
High-Performance Clock Routing
Based on Recursive Geometric Matching

Andrew Kahng, Jason Cong, and Gabriel Robins

UCLA Department of Computer Science
Los Angeles, California 90024

Abstract

Minimizing clock skew is a very important problem
in the design of high performance VLSI systems. We
present a general clock routing scheme that achieves ex-
tremely small clock skews, while still using a reasonable
amount of wire length. This routing solution is based
on the construction of a binary tree using recursive ge-
ometric matching. We show that in the average case
the total wire length of the perfect path-balanced tree
is within a constant factor of the wire length in an opti-
mal Steiner tree, and that in the worst case, is bounded
by O(f i when the n leaves are arbitrarily distributed
in the unit square. We tested our algorithm on numer-
ous random examples and also on industrial benchmark
circuits and obtained very promising results: our clock
routing yields near-zero average clock skew while using
similar or even shorter total wire length in comparison
with the methods of 171.

1 Introduction

Circuit speed is a major consideration in the design
of high-performance VLSI systems. In a synchronous
VLSI design, limitations on circuit speed are deter-
mined by two factors: the delay on the longest path
through combinational logic and the maximum clock
skew among the synchronizing components. With ad-
vances in VLSI fabrication technology, the switching
speed of combinational logic increases dramatically.
Thus, the clock skew induced by non-symmetric clock
distribution becomes a more significant limitation on
circuit performance.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Minimization of clock skew has been studied by a
number of researchers in recent years. H-tree construc-
tions have been used extensively for clock routing in reg-
ular systolic arrays [2] [5] [SI [22]. Although the H-tree
structure can significantly reduce clock skew [5] [22], it
is applicable only when the synchronizing components
are identical in size and are placed in a symmetric array.

Ramanathan and Shin [14] proposed a clock distribu-
tion scheme for building block design where all blocks
are organized in a hierarchical structure. They assume
that a clock entry point is given at each level of the
hierarchy and, moreover, that the number of blocks at
each level is small since an exhaustive search algorithm
is used to enumerate all possible routes.

Jackson, Srinivasan and Kuh [7] presented a clock
routing scheme for circuits with many small cells. Their
algorithm recursively partitions a circuit into two equal
parts, and then connects the center of mass of the whole
circuit t o the centers of mass of the t w o sub-circuits.
Although it was shown that the maximum difference
in path length from the root to different synchronizing
components is bounded by O(h) on average, one may
easily construct examples for which the wirelengths be-
tween clock source and clock pins in their solution may
vary by as much as the entire chip diameter [SI.

In this paper, we study the problem of high-
performance clock routing for the design of circuits
with many small cells, as in standard-cell or sea-of-
gates design styles. Here, the H-tree approach cannot
be used since synchronizing components may be of dif-
ferent sizes and may be in arbitrary locations in the
layout. The method of [14] cannot be applied either,
since there is no natural hierarchy in the design and
the number of components is usually too large to allow
exhaustive examination-of all possible routes.

This paper presents a basic algorithm and several
variants, which minimize skew by constructing a clock
tree that is balanced with respect to root-leaf path-
lengths in the tree. Our algorithm always yields per-
fect pathlength balanced trees for inputs of two, three
or four pins. Extensive experimental results indicate
that as the size of the clock signal net becomes large,
the maximum difference of pathlengths in the clock tree
constructed by our algorithm remains essentially zero.

Paper 21.2
322

28th ACM/IEEE Design Automation Conference@

1991 ACM 0-89791-395-7/91/0006/0322 $1.50

This performance is obtained without undue sacrifice
of wirelength: we prove that on average the total wire
length in our clock tree construction is within a con-
stant factor of the wire length in the optimal Steiner
tree. Furthermore, the worst-case heuristic clock tree
length is bounded by O(J.3 for n points in the unit
square, which is the same bound as for the worst-case
length of the minimal Steiner tree.

Since both our work and the work in [7] are intended
to solve the same problem (i.e. clock routing for circuits
with a large number of small cells), we implemented the
method of [7] and compared the results of the two algo-
rithms. For uniformly distributed sets of up to 1024 pins
in the unit square, our method produced clock routings
with near-zero clock skew both in the average case and
worst case, with total wirelength of the clock tree signif-
icantly lower than that produced by the method of [7].
In addition, routing results for layouts of the MCNC
Primary1 and Primary2 benchmarks are significantly
better than those reported in [7]; we obtain perfectly
balanced root-leaf pathlengths in the clock tree using
several percent less total wire length.

