
Improvement of Mixed Track-Height
Standard-Cell Placement

Andrew B. Kahng†, Seokhyeong Kang‡∗ and Minhyuk Kweon‡
†Department of Electrical and Computer Engineering, University of California San Diego
‡Department of Electrical Engineering, Pohang University of Science and Technology

∗shkang@postech.ac.kr

Abstract—In sub-5nm nodes, track-height of standard cells
must be aggressively scaled down while preserving design PPA.
This requirement brings the challenge of placing a set of cells
that have mixed track-heights, subject to the constraint that cells
with the same height must be placed together in an “island” of
cell rows. We apply integer linear programming (ILP) to solve the
row assignment problem and improve the runtime of ILP with
clustering, using a cost function that combines half-perimeter
wirelength and displacement from a starting unconstrained
placement. Considering the row assignment solution, we define
fence-regions, which enable an existing place-and-route (P&R)
tool to place the cells while considering the row-island constraints.
Experimental results show that our proposed method can on
average reduce final-routed wirelength by 8.5% and total power
by 3.3%, with worst negative slack and total negative slack
reductions of 24.0% and 13.0%, compared with the previous
state-of-the-art method [10].

I. INTRODUCTION

In sub-5nm nodes, it is necessary to scale down the height of
standard cells to enhance density, while preserving the power
and performance, along with area (i.e., PPA) benefits. Simply
reducing the contacted poly pitch and local metal pitch to
decrease standard-cell area has encountered limitations [1].
Reduced fin count and track-height in standard cells has been
the main path to improve layout density and energy efficiency
[1], [12].1 Recent works propose the use of diverse standard-
cell heights – that are not integer multiples of a single row
height – within a single P&R block [1], [11], [14].

Employing different track-heights of cells together has
emerged as a means to optimize the design [8], [9]. Specif-
ically, the integration of non-integer multiple track-heights
of standard cells has advantages of area, since this enables
reduced redundant cell area. Thus, mixed track-height design
leads to a more extensive design solution space, allowing for
further optimization of power and cell area [4].

Dobre et al. [4] introduced the first mixed track-height
strategy by partitioning the region into subregions in which
track-heights are specified (Fig. 1(a)). They employed dy-
namic programming to divide the design area and perform
timing-aware placement legalization, achieving reduced area
and power while maintaining performance. Chen et al. [2]

This work was partially supported by Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT). (No. RS-2023-00222085, Development of
memory module and memory compiler for non-volatile PIM). Partial support
from DARPA HR0011-18-2-0032 (OpenROAD) and Google is gratefully
acknowledged.

1Degrees of freedom include both the number of fins per device, and the
fin height and fin pitch, in the most advanced FinFET technologies [5].

Fig. 1. Mixed track-height strategies. Short and tall cell rows are colored in
blue and red, respectively. Hatched rectangles are the breaker cells.

performed region-based global placement by introducing non-
smooth density constraints and a pseudo-net which connects
same track-height cells to comprehend mixed track-height
cells, resulting in shorter wirelength.

There are two challenges in mixed track-height designs of
this style. First, the insertion of breaker cells [2], [4], [10], both
horizontally and vertically between cells of different track-
heights, leads to a considerable expansion of the design area.
Second, integrating different track-height cells within the same
row results in misaligned power rails, making the designs
more complex. To address these difficulties, a region-based
placement strategy (Fig. 1(a)) is therefore adopted [7].

Another mixed track-height strategy makes the islands into
wide and thin cell rows, and adheres to the row-constraint
by placing cells of the same track-height within the corre-
sponding row. For instance, the TSMC N3E node employs
pre-determined alternating rows of two different track-heights
(Fig. 1(b)); this FinFlexTM approach enables increase of design
flexibility within these pre-determined rows [15]. However, in
theory, customizing the track-height of each row during the
placement stage allows less space taken up by breaker cells and
flexible designs without the constraint of having predetermined
rows (Fig. 1(c)).

The work by Lin et al. [10] is the first attempt to place
mixed track-height cells with customized row-constraint. The
authors demonstrate that row-constraint placement reduces
wirelength and power compared to the region-based place-
ment. Starting with an unconstrained initial placement of cells,
they employ k-means clustering of cell y-coordinates to assign
a particular track-height to each given row, then move the cells
to fit into rows with corresponding track-heights. However,
this method is tested on a limited number of cases, and the
resulting displacement can notably increase final wirelength.

