a
weighted sum of (1) power usage, (2) total sum of displacements
of FFs to their assigned MBFF slots, and (3) total sum of relative
displacements of the launch-capture FF pairs of𝑀 timing-critical
paths. Total power usage is given by Equation (1):

𝑊 =

𝑁∑︁
𝑖=1

𝐸𝑖 ·𝐶𝑖 (1)

where 𝐸𝑖 is a binary value indicating if the candidate MBFF 𝑖 is
used. In [4], the number of candidate MBFFs (𝑁 ) is bounded by
𝐿. Specifically, 𝑁 = 𝐿 + ⌈𝐿2 ⌉ + ⌈

𝐿
4 ⌉ + ..., where each denominator

corresponds to an available MBFF size (e.g., 2, 4, 8, 16). The sum
of displacements that corresponds to a given assignment of FFs to
MBFF slots is given by Equation (2) below.

𝐷 =

𝐿∑︁
𝑙=1
|𝑑𝑥 (𝑙) | + |𝑑𝑦 (𝑙) | (2)

𝑑𝑥 (𝑙) =
𝑁∑︁
𝑖=1

𝑆𝑖∑︁
𝑗=1
(𝑋𝑖, 𝑗 − 𝑋 ′𝑙 ) · 𝐵𝑙,𝑖, 𝑗 ∀𝑙 (3)

𝑑𝑦 (𝑙) =
𝑁∑︁
𝑖=1

𝑆𝑖∑︁
𝑗=1
(𝑌𝑖, 𝑗 − 𝑌 ′𝑙 ) · 𝐵𝑙,𝑖, 𝑗 ∀𝑙 (4)

Equations (3) and (4) respectively give x- and y-displacements be-
tween an FF and its assigned MBFF slot. 𝐵𝑙,𝑖, 𝑗 is a binary value
indicating if 𝑓𝑙 is mapped to slot 𝑗 in MBFF 𝑖 . Finally, the sum to-
tal of relative displacements for launch-capture FF pairs in the𝑀
timing-critical paths is given by Equation (5):

𝑅 =

𝑀∑︁
𝑚=1

𝑟𝑥 (𝑚) + 𝑟𝑦 (𝑚) (5)

𝑟𝑥 (𝑚) = |𝑑𝑥 (𝑃𝑚) − 𝑑𝑥 (𝑃 ′𝑚) | ∀𝑚 (6)

𝑟𝑦 (𝑚) = |𝑑𝑦 (𝑃𝑚) − 𝑑𝑦 (𝑃 ′𝑚) | ∀𝑚 (7)
where 𝑃𝑚 and 𝑃 ′𝑚 respectively represent the start and end FFs on
the𝑚𝑡ℎ timing-critical path. Equations (6) and (7) respectively give
the relative x- and y-displacements between an FF and its assigned
MBFF slot, for each given timing-critical path. The optimization
objective (i.e., ILP objective function) is given by Equation (8).

𝛼 ∗𝑊 + 𝐷 + 𝛽 ∗ 𝑅 (8)

We note that [4] studied a commercial 28nm FDSOI technology,
and used parameters 𝛼 = {20, 40, 60, 80} and 𝛽 = 1. In Section 4.2,
we recalibrate 𝛼 and 𝛽 to match ASAP7 [3], which is a research
proxy for 7nm node enablement.

In the next section, we develop anMBFF clustering algorithm that
is fast, scalable, and capable of delivering strong timing and power
quality of results – on par with recent state-of-the-art methods
such as FTray [4] and MShift [2].
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4 PROPOSED METHOD
To achieve our objective of a high quality, scalable MBFF clustering
algorithm, we propose a pointset decomposition algorithm that
enables a divide and conquer approach for MBFF clustering via
capacitated 𝑘-means [4].

4.1 Our Flow
Pointset Decomposition.Our simple yet effective recursive point-
set decomposition heuristic splits all 𝐿 FFs into sub-problems con-
taining ≤ 𝑈 FFs. This heuristic is the main contribution of our work.
Our method first runs 𝑘-means++ with all values of 𝑘 ∈ [2, 8]. Fol-
lowing [7],we use the Silhouette metric to find a best value of
𝑘 ∈ [2, 8].2 We run a multi-start strategy using the 𝑘 with the high-
est Silhouette score. Then, we select the clustering solution that
yields the lowest average FF to cluster center displacement.3 Our al-
gorithm then iteratively merges the two closest clusters together, as
determined by Manhattan distance between the respective cluster
centers, as long as the cluster size ≤ 𝑈 (default: 𝑈 = 500) con-
straint is not violated. Based on our preliminary studies, during the
iterative merging of clusters we do not update the set of cluster
centers when a new merged cluster is formed.4 Pseudocode for our
approach is given in Algorithm 1.