The remainder of this paper is organized as follows.
Section 2 defines a number of basic concepts and gives a
precise formulation of our skew minimization problem.
In Section 3, we present the clock routing algorithm
in detail. Experimental results of our algorithm and
comparisons with the method of [7] are presented in
Section 4, and Section 5 gives concluding remarks.

2 Preliminaries
A synchronous VLSI circuit consists of two types of ele-
ments, synchronizing elements and combinational logic
gates. The synchronizing elements are connected to one
or several system-wide clock signals. Every closed path
in a synchronous circuit contains at least one synchr-
nizing element. The speed of a synchronizing circuit
is mainly determined by the clock periods. It is well
known [3] [7] that the clock period Cp of each clock
signal net satisfies the inequality

where td is the delay on the longest path through com-
binational logic, t s k e w is the clock skew, t , , is the set
up time of the synchronizing elements (assuming that
the synchronizing elements are edge triggered), and tds
is the propagation delay within the synchronizing ele-
ments. As VLSI feature sizes become smaller, the terms
t d , t , , , and t d s all decrease significantly. Therefore clock
skew becomes a more dominant factor in determining
circuit performance.

Given a routing solution for a clock signal net, the
clock skew is defined to be the maximum difference
among the delays from the clock entry point (CEP) to
synchronizing elements in the net. The delay from the
CEP to any synchronizing element depends on the wire

length from the CEP to the synchronizing element, RC
constants of wire segments in the routing, and the topol-
ogy of the solution. Usually, the clock routing may be
described as a RC tree [15], and we commonly use the
first-order moment of the impulse response (also called
Elmore’s delay) to approximate delay in an RC tree.
The formulas derived in [15] give both upper and lower
bounds on delay in an RC tree, thus yielding a more
accurate approximation.

However, although both the formula for Elmore’s de-
lay and those in [15] are very useful for simulation
or timing verification, they involve sums of quadratic
terms and are difficult to compute and optimize during
the layout design process. Thus, a linear RC model and
the wire length between CEP and the synchronizing el-
ement are often used to derive a simpler approximation
for circuit delay (e.g., [14] [ll]). In this paper, we also
use wire length as a simple approximation of the delay
in a routing solution. The clock skew is hence defined
to be the maximum difference in wire length from the
CEP to synchronizing elements in the clock signal net.
We now give several important definitions, along with
a formal statement of the skew minimization problem.

Recall that a clock routing solution is represented by
a rooted (Steiner) tree in the layout whose root is the
CEP and whose leaves are synchronizing elements in the
clock signal net. A rooted tree is a binary tree if each
non-leaf node has exactly two children. The length,
or cost, of an edge in the tree is the Manhattan or L1
distance between the two endpoints of the edge, and the
tree cost is the sum of all edge costs in the tree.

Definition: The pathlength skew of a tree is defined
to be the maximum difference of the pathlengths in the
tree from the root to any two leaves.

A tree is called a perfect pathlength balanced tree if its
pathlength skew is zero. The objective of our algorithm
is to construct a binary tree whose pathlength skew is as
small as possible. In the VLSI regime, we may formulate
this as follows.

The Path Balanced Tree (PBT) Problem: Given
a set of points P in the L1 unit square and a real number
S, find a minimum-cost tree T connecting P such that
for some distinguished node r of T, the costs of paths
in T from r to any two leaf nodes differ by at most S.

It is not difficult to show that the PBT problem is
NP-hard [SI. The objective of this paper is to present
a heuristic algorithm for the PBT problem. In partic-
ular, we wish to construct a clock tree using O (q
wirelength with pathlength skew as small as possible.
Before developing the algorithm, we introduce the no-
tion of a geometric matching:

Note that a zero skew tree can be trivially achieved by routing
n = If‘] separate wires of constant length from the clock source to
all of the clock pins, but this will entail a total clock tree cost of
O(n) . We would like to obtain a solution whichuses O (\ n total
wirelength because the optimal Steiner tree will also use O(m
wirelength in the average caSe [18].

Paper 21.2
323

Definition: Given a point set S of 2n points on the
plane, a geometric matching on S is a set of n line
segments whose endpoints are in S, with no two line
segments sharing an endpoint.

Each line segment in the matching defines an edge.
The cost of a geometric matching is the sum of the
lengths of its edges. A geometric matching on S is opti-
mal if its cost is minimum among all possible geometric
matchings on S.