In this paper, we follow the motivation of [10], and study
the row-constraint placement problem (RCPP) using mixed
track-height cells. Solving the row assignment problem



(RAP) well is the key to achieving a high-quality row-
constraint placement, and can lead to significantly reduced
wirelength. We solve the RAP using an optimal integer linear
program (ILP) and expedite the runtime of ILP using 2-D k-
means clustering. Using the results of the RAP, we enable an
existing P&R tool to place the mixed track-height cells under
the row-constraint. Furthermore, we conduct a comprehensive
evaluation of our method to assess its effectiveness. The main
contributions of this paper are:
• We introduce a row-constraint placement method using

mixed track-height cells. The method employs ILP to solve
a RAP, optimizing the displacement and wirelength.

• We apply 2-D k-means clustering to group the cells before
solving the ILP, resulting in significant runtime reduction.

• We also demonstrate how to apply fence-regions in an
existing commercial P&R tool to achieve a final placement
consistent with the row assignment solution.

• For OpenCores testcases, we reduce routed wirelength by
8.5% and total power by 3.3% on average, with no loss of
timing, compared to [10].

II. PROBLEM STATEMENT

The row-constraint placement problem (RCPP) is to opti-
mize the unconstrained initial placement under row-constraint
and other layout constraints. In this paper, we use short 6-track
cells (6T) and tall 7.5-track cells (7.5T) of ASAP7 [3], and
set 7.5T cells as minority cells.2 A modified Library Exchange
Format (mLEF) technique [4], [10] is applied to mixed track-
height cells (6T and 7.5T cells) to produce the unconstrained
initial placement with same height of cells.
• Input: unconstrained initial placement design synthesized

with mixed track-height cells.
• Output: row-constraint placement solution with mixed track-

height rows.
• Objective: minimize the wirelength and power while pre-

serving timing metrics.
RCPP has several constraints. All cells must be placed

in the sites of the rows with no overlap (layout constraint).
The design has rows of mixed track-heights, and each cell
must be placed in a row that has the same track-height (row
constraint). Between rows that have differing track-heights,
vertical spacing is needed. All track-height rows are paired in
twos due to the N-well sharing rule, with each pair of rows

2Typically, no more than 30% of a well-optimized netlist will have high-
drive instances (larger row height), i.e., minority instances.

TABLE I
NOTATIONS USED IN OUR WORK

Notation Definition
NminC The number of minority cells
NminR The number of minority rows

C A set of clusters containing minority cells
R A set of rows in a design
NC The number of clusters in set C
NR The number of rows in set R
s Clustering resolution

xcr Boolean indicator variable of positioning cluster c into row r
fcr Cost function contribution of positioning cluster c into row r
y(·) y coordinate function
w(·) Width function
α The weight of the cost function

having the same track-height. Thus, the layout has an even
total number of cell rows.

To solve the RCPP, the positions of the majority and
minority rows must be determined. We introduce the row as-
signment problem (RAP), which decides the track-height of
each row in the design. Our proposed method solves the RAP
by determining the position of the minority rows, such that the
cell displacement and half-perimeter wirelength (HPWL) are
minimized. Here, the term “row” denotes a consecutive pair of
rows to satisfy the manufacturing (N-well sharing) constraint.
Notations used in our work are summarized in Table I.

III. PROPOSED METHOD

A. Overall method

Fig. 2. Overall flow of producing row-constraint placement. The proposed
method, row-constraint placement, is colored in blue. The netlist is synthesized
using mixed track-height cells. Modified LEF (mLEF) enables an existing
P&R tool to generate an initial placement with prescribed utilization (Util)
and aspect ratio (AR). Row-constraint placement is conducted by clustering
at the pre-processing stage, solving RAP, and placing the cells with row-
constraint legalization. Reverting back to the original LEF produces the final
row-constraint placement result.

Our proposed method proceeds in five main steps (Fig. 2).
(i) First, logic synthesis generates the gate-level netlist that
contains both 6T and 7.5T cells. (ii) Then, we create mLEF
[10] files for all standard cells by converting their geometries,
while preserving individual cell areas. The purpose of mLEF
is to transform different track-heights into the same cell height,
which enables the existing P&R tool to (iii) generate the
unconstrained initial placement. The cell height of mLEF is
determined by considering the ratio of different track-height
cells in the design [10] and manufacturing grid.

The generated unconstrained initial placement is used as the
input for (iv) our proposed row-constraint placement method
(Fig. 2, blue-colored box). Row-constraint placement first
solves the RAP, then conducts row-constraint legalization to
place the cells under the row-constraint. The RAP is solved
using ILP, which decides the position of both majority and
minority rows. Our approach to address the RAP is acceler-
ated by clustering minority cells to significantly reduce the
runtime of ILP. We then use the fence-region capability (e.g.,
createInstGroup -fence) of the existing P&R tool to obtain
the placement solution under the row-constraint. The existing
P&R tool conducts incremental placement from the initial
solution by considering the minority rows as ‘fence-regions’.
(v) Then, the final row-constraint placement result is produced
after reverting the mLEF cells into the original cells.