Algorithm 1: Recursive Pointset Decomposition
Procedure: Decomp
Input: A set of single-bit FFs, 𝐹 ′
Output: A list of sets of single-bit FFs, 𝐹 ′′

1 if |𝐹 ′ | ≤ 𝑈 then
2 return {𝐹 ′ };
3 end
4 Choose 𝑘 from [2, 8] that maximizes the Silhouette score;
5 for cur← 1 to multistart do
6 𝑠𝑜𝑙cur ← KMeans(𝐹 ′, 𝑘, seed) ;

/* A better solution has lower FF-to-center distance */

7 if (𝑠𝑜𝑙cur is better than 𝑠𝑜𝑙best) || (𝑠𝑜𝑙best is empty) then
8 𝑠𝑜𝑙best ← 𝑠𝑜𝑙cur;
9 end

10 end
/* Iteratively merge the closest pair of clusters if the size of the

merged cluster does not exceed the cluster size upper bound 𝑈 */

11 𝑠𝑜𝑙 ′ ← MergeClusters(𝑠𝑜𝑙best,𝑈 ) ;
12 𝐹 ′′ ← {};
13 for 𝑖 ← 1 to |𝑠𝑜𝑙 ′ | do
14 𝐹 ′′ ← 𝐹 ′′∪ Decomp(𝑠𝑜𝑙 ′

𝑖
);

15 end
16 return 𝐹 ′′;

2We examine 𝑘 ∈ [2, 8] since this is a natural range to consider for dividing a planar
pointset, and since we will adopt a recursive decomposition approach. Our algorithm
can be viewed as being in the continuum between recursive splitting of a pointset into
two components (𝑘 = 2), and octant partitioning (𝑘 = 8). We also note that multiple
𝑘-means++ runs are executed in parallel without harming walltime.
3We find minimum average distance to be a valid evaluation criterion: we want FFs to
have low distance to their assigned cluster centers, as this is likely to yield placements
that result in low 𝐷 .
4Thus, the cluster merging resembles Kruskal’s minimum spanning tree algorithm, but
with the addition of an upper bound𝑈 that blocks certain merges. We speculate that
retaining all 𝑘 original cluster centers after merging clusters together gives a helpful
“single-linkage” flavor to the cluster merging even though 𝑘 is small.

The algorithmfirst checkswhether the current pointset is already
of size ≤ 𝑈 (Lines 1-3). We then choose the 𝑘 value in the range
[2,8] for 𝑘-means++ that yields the maximum Silhouette score (Line
4). Next, we run a total of multistart runs of 𝑘-means++ (default:
multistart = 20) using the selected 𝑘 value, with different seed
values,5 and then proceed with the clustering solution from these
multi-start runs which has minimum sum of FF to cluster center
distances (Lines 5-10). Next, the MergeClusters procedure builds a
set of edges between clusters, with edge cost given by the distance
between cluster centers; MergeClusters then performs Kruskal-like
merging as long as the size of the resulting merged cluster is ≤ 𝑈

(Line 11). Finally, we recurse on each resulting cluster, and return
the results of each call (Lines 12-16). The algorithm returns 𝐹 ′′,
which is a list of sets of single-bit FFs. Throughout the following
discussion, we refer to a single set of single-bit FFs as a sub-problem.

Each sub-problem resulting from the recursive decomposition
(i.e., each set of single-bit FFs in 𝐹 ′′) is processed using the method
of [4]. More specifically, on each sub-problem we run min-cost flow
(MCF) based capacitated 𝑘-means to assign FFs to MBFF slots; an
LP to improve MBFF locations; and an ILP to choose instantiated
MBFFs – all following [4].
Initial MBFF locations are generated with a single iteration of
𝑘-means++ on the set of FF locations in the sub-problem.
Minimum-Cost Flow. Following [4], for each distinct MBFF size
we construct an instance of MCF. The MCF flow network matches
each FF with a single MBFF slot, and the min-cost flow solution
minimizes 𝐷 in Equation (2). That is, 𝐷 is the sum of weights
(distances) over all edges to which the MCF solution assigns a flow
of one. EachMCF solution (for a given MBFF size) is the starting
point forMBFF location improvement, via the LP below. Because the
MBFF locations have been changed, a new MCF-LP iteration can be
performed. Our empirical studies show little or no benefit to using
more than five MCF-LP iterations. Thus, results that we report use a
default limit of five iterations. The union of MCF solutions obtained
for all distinct MBFF sizes is used in forming the ILP described
below.
Linear and Integer Linear Programs. As in [4], we use linear
programming (LP) to relocate each MBFF center so as to minimize
the sum of displacements of FFs to their assigned MBFF slots (Equa-
tion (2)). The LP is formed from the matching of FFs to assigned
MBFF slots, i.e., the nonzero 𝐵𝑙,𝑖, 𝑗 values in the MCF solution.