3 A Clock Routing Algorithm

To construct a tree by recursive matching, we begin
with a forest of n isolated nodes (for convenience, as-
sume n = 2 k) , each of which is a tree with clock entry
point being the node itself. The minimum-cost match-
ing on these n points yields ; segments, each of which
defines a subtree with two nodes. The optimal CEP
into each subtree of two nodes is the midpoint of the
corresponding segment, i.e., so that the clock signal will
have zero skew between the segment endpoints. In gen-
eral, the matching operation will pair up the clock entry
points (i.e., roots) of all trees in the current forest. At
each level, we choose the root of the new merged tree
to be the balance point which minimizes the pathlength
skew to the leaves of the two subtrees (Figure 1).

The balance point is computed by finding the point p
along the straight line connecting the roots of the two
subtrees, such that the difference in pathlengths from
p to any two leaves in the combined tree is minimum.
Computing the balance point requires constant time if
we know the minimum and maximum root-leaf path-
lengths in each of the two subtrees, and these values
can be maintained incrementally using constant time
per node added to the clock tree.

Notice that at each level of the recursion, we only
have to match half as many nodes as before. Thus,
in k = LlognJ matching iterations, we obtain the com-
plete clock tree topology. (In practice, we actually com-
pute a min-cost maximum cardinality matching, i.e., if
there are 2rn + 1 nodes, we find the optimal m segment
matching and match m + 1 points at the next level.)
Figure 2 gives a formal description of the algorithm.

The following two results show that our recursive
matching approach indeed uses a reasonable amount of
wirelengt h.

Theorem: For n points arbitrarily distributed in the
unit square, the total edge length of any clock tree de-
rived in this manner will be O(fi), which is of the
same order as the maximum possible edgelength for the

0 optimal Steiner tree on n points [18].

Theorem: For pointsets taken from a uniform distri-
bution in the unit square, the total edgelength of our
heuristic clock tree will be on average within a constant
factor of the total edgelength in the minimum Steiner

0 tree.

Figure 1: Example of the algorithm running on a random %point
set. Solid dots denote the original points, and hollow dots repre-
sent the balance points of edges. At each level a geometric match-
ing is performed on the balance points of the previous level.

while IPI > 1
M = optimal geometric matching over P
P' = 0
for (P l , P 2) E do

TI = subtree of T rooted at p1
T2 = subtree of T rooted at p2
p = point on segment between p1 and p2

such that p minimizes skew of tree
Tl U T2 U { (P , P l) , (P , P d) w/root P

P' = P' U { p }
T=TU{(P,Pl),(P,P2)1

P = P' plus an unmatched node if IPI odd
CEP = Root of T = sinele remaining voint in P

Figure 2: The recursive matching-based clock tree algorithm.

For proofs of these results the reader is referred to
[SI. The balancing operation to determine the CEP of
a merged tree is necessary because the root-leaf path-
length might vary between subtrees at a given stage of
the construction. In general, when we merge subtrees
Tl and T2 into a higher-level subtree T , the optimal en-
try point of T will not be equidistant from the entry
points of TI and Tz (this can be seen by examining the
solution of the example in Figure 1). Intuitively, bal-
ancing entails "sliding" the CEP along the "bar of the

Paper 21.2
324

4 Experimental Results

Figure 3: Example of iiipping an H as to minimize dock skew:
the clock tree on the left has n o ZercFskew balance point dong

the middle segment of the H, while the clock tree on the right
does.

H”. However, it might not always be possible to obtain
perfectly balanced pathlengths in this manner (see Fig-
ure 3). We therefore use a further optimization, which
we call H-flipping: for each edge e added to the lay-
out which matches CEP’s on edges e l and e2, replace
the “H” formed by the three edges e, e l , and e2 by
the “H” over the same four points which (i) minimizes
pathlength skew, and (ii) further minimizes tree cost
in the case of ties in pathlength skew. Two formal re-
sults are given in [8], proving that for four points it is
always possible find an “H” orientation which achieves
zero clock skew, and also limiting the increase in wire-
length caused by H-flipping for nets of size four. Ex-
tensive empirical tests confirm that even for very large
inputs, the H-flipping refinement almost always yields
perfectly path-balanced trees with essentially no added
wirelength expense.

We now briefly discuss complexity issues and the re-
quirement of an efficient implementation. Notice that
since our algorithm is based on geometric matching,
its time complexity depends on that of the matching
subroutine. The fastest known algorithms for general
matching are O(N3) [lo]. By taking advantage of pla-
nar geometry, the algorithmic complexity can be re-
duced to O(N2.5 log n) [21]. However, even this lower-
complexity method will require long runtimes for large
problem instances. To solve problems of practical in-
terest, we chose to speed up the implementation by
using efficient geometric matching heuristics [l] [19]
[20]. Although most of these methods were designed
for the Euclidean plane, they also perform well in the
Manhattan metric, especially if their output is further
improved by uncrossing pairs of intersecting edges in
the matching; to this end, note that k intersections
of n line segments may be found efficiently in time
O(k +N(logn)2/loglogn) [13].