B. Clustering

To decrease the runtime of ILP in Section III-C, we conduct
clustering before solving the RAP. The runtime of ILP depends
on the number of xcr variables, which is (# of cells)×%min×
NR initially. When the design is large or %min is large, the
runtime of ILP can increase significantly due to the massive
number of xcr variables. Therefore, we seek to reduce the
number of variables by using a clustering technique.

We use a clustering resolution parameter, s, which deter-
mines NC by multiplying the number of minority cells and s.
A high s yields numerous small clusters and a fine-grained
clustering solution, whereas a low s yields a small number
of large clusters and a coarse-grained clustering solution. NC
cannot exceed the number of minority cells, so 0 < s < 1.

We use 2-D k-means clustering to cluster the minority
cells into NC clusters. The initial centroids of the clusters are
determined using p × p grid points, where p = ⌈

√
NC ⌉. We

then exclude (p2−NC) points from the outer region of the grid.
The clustering starts with the positions of the minority cells
in the initial placement.Clustering reduces the number of xcr

variables to NC ×NR, which can be determined by adjusting
s, and thereby significantly reduces runtime of solving ILP.

C. Row Assignment

We treat RAP as an optimization problem and employ
ILP to minimize displacement and HPWL. Following the
ILP solution, we determine the positions of minority rows,
and concurrently allocate clusters – each containing several
minority cells – into the specific minority rows.

The boolean variable (xcr) indicates whether the minority
cells within the cluster c are assigned to the row r. A given row
r is automatically set to be a minority row if maxc∈C xcr = 1;
in other words, if any cluster c is assigned to the row r, then r
becomes a minority row. All remaining rows become majority
rows. We design the fcr to consider both y-displacement and
the ∆HPWL.

We state the optimization problem using the boolean vari-
ables and cost function of our ILP formulation. For the clusters
C = {c1, c2, ..., cNC} and all rows R = {r1, r2, ..., rNR}:

min
∑

c∈C,r∈R
fcrxcr for xcr =

{
1 if c is assigned to r

0 otherwise
(1)

fcr = α · Disp(c, r) + (1− α)(∆HPWL(c, r)) (2)

In our cost function (Eq. (2)), the displacement Disp(c, r)
is calculated by summing up the y-displacements |y(r) −
y(cell)| of each minority cell within the cluster c, and the
∆HPWL(c, r) accumulates the HPWL difference when a
minority cell within the cluster c is moved vertically to the
minority row r, while keeping the same x-coordinate. The
parameter α weights y-displacement relative to ∆HPWL.∑

r∈R
xcr = 1 ∀c ∈ C (3)∑

c∈C
w(c)xcr ≤ w(r) ∀r ∈ R (4)

Fig. 3. (a) Initial unconstrained placement input. (b) Fence-regions (colored
in yellow) derived from the row assignment solution. (c) Final row-constraint
placement result. Testcase: aes cipher top, 360ps with 60% utilization. Blue
= majority cells (6T cells); Red = minority cells (7.5T cells).∑

r∈R
max
c∈C

xcr = NminR (5)

The unique assignment constraint (Eq. (3)) ensures that
every cluster must be assigned exactly once. The row capacity
constraint (Eq. (4)) specifies that the sum of cluster widths
assigned to a row should not exceed the row’s width. The
width of the cluster is calculated by summing the width
of minority cells within it. To help avoid undue wirelength
increase due to minority cell relocation, the width of a minority
cell is treated as the width of the original cell. Eq. (5) restricts
the number of minority rows (NminR).

The cost function of ILP includes both displacement and
HPWL to prevent relocating the minority cells in ways that
might increase wirelength. This approach helps ensure that
the ILP produces a high-quality row assignment, given the
capacity of each row, without an iterative process. Moreover,
minority cell clustering contributes to speeding up the ILP.

D. Row-Constraint Legalization

Row-constraint legalization can be treated as a fence-region
aware placement. By considering the minority rows as the
fence-region, we enable the existing P&R tool to place the
cells under the row-constraint while fully exploiting our row
assignment solution. Starting from the initial unconstrained
placement (Fig. 3(a)), we perform row-constraint legalization.
We create a union of fence-regions (Fig. 3(b)) based on the
positions of the minority rows in the row assignment solution.
All minority cells are placed by the P&R tool within the
fence-regions, while we prevent local resynthesis operations
or buffering that can conflict with the row-constraint. Then the
existing P&R tool can honor the row-constraint while placing
the cells (Fig. 3(c)). With this method, we can freely assign
all minority cells into the union of fence-regions.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we present our experimental setup of placing
the mixed track-height cells. To show the efficiency of our
method we run, and then compare the results of, five placement
flows. Our results include post-placement, post-route results
and runtime comparisons.