The ILP selects which MBFFs (of all sizes) are actually used, by
reassigning binary values to 𝐵𝑙,𝑖, 𝑗 in order to minimize Equation
(8). We slightly modify the ILP setup from [4] to include relative
startpoint/endpoint displacements for a critical path only when
both the startpoint and endpoint are in the sub-problem.6

For completeness, Equations (9) through (13) provide the details
of the ILP. All 𝐵𝑙,𝑖, 𝑗 values are set to zero prior to ILP calls. The ILP
assigns 0-1 values to 𝐵𝑙,𝑖, 𝑗 variables, which are induced from the

5𝑘-means++ relies on an initial seed, and generates seed-dependent solutions.
6The ILP in [4] minimizes Equation (5) using information from all𝑀 timing-critical
paths. By contrast, when we process a given sub-problem, we do not consider critical
paths whose endpoints belong to different sub-problems. Experimental results in
Section 6 below confirm that in practice, post-route timing results are not harmed by
this. We attribute this to (i) well-optimized MBFF placements, (ii) the minimization of
total displacement of FFs to assigned MBFF slots, (iii) consideration of all critical path
startpoint-endpoint pairs in the sub-problem, and (iv) use of𝑈 = 500.
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results of MCF as described above.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝛼 ·𝑊 + 𝐷 + 𝛽 · 𝑅) (9)

subject to the constraints (equivalent to those in [4])
𝐿∑︁
𝑙=1

𝐵𝑙,𝑖, 𝑗 ≤ 1 ∀𝑖, 𝑗 (10)

𝐸𝑖 ≤
𝐿∑︁
𝑙=1

𝑆𝑖∑︁
𝑗=1

𝐵𝑙,𝑖, 𝑗 ∀𝑖 (11)

𝑁∑︁
𝑖=1

𝑠𝑖∑︁
𝑗=1

𝐵𝑙,𝑖, 𝑗 = 1 ∀𝑙 (12)

𝐵𝑙,𝑖, 𝑗 ≤ 𝑀𝐶𝐹 (𝑙, 𝑖, 𝑗) ∀𝑙, 𝑖, 𝑗 (13)
Equation (10) ensures that each slot 𝑗 in MBFF 𝑖 replaces at most
one FF. Equation (11) ensures that MBFF 𝑖 must be placed if any
slot 𝑗 in that tray replaces FF 𝑙 . Equation (12) ensures that FF 𝑙 must
be mapped to one slot 𝑗 in one MBFF 𝑖 . Equation (13) ensures that
we only consider 0-1 𝐵𝑙,𝑖, 𝑗 variables corresponding to edges with
flow 1 in an MCF solution.

4.2 Key Implementation Details
This subsection describes several key details of our study: (i) recali-
bration of 𝛼 and 𝛽 parameters for the ASAP7 technology context;
(ii) exploration and default setting of the 𝑈 parameter; and (iii)
experimental range used for the 𝛼 parameter.
Recalibration of 𝛼 and 𝛽 for ASAP7. The authors of [4] de-
termine FTray parameter values 𝛼 = {20, 40, 60, 80} and 𝛽 = 1.0
empirically for a commercial 28nm FDSOI enablement. Since our
work uses the ASAP7 7nm research PDK and design enablement,
we must recalibrate 𝛼 and 𝛽 for FTray to match ASAP7.

Figure 2 shows the fraction of FFs that are clustered with a par-
ticular MBFF size (2, 4, 8, 16) for the AES and JPEG designs,7 when
𝛽 = 0. (Reasonable 𝛽 values are small and do not dominate the
objective in Equation (8); hence, reasonable 𝛽 values will lead to
similar MBFF usage [4].) The figure also shows the average displace-
ment per FF. We observe that values reported from FTray are not
necessarily monotonic with respect to increasing 𝛼 : (i) a relative
gap is set so that the ILP solver does not spend time for minimal
objective function gains; and (ii) if 𝐷 or 𝛼 ·𝑊 are not dominant ob-
jective function terms, then it is possible for high displacement with
high MBFF usage to yield similar objective function values as when
displacement and MBFF usage are both low. In our studies using
ASAP7 enablement, we empirically set 𝛼 = {4, 67, 130, 193, 256}.

To find an appropriate 𝛽 parameter value, we sweep 𝛽 = {0.0, 0.1,
0.2, . . . , 1.5} with fixed 𝛼 = 130. With this 𝛼 value, MBFF usage
does not dominate the objective function, and FF movement has
impact on the assessment. Figure 3 plots total power consumption
and total negative timing slack (TNS) vs. 𝛽 for the AES and JPEG
designs. For every 𝛽 value, we “denoise” results by running three
runs with target clock period (TCP) constraint, as well as TCP±1ps;
we report the median of total power and TNS values. We see that
compared to the baseline (i.e., 𝛽 = 0), 𝛽 = 0.1 generates better
results in terms of total power and TNS. In the FTray evaluation
reported below, we use a default value of 𝛽 = 0.1.
7This is calculated as (MBFF size) × (number of MBFF instances of that size) / 𝐿.
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Figure 2: FTray [4]: MBFFs instantiated (as a fraction of the
original number of FFs, i.e., 𝐿) and average displacement,
versus 𝛼 . Designs: (a) AES, (b) JPEG.
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Figure 3: FTray [4]: TNS and Total Power Consumption, ver-
sus 𝛽 . Designs: (a) AES, (b) JPEG.