In the following section, we discuss empirical re-
sults based on three matching methods which are O(ra),
O(n log n) and O(n3I2) respectively; all three yield very
good clock routing solutions. When performance is crit-
ical, an optimal geometric matching algorithm might
give an improvement over our current implementations,
but will also require greater computational resources.

Three main variants of the algorithm were implemented
in ANSI C for the Sun-4, Macintosh and IBM environ-
ments; code is available from the authors. These vari-
ants correspond to the different matching subroutines.

The first heuristic variant (Hl) uses the linear-time
space partitioning heuristic of [19] to compute an ap-
proximate matching; the second variant (H2) uses an
O(n3I2) greedy matching [l]; and the third variant (H3)
uses an O(n log n) spacefilling curve-based method [4].
We have further tested these three variants by running
each with and without two refinements: (1) removing
all edge crossings in the heuristic matching, and (2)
performing the “H-flipping” described above. Either of
these optimizations can be independently added to any
of the three variants, giving rise to a total of twelve dis-
tinct versions of the basic algorithm. The variants of
the algorithm are summarized as follows:

H1- Use the space-partitioning matching heuristic
of [19], which induces the matching by recursive
bisection of the region (not the pointset).

H2 - Use a greedy matching heuristic (i.e., match
closest pair of unmatched points) [l].

H3 - Use a space-filling curve to induce a Hamil-
tonian cycle through the points, and then choose
the better embedded matching (i.e., either all odd
edges or all even edges in the cycle) (41.

H4 through H6- Same as H1 through H3, respec-
tively, except the matching is improved by remov-
ing all edge crossings.

H7 through H12 - Same as H1 through H6, re-
spectively, except that pathlength skew (or tree
cost) is reduced by “H-flipping”.

For comparison, we also implemented

0 HO - The method of Jackson et al. [7].

The algorithms were tested on a large number of ran-
dom pointsets of up to 1024 points, generated from a
uniform distribution in the 1000 x 1000 grid. Results
for a sample run with 50 random pointsets at each car-
dinality are summarized in Tables 1 through 4. Table 1
compares the average tree costs and Table 2 compares
the average clock skews for all heuristics.

The computational results indicate that both opti-
mizations (edge-uncrossing and H-flipping) will signifi-
cantly improve both skew and total wirelength. When
the refinements are combined, average clock skew es-
sentially vanishes completely, and the wirelength of sev-
eral variants is noticeably superior to the output of HO
(the method of [7]). The best variant appears to be
H11, which is based on the greedy matching heuristic
together with edge-uncrossing and H-flipping. This is

Paper 21.2
325

noteworthy because the greedy method is asymptoti-
cally as good as the optimal matching [16].

Tables 3 and 4 highlight the contrast between H11
and the method of [7], showing minimum, maximum
and average values for both total wirelength and skew.

As noted in [9], any set of approximation heuristics
induces a meta-heuristic which returns the best solu-
tion found by any heuristic in the set; we also imple-
mented this as H13, which returns the minimum-skew
result from H1 through H12. Interestingly, in our expe-
rience H13 always returns a perfect pathlength balanced
tree, i.e., for each problem instance, at least one of the
heuristics H1 through H12 will yield a zero clock skew
solution (while HO never does). This is very useful, es-
pecially when the heuristics are of similar complexity.
For example, we can solve the Primaryl benchmark us-
ing all twelve methods in less than two minutes on a
Sun-4/60 workstation.

Finally, we tested our algorithm’s performance on the
Primaryl and Primary2 benchmarks, using the same
layouts as in [7]. Figures 4 and 5 illustrate the output of
variant H11. Table 5 compares the results of H11 and
the results of [7] which were provided by the authors
[17]. H11 completely eliminates clock skew while using
5% - 7% less wirelength.

5 Conclusion

We presented a heuristic method based on recursive
matching which constructs clock tree routings with ex-
tremely small skew. The method uses total wirelength
that is on average within a constant factor of the wire-
length in a minimum Steiner tree, and in the worst case
bounded by O(fl for n terminals in the unit square.
We verified our algorithm on numerous random exam-
ples as well as on industry benchmark circuits; results
show near-zero average clock skew while using total
wirelength that compares very favorably with previous
results.

HI
1199
-

1990
3343
5342
a100
11912
17573
15341
36444 -
H11
1115
1979
3322
5273
7982

11697
16955
24465
34965

HS
1119
1990
3326
5277
8031
l i r a 5
17024
24548
35086 -

Hl2
1125

19600

5304
8047

11914
17619
25483
36814

3339

-
H 6

1130

3343
5326
8068
11976
17768
25720
37056

-
1991

-
-

H13
1125
1960
3268
6151
7844
11566
16919
24480
34992

-

-
Table 1: Average tree costs for the various heuristics.