A. Experimental setup

We use ASAP7 [3] 7.5T (version 28) and 6T (version 26)
cells for the mixed track-height cells in our design. Both
RVT and LVT cells of each track-height are used together



TABLE II
SPECIFICATIONS OF 26 TESTCASES FROM NINE OPENCORES CIRCUITS

Bench name Clock (ps) # of cells 7.5T (%) # of nets

aes cipher top

300 14040 28.13 14302
320 13792 18.74 14054
340 13031 13.94 13293
360 12799 10.05 13061
400 12419 5.27 12681

ldpc decoder 802 3an
300 43299 23.79 45350
350 42584 8.61 42584
400 43706 3.62 45757

jpeg encoder
300 50136 15.46 50158
350 49449 10.70 49471
400 47329 4.31 48129

fpu 4000 37739 17.50 37809
4500 34945 10.36 35015

point scalar mult 200 55630 7.92 56172
250 51556 4.87 52098

des3

210 57532 24.44 57766
220 57851 21.27 58085
230 57613 15.44 57847
250 56653 10.17 56887
290 55390 4.95 55624

vga enh top 270 73790 8.27 73879
290 73516 3.80 73605

swerv 130 94333 9.07 95111
550 89682 4.67 90460

nova 300 174267 9.75 174418
500 155536 5.59 155687

TABLE III
COMPARISON OF FIVE PLACEMENT FLOWS

Flows (1) (2) (3) (4) (5)

Row Assignment None Previous [10] Previous [10] Ours Ours

Legalization None Previous [10] Ours Previous [10] Ours

and typical corner is used. For evaluation, 26 testcases from
nine OpenCores circuits [16] are used (Table II). During the
synthesis stage, we change the clock period for each circuit to
make various testcases with different percentages of minority
cells. We synthesize all designs by using Synopsys Design
Compiler O-2018.06 [17].

We generate and apply mLEF [10] files to ensure that dif-
ferent track-height cells have the same height. In this way, the
mLEF enables the commercial tool (Cadence Innovus v21.16-
s078 1 [18]) to produce an unconstrained initial placement.
For all testcases, utilization is set to 60% and aspect ratio
of the initial placement is 1.0. Our proposed method and
methods related to mLEF are implemented with C++ and
CPLEX 22.1.1 [19]. Cadence Innovus v21.16-s078 1 [18]
is used to conduct row-constraint legalization and to finish
routing after placement. In our row-constraint legalization, we
set dont touch to all instances to prevent buffering or local
resynthesis operations that can conflict with the row-constraint.
Our benchmarks and scripts will be open-sourced [6]; all data
is available at [20].

We compare our five placement flows in Table III. The ini-
tial unconstrained placement, Flow (1), does not consider row-
constraint. The unconstrained placement is invalid, because it
uses mLEF cells, but is included as a standard baseline. In
general, row-constraint placement imposes a harsh constraint
compared to unconstrained placement, resulting in PPA over-
head. Flows (2) and (3) use the reimplemented state-of-the-art
row-constraint approach [10]3 to compare with Flows (4) and

3No code or executable was available from authors of [10].

Fig. 4. (a) Normalized displacement, HPWL and ILP runtime of sweeping
s. (b) Normalized displacement and HPWL of sweeping α.

(5) which use our proposed row assignment method. Flows (2)
and (4) use the same legalization, which modifies the Abacus
method [13] under row-constraint [10], whereas Flows (3) and
(5) use the proposed row-constraint legalization. For fairness,
we set NminR to match the result from the Flow (2). All flows
start from the same initial unconstrained placement that uses
mLEF cells, but the final placement results, except for Flow
(1), have mixed track-height cells.

B. Experimental results

1) Parameter determination. By sweeping the parameters
and observing the quality of results (QoR) in the post-
placement stage, we determine the parameters α and s based
on the minimal displacement, HPWL and runtime of solving
ILP as shown by the red arrows in Fig. 4. We use 14 testcases
among Table II covering all circuits and various 7.5T% values.
The QoR and runtime are 0-1 normalized for each testcase
(i.e., scaled within the range of 0 to 1), then we average them
over all testcases.

We observe that s affects the QoR more than α does. There-
fore, we first tune s which determines the number of clusters,
then tune α which weights the displacement relative to HPWL
in ILP. We choose s = 0.2, which makes displacement and
HPWL drop with the least runtime. We select α = 0.75, which
reduces both displacement and HPWL.