Setting the𝑈 Parameter. In our approach, the𝑈 parameter trades
off size of the search space – hence solution quality – versus runtime.
We seek a default value for 𝑈 that yields good clustering solutions
in reasonable runtimes. Since our ILP uses Equation (8) to make FF
to MBFF slot assignments, we use the ILP objective function (i.e.,
Equation (8)) to judge the quality of our solution.

Figure 4 shows the impact of 𝑈 on QoR and runtime for the
JPEG and VGA designs. We normalize QoR to the lowest observed
objective function value for a given design and 𝛼 . A fixed 𝛽 = 0 is
used; as noted above, 𝛽 will not dominate the objective function,
and we expect to see similar results across reasonable 𝛽 values.
The figure shows very similar QoR across all 𝛼 values and designs,
i.e., y-axis values are within a range of ≤ 1%. We also observe that
runtimes are not necessarily monotonic in 𝑈 . For large inputs, the
pointset decomposition will have long runtime when𝑈 is small, due
to the recursive approach and the large number of sub-problems
created. Based on this and other background studies, we set a default
of𝑈 = 500 to obtain clustering solutions that result in good QoR,
with short runtimes.

Given a default setting of𝑈 = 500, we double-confirm the setting
of 𝛼 and 𝛽 parameters in our method. For 𝛼 , Figure 5 shows similar
trends as seen for FTray, with regard to increasing average displace-
ment and MBFF usage. However, a large 𝛼 value is required in order
to activate the dominance of 16-bit MBFF usage. We empirically
choose to use the arithmetic progression 𝛼 = {8, 262, 516, 770, 1024}
for our flow, with the main purpose being to span a wide range
of 𝛼 values. For 𝛽 , Figure 6 shows a similar effect of 𝛽 on total
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Figure 4: Impact of𝑈 on QoR and runtime. Designs: (a) JPEG,
(b) VGA.
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Figure 5: Our heuristic: MBFFs instantiated (as a fraction of
the original number of FFs, i.e., 𝐿) and average displacement,
versus 𝛼 . Designs: (a) AES, (b) JPEG.
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Figure 6: Our heuristic: TNS and Total Power Consumption,
versus 𝛽 . Designs: (a) AES, (b) JPEG.

power and TNS as seen for FTray. Thus, we also use 𝛽 = 0.1 in the
implementation of our method.
Experimental Range Used for the 𝛼 Parameter.We comment
briefly on the large range of 𝛼 values used in our study. Small values
of 𝛼 generally result in the use of small MBFF sizes (e.g., 2-, 4-bit).
Small 𝛼 values also tend to result in smaller total displacements,
since use of a small MBFF will result in lower displacement than
use of a large MBFF. In order to activate the usage of larger 8- and
16-bit MBFFs, we must increase 𝛼 . At the same time, usage of 8-
bit MBFFs will normally dominate that of 16-bit MBFFs, since in
our ASAP7 enablement 8-bit MBFFs result in very similar power
savings compared to 16-bit MBFFs (0.854 vs. 0.850). To avoid having
an “inevitable” dominance of 8-bit MBFFs, we include large 𝛼 values
in our study, such that the optimization can potentially leverage
the available 0.004 power-per-bit saving.

4.3 Complexity Analysis
We conclude this section with a brief analysis of runtime complex-
ity. (1) Pointset decomposition. Assume that each iteration of
𝑘-means++ takes 𝑇 iterations to terminate (convergence). Each call
to 𝑘-means++ has runtime bounded by 𝑂 (𝑇 ·𝐿·𝑘), where 𝑘 ∈ [2, 8].
The runtime of our algorithm is bounded by 𝑂 (𝐿2·𝑇𝑚𝑎𝑥 ·𝑘𝑚𝑎𝑥 ),
as the size of each sub-problem is variable, and in a pathologi-
cal scenario 𝐿′ FFs could be split into two pointsets of 𝐿′ − 1 FFs
and 1 FF. Such extreme runtimes are unlikely in real designs, as
FFs are usually placed in close proximity, and it is very unlikely
to have pathological behavior at all levels of the hierarchical de-
composition.8 (2) Size of LP and ILP instances. Our LP and ILP
instances have 𝑂 (𝑈 ) and 𝑂 (𝑈 ·𝑆) variables and constraints respec-
tively, where 𝑆 denotes the number of distinct MBFF sizes. (3) Size
of min-cost flow instances. Our flow achieves substantial run-
time reductions compared to FTray because min-cost flow instances
contain only 𝑂 (𝑈 ) vertices and 𝑂 (𝑈 2) edges (i.e., in the complete
bipartite graph formed over 𝑂 (𝑈 ) FFs and 𝑂 (𝑈 ) MBFFs). By con-
trast, FTray’s min-cost flow instances contain 𝑂 (𝐿) vertices and
𝑂 (𝐿2) edges.

5 EXPERIMENTAL SETUP
We now describe the main elements that underlie our experimental
validation: (i) codes and tool scripts; (ii) testcases; (iii) modifications
to FTray code; (iv) modifications to MShift code; (v) MBFF cell
generation; and (vi) evaluation and reporting flows.
Codes and Tool Scripts.Our MBFF clustering approach, including
𝑘-means++ based clustering, has been implemented using approx-
imately 3K lines of C++ code. The code invokes Lemon [12] and
CPLEX [11] solvers as linked libraries. Lemon [12] is used to solve
min-cost flow instances. All LP and ILP instances are solved using
CPLEX v12.10 [11].

Extraction of timing-critical paths after global placement is per-
formed using Cadence Innovus v21.1. We extract 20 · 𝐿 FF-to-FF
timing-critical paths, where the maximum number of paths per
endpoint is 20. We then filter these paths to only consider the top
at most 100,000 unique pairs of path start/endpoints, based on slack
value (a path that is less critical than another path having the same
start/endpoints is dropped from consideration). Values for𝑀 in Ta-
ble 2 give the number of critical paths that are considered in our ILP
formulation. Separately, our experiments use single servers with
20 threads; we use a multi-start value of 20 to reflect the number of
threads made available in experiments. To ensure reproducibility
of our results, all source codes and scripts used in this paper are
available in our GitHub repository [13].
Testcases. We test our proposed flow on five designs: AES, MPEG,
JPEG and VGA from OpenCores [15], and MemPool Group (Mem-
Pool) from ETH Zurich [14]. Table 2 shows for each design the total
number of flops (𝐿), total number of timing-critical paths contain-
ing clusterable FF endpoints (𝑀), total number of FFs compatible
with MBFF library cells, and target clock period (TCP). We use the
ASAP7 7nm node technology for our FFs and MBFFs. Specifications
per instance are shown in Table 3. As of this writing, the ASAP7
enablement [16] only has MBFFs that are inverting, synchronous,
8Recall, perhaps, the worst-case 𝑂 (𝑛2 ) vs. average-case 𝑂 (𝑛 log𝑛) analysis of
Quicksort.
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and non-scan. As a result, MemPool contains many FFs that are
ineligible for clustering; there are only 64K clusterable FFs out of
360K total FFs in this testcase.

Table 2: Design information. 𝐿 = number of clusterable FFs.
𝑀 = number of critical launch-capture paths.

Design AES MPEG JPEG VGA MemPool
L 530 3513 4420 17050 64640
M 2905 22824 21863 57257 100000

TCP (𝑛𝑠) 0.28 0.20 0.27 0.20 2.30

Modifications of FTray. We rewrite the original FTray imple-
mentation, which has been shared by its authors [10] [5], to avoid
unnecessary 𝑂 (𝐿2) computation and to maintain linear memory
usage during the ILP stage.9 FTray uses capacitated 𝑘-means at two
stages: once during multi-start and once after multi-start. We run
capacitated 𝑘-means until convergence or until a maximum of 3
iterations at the multi-start stage. We run capacitated 𝑘-means until
convergence or until a maximum of 7 iterations after the multi-start
stage. This 3-7 split mimics the 30%-70% split mentioned in [4]. We
set these maximum numbers of iterations based on a parameter
study: exceeding 10 iterations yields little or no change in cluster-
ing solution quality, while incurring costly runtime overhead.10
As noted earlier (Subsection 4.2), we run FTray with our ASAP7-
calibrated set of 𝛼 parameters ({4, 67, 130, 193, 264}). We report the
run yielding the lowest observed total power consumption.
Modifications of MShift.We use the open-source MShift imple-
mentation for our experiments [18]. We set the following (MShift-
specific) parameters for our runs: 𝛿 = 0.001 𝜇m, 𝜖 = 2.5 𝜇m,
𝑀 = {1, 5, 10, 15, 20}, capacity (stable matching) = 1000. Here, we
increase the default capacity value in stable matching because some
of our test runs failed to return a solution for the default value of
100.11 Our scripts for netlist modification include a modified TCL
script from the IEEE RDF-2020 CEDA repository [10], and a post-
processing Python script to ensure that cluster labels are distinct.
Because MShift provides no information regarding the assignment
of individual FFs to MBFF slots, we assign each FF to the first slot
available in its corresponding MBFF.
MBFF Cell Generation.We find that the available ASAP7 MBFF
cells in [16] lack power and area scaling compared to their corre-
sponding single-bit FFs. Therefore, we provide a Python script to
generate a power-scaled MBFF cell library based on a reference
single-bit FF. Additionally, we provide a Python script to generate
LEF files for respective MBFF cells. We do not scale the area of an
MBFF; we only stack single-bit FFs horizontally and vertically to
generate the target MBFFs. Table 3 details the scaling information,
including power-per-bit and aspect ratios for the generated MBFFs.