2) Post-placement results. We compare the five placement
flows according to total displacement and HPWL of the design
at the post-placement stage (Table IV). Total displacement
is the sum of each instance’s delta distance from the initial
unconstrained placement (i.e., Flow (1)). Smaller displacement
gives a similar result to initial placement, whereas smaller
HPWL tends to result in a shorter routed wirelength. There-
fore, small displacement and small HPWL4 are preferred at
the post-placement stage.

The proposed row-constraint legalization places all in-
stances while being aware of fence-regions, but does not
consider the initial placement. Thus, comparing displacement
between flows that use the proposed row-constraint legaliza-
tion is meaningless. However, we compared Flows (2) and (4),
which have the same legalization method, to test the effect of

4Due to the multiple pins in a single cell, the HPWL increment relative
to the unconstrained placement can be larger than the total displacement.
Moreover, there can be HPWL distortion between mLEF cells and mixed
track-height cells.



TABLE IV
POST-PLACEMENT RESULTS OF FIVE PLACEMENT FLOWS. BEST DISPLACEMENT AND HPWL AMONG FLOWS (2)[10], (3), (4) AND (5) ARE IN BOLD.

Testcase Displacement (105um) HPWL (105um) Total Runtime (min)

(2)[10] (3) (4)[Ours] (5)[Ours] (1) (2)[10] (3) (4)[Ours] (5)[Ours] (2)[10] (3) (4)[Ours] (5)[Ours]

aes 300 0.63 2.81 0.36 0.92 1.60 2.29 2.11 1.83 1.83 0.2 3.2 1.4 4.8
aes 320 0.25 0.90 0.24 0.87 1.55 1.81 1.86 1.79 1.82 0.2 2.7 0.5 2.1
aes 340 0.20 0.81 0.21 0.83 1.49 1.69 1.73 1.69 1.73 0.2 2.7 0.3 2.0
aes 360 0.22 0.72 0.16 0.66 1.44 1.64 1.60 1.60 1.58 0.2 2.6 0.3 1.7
aes 400 0.11 0.63 0.12 0.61 1.38 1.54 1.51 1.57 1.51 0.2 2.4 0.2 1.7

ldpc 300 7.01 17.22 2.55 6.88 18.97 24.06 19.74 20.18 20.08 1.6 9.1 41.8 45.9
ldpc 350 0.84 5.70 0.81 5.60 17.33 18.14 18.16 18.07 18.11 2.1 6.6 5.8 9.7
ldpc 400 0.55 5.30 0.55 5.47 16.48 17.06 17.63 17.09 17.67 2.2 6.3 2.4 5.7

jpeg 300 4.21 24.95 2.31 4.37 6.40 11.41 10.36 7.46 7.37 2.9 7.5 14.8 16.0
jpeg 350 1.02 4.78 0.96 4.56 5.30 6.35 6.15 6.09 5.95 3.1 5.5 12.3 13.2
jpeg 400 0.53 4.24 0.54 4.22 4.72 5.51 4.87 5.46 4.82 2.9 5.5 4.2 4.8

fpu 4000 2.00 12.14 0.94 3.71 3.33 5.94 8.18 4.07 3.91 1.4 10.9 11.1 14.0
fpu 4500 0.55 2.95 0.51 2.85 2.78 3.50 3.48 3.48 3.34 1.5 5.5 3.8 6.1

point 200 1.44 6.37 1.09 5.99 7.14 8.95 8.99 8.78 8.99 3.4 6.0 10.5 13.6
point 250 0.96 5.49 0.82 5.21 6.44 7.86 7.63 7.72 7.56 3.2 7.3 4.0 6.3

des3 210 2.39 11.23 1.58 4.37 5.16 7.11 6.76 6.14 6.21 2.6 7.0 44.5 47.0
des3 220 2.17 4.95 1.84 4.53 5.47 6.77 6.63 6.48 6.44 2.8 6.4 42.0 43.7
des3 230 1.86 4.81 1.12 4.42 5.34 6.66 7.15 6.14 6.27 3.0 6.4 30.7 32.4
des3 250 0.99 4.70 0.77 4.09 4.88 6.16 6.48 5.91 5.84 3.2 5.8 15.7 17.0
des3 290 0.72 5.53 0.73 5.55 5.06 5.89 5.80 5.86 5.78 3.5 6.2 7.0 8.6

vga 270 1.74 9.49 1.55 9.44 8.06 10.15 11.63 10.01 11.54 6.2 11.7 21.9 25.7
vga 290 1.54 1.74 1.32 10.22 8.64 10.04 10.15 9.98 8.72 6.9 11.2 7.1 8.9

swerv 130 6.25 37.51 2.76 9.44 17.01 23.45 24.53 19.40 20.16 9.5 15.2 32.8 34.5
swerv 550 1.60 8.88 1.60 8.76 16.63 19.10 20.19 19.42 20.09 9.0 12.6 15.6 17.4

nova 300 6.22 74.74 5.36 84.01 18.89 27.72 31.82 27.44 29.31 36.9 28.0 98.0 82.3
nova 500 5.10 26.82 5.48 36.45 20.12 24.27 24.86 24.77 24.96 36.4 25.8 61.7 50.6

Normalized 1.000 5.285 0.818 4.731 0.804 1.000 1.014 0.938 0.937 1.000 4.638 5.109 7.612

Fig. 5. ILP runtime of Flow (5), plotted against # of minority instances.

our row determination. Our proposed method to solve RAP
reduces the displacement by 18.2% on average.