9In the implementation of [4],𝑂 (𝐿2 ) binary variables are created during the ILP stage
(that is, all possible 𝐵𝑙,𝑖,𝑗 are created). This is unnecessary as 𝐵𝑙,𝑖,𝑗 can only be turned
on if previously turned on (i.e., assigned flow = 1) in the minimum-cost flow solution,
which ensures that there are at most 𝐿 𝐵𝑙,𝑖,𝑗 values.
10We retain the FTray authors’ speedup by restricting the maximum edge length con-
sidered in the min-cost flow. However, we drop this restriction in the implementation
of our new heuristic: the restriction can cause some MBFFs to never be placed since
they may have unused slots, and this creates additional power overhead.
11Consider a run of stable matching on 𝐿 FFs. If there exists a subset 𝐹 ′ such that each
𝑓𝑙 ∈ 𝐹 ′ has the same potential MBFF assignments, MShift will not return a solution if
|𝐹 ′ | > 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ·𝑚𝑎𝑥 (𝑆𝑖 ) , where𝑚𝑎𝑥 (𝑆𝑖 ) is the maximum number of slots in an
MBFF.

Table 3: MBFF attributes.
MBFF Size 1 2 4 8 16

Normalized Power-Per-Bit 1.00 0.900 0.875 0.854 0.850
Normalized Area-Per-Bit 1 1 1 1 1

Height ×Width 1 × 1 2 × 1 4 × 1 4 × 2 8 × 2

Evaluation Flow.We first synthesize each design with the given
target clock period (TCP) in Table 2, using Cadence Genus v21.1.
For our place and route runs, we use Cadence Innovus v21.1. We
first run placement and use the placed design as input to our MBFF
clustering flows to generate an MBFF-clustered netlist and DEF
file. Using the updated netlist and DEF file, we run incremental
placement, clock tree synthesis, routing, and post-routing optimiza-
tion (PRO). At the beginning of the evaluation flow, we set the
𝑠𝑒𝑡_𝑑𝑜𝑛𝑡_𝑡𝑜𝑢𝑐ℎ attribute as 𝑠𝑖𝑧𝑒_𝑜𝑘 for all FFs. This ensures that
gate sizing and VT swapping can be performed for all FFs, while
preventingMBFFs from converting to single-bit FFs (and vice versa),
during optimization steps. We report the power, standard cell area,
routed wirelength, and the worst and total negative slack (WNS,
TNS) after Innovus finishes its PRO step. To generate the baseline
results, we skip the MBFF clustering step and capture the PRO met-
rics. We run all the MBFF clustering flows on a CentOS 8 machine
with 2.25 GHz AMD EPYC 7742 64-Core processor and 512GB of
memory. Each flow is allowed a maximum of 20 threads.

6 EXPERIMENTAL RESULTS
We now present and discuss our experimental results. We first show
comparisons with a baseline (no MBFF clustering) flow and with
current SOTA MBFF clustering flows (FTray and MShift). We then
examine scalability of our method in terms of multithreading.

6.1 Comparisons with Baseline and Other MBFF
Clustering Flows

Table 4 presents the PRO results (from Cadence Innovus v21.1) for
each method used in this study: Our (our proposed method),MShift,
and FTray, across all designs with the exception of MemPool.12
Each flow occupies 2 rows per design in the table, with subscripts
indicating the maximum MBFF size made available to the flow.
Specifically, the subscript 16 means that all MBFFs are available
to use (i.e., 2-, 4-, 8-, and 16-bit MBFFs). The subscript 4 means
that only 2- and 4-bit MBFFs are available to use, reflecting recent
methodology trends in industry.

For the experiments that are restricted to 2- and 4-bit MBFFs,
we use 𝛼 = {4, 18, 32, 56, 70} for both Alg1 and FTray, as neither
flow requires large 𝛼 values to place 2- and 4-bit MBFFs.13 For each
design, we highlight in bold colored font the best metric achieved
across all flows. Red highlights indicate best 4-bit results, and blue
highlights indicate best 16-bit results. Table 5 summarizes the re-
sults of Table 4. The table displays the number of designs in which
a given flow generates the best value for each specific metric.

12Due to high runtime and memory usage of Innovus detailed routing for MemPool,
we report PPA metrics after global routing for this testcase. Also, due to excessive
runtime and memory usage, we could not generate FTray clustering solutions for
MemPool.
13Recall from Section 4.2 that we use large values of 𝛼 to enable instantiation of 16-bit
MBFFs in the ASAP7 enablement. When 8- and 16-bit MBFFs are made unavailable for
use, we can relax our range of 𝛼 values.
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MShift Comparisons. We compare the results of our flow to the
results of MShift.
• Total Power.When using up to 4-bit MBFFs and when using up
to 16-bit MBFFs, our flow produces lower total power consump-
tion on 4 out of 5 designs. When using up to 4-bit MBFFs, our flow
achieves a maximum (resp. average) improvement in total power
consumption of 5.24% (1.69%). When using up to 16-bit MBFFs,
our flow achieves a maximum (resp. average) improvement in
total power consumption of 6.18% (1.90%).
• Timing. When using up to 16-bit MBFFs, our flow produces
improved TNS on 3 out of 5 designs. When using up to 4-bit
MBFF usage, our flow improves TNS for only one design.
• Area andWirelength.When using up to 16-bit MBFFs, our flow
produces lower area for 3 out of 5 designs and lower wirelength
for all 5 designs. On the other hand, when using up to 4-bit
MBFFs, our flow produces lower wirelength for only one design
and higher area on all designs with an average area increase of
0.45%.
• Overall, we see that our flow is generally superior to MShift in
terms of total power consumption both when using up to 4-bit
MBFFs and when using up to 16-bit MBFFs. Our flow also shows
superiority with regard to area, wirelength and timing but only
when using up to 16-bit MBFFs.

FTray Comparisons.We also compare the results of our flow to
the results of FTray.
• Our flow results higher total power consumption compared to
FTray. This is not surprising since our solution space for MBFF
clustering is limited compared to the search space utilized by
FTray. Overall, we observe an average degradation of 0.66% (resp.
1.12%) in total power consumption when using up to 4-bit (resp.
up to 16-bit) MBFFs.
• Our flow is notably runtime-and memory-friendly when com-
pared to FTray. Specifically, we observe approximately 400×
speedup in our flow as compared to FTray. Additionally, we note
that FTray uses approximately 435GB of memory to generate a
clustering solution for VGA; our flow uses only 2GB of memory
to generate a clustering solution for the same VGA testcase.
• When using up to 4-bit MBFFs, our flow achieves lower area and
lower wirelength for 2 out of 4 designs. When using up to 16-bit
MBFFs, our flow achieves lower area for 2 out of 4 designs, and
lower wirelength for 3 out of 4 designs.

Additional Observations.We make a few additional observations
regarding the results in Table 4.
• Clock power reduces significantly for all the testcases except for
MemPool. This is because in MemPool, the eligible number of
FFs for clustering represent only 18% of the total number of FFs,
as shown in Table 2. As a result, the reduction in the number of
clock pins is low relative to other testcases. Additionally, since
approximately 50% of the total power inMemPool is macro power,
the opportunity for total power reduction is low compared to
other designs.
• Combinational power increases in most cases as a result of the
MBFF clustering, since FFmovement (i.e.,𝐷) increases wirelength
and can cause congestion and detouring. As a result, the P&R
tool adds more buffers in datapaths, leading to increased com-
binational power. This can be design-specific, however: MBFF

clustering in AES for all flows, and in VGA for MShift, leads to
fewer buffers in datapaths and reduced combinational power.
• The total power improvement due to MBFF clustering for AES
and JPEG is limited compared to other designs because the sum
of sequential and clock power is much smaller than combina-
tional power. Even though the relative reductions of clock and
sequential power for these designs is similar to what is seen for
other designs, the overall power improvement is small.

6.2 Scalability in Terms of Multithreading
Last, we show the scaling behavior of our method in terms of mul-
tithreading. For this, we run our flow on VGA and MemPool using
{8, 16, 20 (𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡), 24, 32, 40} threads with a fixed 𝛼 = 770. We
note that 𝛼 does not impact our flow’s runtimes. Figure 7 shows the
reduction of runtime as thread count increases. This supports the
scalability of our recursive pointset decomposition-based approach
for efficient yet high-quality MBFF clustering.
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Figure 7: Our Flow: Runtime versus Threads. Designs: VGA,
MemPool.

7 CONCLUSION
We have proposed a simple pointset decomposition heuristic to
reduce the size of min-cost flow instances arising in the FTray [4]
approach to MBFF clustering. We test our proposed method for
up to 4-bit and up to 16-bit MBFF clustering on five designs and
evaluate the resulting solutions using a commercial P&R tool (Ca-
dence Innovus v21.1) flow. Our method achieves up to 400× speedup
compared to FTray, while producing slightly worse solution qual-
ity. Compared to MShift, our method achieves up to 6.18% re-
duction in total power, while also achieving improved total nega-
tive slack and wirelength for our testcases. Our method produces
high-quality results in reasonable runtime for large testcases, and
we also demonstrate scalability in terms of multi-threading. Our
codebase and scripts are permissively open-sourced in GitHub
[https://github.com/ABKGroup/MBFFClustering]. Additionally, our
flow has been integrated into OpenROAD [17].
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Table 4: P&R Results using up to 4-Bit MBFFs (∗4) and up to 16-Bit (∗16) MBFFs. 𝐹𝑇 = FlopTray;𝑀𝑆 = MeanShift.

Design Flow Area (Norm.) WL (Norm.) Timing (ps) Power (mW) Runtime
(𝜇m2) (𝜇m) WNS TNS Total (Norm.) Seq. Comb. Clk. (s)

AES

NC 1580.18 (1.000) 54330 (1.00) -33 -3560 10.55 (1.00) 3.453 6.348 0.7092 NA
𝐹𝑇16 1581.73 (1.001) 52701 (0.970) -24 -2582 9.71 (0.920) 3.4 6.309 0 2.207
𝐹𝑇4 1577.51 (0.998) 52467 (0.966) -30 -2691 9.75 (0.924) 3.253 6.281 0.2183 1.517
𝑀𝑆16 1578.82 (0.999) 53264 (0.980) -27 -2601 9.74 (0.923) 3.229 6.303 0.2071 0.050
𝑀𝑆4 1575.33 (0.997) 52949 (0.975) -31 -3068 9.92 (0.940) 3.276 6.291 0.3519 0.050
𝑂𝑢𝑟16 1589.42 (1.006) 53020 (0.978) -22 -2219 9.77 (0.926) 3.296 6.366 0.1088 4.536
𝑂𝑢𝑟4 1576.45 (0.998) 53579 (0.986) -31 -2778 9.73 (0.922) 3.23 6.279 0.2196 1.789