Compared to the previous state-of-the-art row-constraint
placement (Flow (2)), our final proposed Flow (5) reduces
HPWL by 6.3% on average. To assess the impact of our
ILP row assignment solver, we compare the methods under
the same legalization: the previous work’s legalization, and
our proposed row-constraint legalization. The comparison in-
dicates that, on average, our row assignment reduces HPWL
by 6.2% from Flow (2) to Flow (4) and 7.0% from Flow (3)
to Flow (5).

3) Runtime comparison. We compare the total placement
runtimes in Table IV. Due to the nature of ILP, the runtime
of Flows (4) and (5) increase ×5.109 and ×7.612 on average
compared to Flow (2), respectively.

We profile the runtime of each stage in Flow (5). We cate-
gorize the 26 testcases into three sets considering the number
of minority instances: small (<3,000 minority instances; seven
testcases), medium (3,000 to 5,000 minority instances; seven

testcases), and large (>5,000 minority instances; 12 testcases).
On average, the time for solving RAP is 4.95%, 30.57% and
72.60% for the small, medium and large sets, respectively,
whereas the time for legalization is 95.04%, 69.41% and
27.37% for the same sets. The small set used a significant
portion of time for legalization, whereas the large set mainly
consumed time for solving RAP with ILP.

We plot the ILP runtime against the number of minority
instances to show the scalability of our method to solve
RAP (Fig. 5). The line of best fit shows a strong linear
correlation with runtime. The proportion of time for solving
RAP increases as the number of minority instances increases.

4) Clustering impact on ILP performance. We analyze how
clustering decreases the ILP runtime at the post-placement
stage. We compare the ILP-solving flow without clustering
versus Flow (4) under the same legalization; the latter achieves
91.0% ILP runtime reduction with 5.2% and 1.0% displace-
ment and HPWL overheads, respectively. Similar impact is
seen from binding two adjacent cells together (s = 0.5),
which yields 69.5% ILP runtime reduction with 0.4% and
0.2% displacement and HPWL overheads, respectively. Thus,
clustering improves the runtime of ILP with minimal perfor-
mance degradation.

5) Post-route results. We compare the post-route results for
four flows: Flows (1), (2), (4) and (5) (Table V). We compare
the post-route metrics of total routed wirelength5, total power,
worst negative slack (WNS), and total negative slack (TNS).

Flow (4) reduces routed wirelength by 7.6%, total power
by 2.5%, WNS by 12.4% and TNS by 4.3% on average. This
shows that our proposed row assignment using ILP is effective

5For the rank correlation of Flow (1), (2), (4) and (5) between Table IV
(HPWL) and Table V (WL), 147 comparisons match among 156 comparisons.



TABLE V
POST-ROUTE RESULTS OF FOUR PLACEMENT FLOWS. BEST RESULTS AMONG FLOWS (2) [10], (4) AND (5) ARE IN BOLD.

Testcase Wirelength (105um) Total Power (mW) WNS (ns) TNS (ns)

(1) (2)[10] (4)[Ours] (5)[Ours] (1) (2)[10] (4)[Ours] (5)[Ours] (1) (2)[10] (4)[Ours] (5)[Ours] (1) (2)[10] (4)[Ours] (5)[Ours]

aes 300 1.8 3.0 2.2 2.2 20.3 22.3 21.1 21.1 -0.163 -0.637 -0.169 -0.228 -34.7 -66.4 -30.4 -46.9
aes 320 1.8 2.2 2.1 2.2 19.2 20.1 20.0 20.0 -0.265 -0.288 -0.515 -0.273 -45.2 -56.0 -108.8 -49.4
aes 340 1.7 2.0 2.0 2.1 15.6 16.2 16.2 16.3 -0.480 -0.439 -0.481 -0.536 -98.3 -108.0 -108.1 -116.9
aes 360 1.7 2.0 1.9 1.9 13.7 14.2 14.1 14.1 -0.566 -0.475 -0.526 -0.422 -137.5 -122.2 -125.4 -102.8
aes 400 1.6 1.9 1.9 1.8 11.0 11.4 11.4 11.4 -0.403 -0.477 -0.599 -0.483 -104.0 -106.0 -141.2 -100.5