MPEG

NC 2045.11 (1.000) 51415 (1.00) -49 -6088 43.24 (1.00) 28.05 7.688 7.501 NA
𝐹𝑇16 2051.45 (1.003) 54461 (1.059) -47 -6459 35.48 (0.821) 26.26 7.951 1.275 101.268
𝐹𝑇4 2041.49 (0.998) 52524 (1.021) -49 -6243 35.56 (0.822) 25.42 7.717 2.43 63.671
𝑀𝑆16 2069.86 (1.012) 55750 (1.084) -49 -7248 37.64 (0.870) 26.94 8.6 2.102 0.230
𝑀𝑆4 2045.12 (1.000) 52729 (1.026) -47 -6462 38.16 (0.883) 26.27 7.788 4.1 0.160

𝑂𝑢𝑟𝑠16 2052.38 (1.003) 52594 (1.023) -46 -6696 37.61 (0.870) 26.42 7.97 3.219 4.652
𝑂𝑢𝑟𝑠4 2051.11 (1.003) 52299 (1.017) -48 -6877 36.16 (0.836) 25.86 8.031 2.276 1.929

JPEG

NC 5867.09 (1.00) 108797 (1.00) -13 -1045 85.04 (1.00) 28.47 48.56 8.011 NA
𝐹𝑇16 6315.31 (1.076) 121397 (1.116) -40 -10732 83.64 (0.984) 27.3 54.71 1.635 153.948
𝐹𝑇4 6261.67 (1.067) 121727 (1.119) -45 -7351 82.66 (0.972) 26.45 53.6 2.61 72.266
𝑀𝑆16 6237.35 (1.063) 121528 (1.117) -36 -8423 83.89 (0.986) 27.23 53.47 3.199 0.250
𝑀𝑆4 5953.83 (1.015) 113732 (1.045) -15 -995 81.44 (0.958) 26.75 50.06 4.631 0.190
𝑂𝑢𝑟16 5909.00 (1.007) 112089 (1.030) -12 -1061 80.93 (0.952) 27.11 49.19 4.628 4.563
𝑂𝑢𝑟4 6048.02 (1.031) 116735 (1.073) -21 -3436 82.89 (0.975) 26.57 52.53 3.782 2.206

VGA

NC 9683.99 (1.00) 273443 (1.00) -18 -29182 223.70 (1.00) 163.8 23.08 36.79 NA
𝐹𝑇16 9667.84 (0.998) 301184 (1.101) -48 -77661 172.84 (0.773) 146.4 23.51 4.617 1763.872
𝐹𝑇4 9603.25 (0.992) 287572 (1.052) -50 -119382 182.78 (0.817) 148.7 22.09 12.02 1309.888
𝑀𝑆16 9653.59 (0.997) 297154 (1.087) -47 -119145 186.22 (0.832) 151.8 23.38 11.03 1.110
𝑀𝑆4 9614.18 (0.993) 285999 (1.046) -37 -57320 193.71 (0.866) 151.7 21.63 20.37 0.850
𝑂𝑢𝑟16 9646.27 (0.996) 293481 (1.073) -68 -180833 174.71 (0.781) 144.7 22.77 7.268 6.044
𝑂𝑢𝑟4 9641.62 (0.996) 288782 (1.056) -80 -119808 187.84 (0.837) 152.2 22.9 12.74 3.215

MemPool12

NC 320348.09 (1.000) 28320704 (1.000) -2 -55 963.99 (1.000) 197.1 246.4 54.76 NA
𝑀𝑆16 319865.94 (0.998) 28415252 (1.003) -2 -44 956.15 (0.992) 195.7 246.9 47.85 4.080
𝑀𝑆4 319711.13 (0.998) 28320005 (1.000) -2 -28 958.00 (0.994) 195.6 246.0 50.61 3.550
𝑂𝑢𝑟16 320176.86 (0.999) 28388492 (1.002) -2 -52 955.76 (0.991) 196.2 247.0 46.84 18.597
𝑂𝑢𝑟4 320384.52 (1.000) 28369933 (1.002) -2 -124 956.09 (0.992) 195.1 247.4 47.92 13.645

Table 5: Number of designs in which a given flow yields the
best observed result for each specific metric.

Metric Max. Size Flow
FTray Ours MShift

Power 16-bit 3 2 0
4-bit 2 2 1

Area 16-bit 1 2 2
4-bit 2 0 3

Wirelength 16-bit 1 4 0
4-bit 1 1 3

TNS 16-bit 2 2 1
4-bit 2 0 3
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