ldpc 300 26.1 32.5 27.8 27.6 309.9 367.3 322.3 320.4 -0.844 -1.785 -0.929 -0.802 -1235.4 -1590.2 -1327.3 -1250.8
ldpc 350 24.6 25.7 25.6 25.6 246.2 254.3 253.9 253.0 -0.846 -1.085 -1.021 -0.817 -1235.5 -1323.2 -1295.9 -1226.9
ldpc 400 23.7 24.6 24.6 25.3 197.5 202.5 202.5 205.6 -0.920 -0.926 -0.902 -0.898 -1279.5 -1334.7 -1342.7 -1308.8

jpeg 300 8.2 18.7 9.6 9.6 103.5 145.5 107.8 108.0 -1.384 -4.628 -0.930 -0.897 -1198.9 -2156.9 -1212.2 -1197.3
jpeg 350 6.6 7.9 7.6 7.6 82.7 86.3 85.4 85.3 -0.507 -0.587 -0.603 -0.644 -623.3 -719.9 -752.2 -777.8
jpeg 400 6.2 7.2 7.2 6.7 67.3 69.5 69.4 68.3 -0.601 -0.611 -0.483 -0.706 -1067.5 -1152.7 -1034.5 -1293.5

fpu 4000 4.2 8.8 5.2 4.9 5.0 5.8 5.2 5.1 -1.130 -6.572 -1.402 -1.435 -33.9 -304.8 -43.2 -44.9
fpu 4500 3.5 4.5 4.5 4.3 3.6 3.8 3.8 3.8 -1.186 -1.825 -1.752 -1.795 -35.6 -57.4 -56.0 -56.9

point 200 9.4 11.9 11.5 11.7 110.4 118.9 117.4 118.4 -0.527 -0.670 -0.643 -0.603 -2155.6 -2627.2 -2577.0 -2658.5
point 250 8.4 10.2 10.0 9.9 85.3 89.5 89.2 88.8 -0.721 -0.735 -0.704 -0.641 -2004.9 -2259.6 -2380.0 -2279.1

des3 210 6.3 8.9 7.5 7.5 199.4 211.9 204.5 204.4 -0.464 -0.954 -0.370 -0.325 -245.6 -298.0 -259.4 -237.7
des3 220 6.6 8.1 7.8 7.7 187.7 194.2 192.7 192.2 -0.248 -0.344 -0.379 -0.248 -197.0 -244.6 -257.8 -213.3
des3 230 6.4 7.9 7.4 7.5 171.8 178.3 175.8 176.0 -0.249 -0.291 -0.268 -0.179 -141.6 -195.2 -171.3 -159.6
des3 250 5.9 7.4 7.1 7.0 150.5 155.8 154.9 154.2 -0.158 -0.189 -0.172 -0.152 -129.8 -182.5 -170.2 -152.4
des3 290 6.2 7.1 7.1 7.0 124.9 127.9 127.9 127.4 -0.195 -0.222 -0.219 -0.204 -157.0 -206.2 -201.4 -187.4

vga 270 11.8 14.6 14.5 16.0 81.1 82.0 82.0 82.4 -2.589 -2.507 -2.350 -2.452 -7233.3 -9392.8 -9532.2 -8826.0
vga 290 12.4 14.4 14.4 13.0 75.0 75.6 75.6 74.9 -2.229 -2.709 -2.721 -2.614 -11327.3 -14743.0 -13591.9 -11947.7

swerv 130 21.5 33.2 24.7 25.4 129.4 146.1 136.8 139.8 -1.071 -4.510 -1.108 -1.499 -5201.0 -7155.9 -5769.0 -5684.1
swerv 550 21.2 24.2 24.6 25.1 30.6 31.9 32.1 32.0 -0.942 -1.315 -1.045 -1.269 -2125.7 -2768.2 -2924.1 -3109.9

nova 300 27.2 42.3 42.6 38.9 113.9 135.8 138.4 122.2 -2.144 -5.431 -6.055 -2.278 -34862.9 -52663.8 -60730.0 -41825.1
nova 500 31.1 37.9 38.9 36.7 66.5 71.0 72.7 69.1 -1.642 -3.114 -4.070 -2.128 -29789.6 -38588.3 -38212.1 -33427.5

Normalized 0.785 1 0.924 0.915 0.934 1 0.975 0.967 0.723 1 0.876 0.760 0.773 1 0.957 0.870

compared to [10]. Our final proposed Flow (5) shows the
effective reduction of post-route metrics over Flow (2): i.e.,
reduction of routed wirelength by 8.5%, total power by 3.3%,
WNS by 24.0% and TNS by 13.0%, on average.

6) Comparison with unconstrained placement. Row con-
straint placement design naturally brings overhead by requiring
cells to be moved from an optimized initial solution. How-
ever, there are hidden additional area costs in unconstrained
placement due to using mLEF instead of mixed track-height
cells. As a result, directly comparing the row-constraint place-
ment to unconstrained mLEF placement may be misleading.
Nevertheless, it remains meaningful to reduce the overhead in
row-constraint design compared with previous work [10].

Row-constraint placement incurs an overhead compared
with Flow (1). At the post-placement stage, Flows (2) and (5)
have an HPWL overhead of 26.6% and 17.2% on average,
respectively. At the post-route stage, Flow (2) has 31.9%
increase in routed wirelength and 7.6% increase in total power,
while Flow (5) has 17.0% increase in routed wirelength and
3.6% increase in total power. Our final proposed Flow (5) has
less overhead compared with Flow (2).

V. CONCLUSIONS

We have studied the RCPP in the context of mixed track-
height design and proposed a novel flow to solve this problem.
The row assignment problem is solved by using ILP under
a row-constraint. A pre-processing stage that uses 2-D k-
means clustering improves the runtime of ILP. Row-constraint
legalization achieves a final row-constraint placement with
an existing P&R tool, by applying fence-region constraints
derived from the RAP solution. Our methods can significantly
reduce routed wirelength and total power without significant
timing degradation, compared to [10] (i.e., Flow (2)).

Additional practical ways to place the mixed track-height
cells are emerging (e.g., [15]), so a future research direction
might be to swap the track-heights of the cells and to place the
mixed track-height cells on pre-determined alternating rows or
other row patterns.

REFERENCES

[1] M. G. Bardon et al., “Extreme scaling enabled by 5 tracks cells: Holistic design-
device co-optimization for FinFETs and lateral nanowires,” IEEE IEDM, 2016.

[2] J. Chen et al., “An Efficient EPIST Algorithm for Global Placement with Non-
Integer Multiple-Height Cells,” Proc. DAC, 2020.

[3] L. T. Clark et al., “ASAP: A 7-nm finFET predictive process design kit,”
Microelectronics J. 53, 2016.

[4] S. A. Dobre et al., “Design Implementation With Noninteger Multiple-Height Cells
for Improved Design Quality in Advanced Nodes,” IEEE TCAD 37(4), 2018.

[5] M. Hatamian and P. Penzes, “Non-integer height standard cell library,” US Patent
8788998, 2014.

[6] D. Junkin, “Supporting the Scientific Method for the Next Generation of Inno-
vators”, July 2022. https://open-source-eda-birds-of-a-feather.github.io/doc/slides/
BOAF-Junkin-DAC-Presentation.pdf

[7] A. B. Kahng, “Advancing Placement,” Proc. ISPD, 2021.
[8] S.-Y. Lee et al., “RL-Legalizer: Reinforcement Learning-based Cell Priority

Optimization in Mixed-Height Standard Cell Legalization,” Proc. DATE, 2023.
[9] Y. Lin et al., “MrDP: Multiple-Row Detailed Placement of Heterogeneous-Sized

Cells for Advanced Nodes,” IEEE TCAD, 37(6), 2018.
[10] Z.-Y. Lin and Y.-W. Chang, “A Row-Based Algorithm for Non-Integer Multiple-

Cell-Height Placement,” Proc. ICCAD, 2021.
[11] S. Ma et al., “Low track height standard cell design in IN7 using scaling boosters,”

Proc. SPIE, vol. 10148, 2017.
[12] S. M. Y. Sherazi et al., “Track height reduction for standard-cell in below 5nm

node: How low can you go?,” Proc. SPIE Design Process Technol. Cooptim.
Manuf. XII, vol. 10588, 2018.

[13] P. Spindler et al., “Abacus: Fast Legalization of Standard Cell Circuits with
Minimal Movement,” Proc. ISPD, 2008.

[14] T.-H. Wang et al., “Six-track Standard Cell Libraries with Fin Depopulation,
Contact over Active Gate, and Narrower Diffusion Break in 7nm Technology,”
IEEE ISQED, 2021.

[15] S.-Y. Wu et al., “A 3nm CMOS FinFlex Platform Technology with Enhanced
Power Efficiency and Performance for Mobile SoC and High Performance Com-
puting Applications,” IEEE IEDM, 2022.

[16] OpenCores. https://opencores.org/
[17] Design Compiler User Guide vO-2018.06, Synopsys, 2018.
[18] Innovus User Guide v21.16, Cadence Design Syst., 2021.
[19] User’s Manual for CPLEX v22.1.1, IBM, 2022.
[20] https://github.com/minhyuk-kweon/DATE-2024.git