Pts I H 0 1 H1 I Ha I H 3 I H4 1 H5 I H6
4 111.31 3.98 15.52 0.00 0.00 0.00 0.00
P an6 I n 4s 70 76-71 4.26 0.66 0.66 0.66

512 153.90 321.23 399.29 85.46 14.79 15.26 15.73
1024 ias.34 339.34 4 o a . s ~ 89.76 17.14 16.71 1 5 . ~ 5

0.00 0.00
0.12 0.00 0.00 0.00 0.00 0.00

1.80 3.80 0.12 0.00 0.00 0.00 0.00

13.17 2’7.69 1.26 0.00 0.00 0.00 0.00
128 30.79 40.34 3.18 0.00 1.02 0.24 0.00

1024 n . 9 2 94.99 16.62 0.44 0.08 0.38 0.00

Table 2: Average skew values for the various heuristics.

3.63 8.64 0.00 0.00 0.00 0.00 0.00

268 41.79 51.87 7.49 0.00 0.92 0.00 0.00
512 76.35 90.66 13.51 0.39 0.62 0.39 0.00

1089
2841
4813
7624

HO
ave
1197
2136

, 3506
5598

12276
1 17874
25666

1 36765

1 8377

max
1823 1125
2943 1123 1979
4221 2793 3322
6216 4695 5273
9266 7372 7932
13136 11052 11697
18549 16379 16955
26291 23866 24465
37561 34231 34965

2810
3993

8556
12243
17543
25325
36179

Table 3: Minimum, average, and maximum total wirelength val-
ues for H11 and the method of [7].

References

[l] D. Avis, “Worst Case Bounds for the Euclidean
Matching Problem”, International J. Cornput.
Math. Appl. 7 (1981), pp. 251-257.

[2] H. Bakoglu, J . T. Walker and J . D. Meindl, “A
Symmetric Clock-Distribution Tree and Optimized
High- Speed Interconnections for Reduced Clock
Skew in ULSI. and WSI Circuits”, Proc. IEEE
ICCD, Port Chester, Oct. 1986, pp. 118-122.

[3] H. Bakoglu, Circuits, Interconnections and Pack-
aging for VLSI , Addison-Wesley, 1990.

[4] J . J . Bartholdi and L. K. Platzman, “A
Fast Heuristic Based on Spacefilling Curves for
Minimum-Weight Matching in the Plane”, Inf.
Proc. Letters 17 (1983), pp. 177-180.

[5] S. Dhar, M. A. F’ranklin and D. F. Wann, “Reduc-
tion of Clock Delays in VLSI Structures”, Proc.
IEEE ICCD, Port Chester, Oct. 1984, pp. 778-783.

[6] A. L. Fisher and H. T. Kung, “Synchronizing Large
Systolic Arrays’’, Proc. SPIE 341, May 1982, pp.

[7] M. A. B. Jackson, A. Srinivasan and E. S. Kuh,
“Clock Routing for High-Performance ICs”, Proc.
ACM/IEEE DAC, June 1990, pp. 573-579.

[8] A. Kahng, J . Cong and G. Robins, “High-
Performance Clock Routing Based on Recursive
Geometric Matching”, UCLA CSD TR-900045,
Nov. 1990.

44-52.

Paper 21.2
326

[91

Pta HO HO HO
min ave max

4 2 112.31 379
8 46 186.10 407
16 86 234.72 416
32 118 262.61 540
64 141 229.15 337
128 120 201.55 282
256 127 ia3.28 250
512 103 153.90 203
1024 94 125.34 167

A. Kahng and G. Robins, “A New Family of Steiner
Tree Heuristics With Good Performance: The It-
erated 1-Steiner Approach”, Pmc. IEEE ICCAD,

E. Lawler, Combinatorial Optimization: Networks
and Matroids, Holt Rinehart and Winston, New
York, 1976.
I. Lin and H. C. Du, “Performance-Driven Con-
structive Placement”, Pmc. D A C (1990), pp. 103-
105.
T. M. Lin and C. A. Mead, “Signal Delay in Gen-
eral RC Networks”, IEEE Tkans. on C A D CAD-

F. P. Preparata and M. 1. Shamos, Compulational
Geometry: A n Introduction, New York, Springer-
Verlag, 1985.
P. Ramanathan and K . G. Shin, “A Clock Distri-
bution Scheme for Non-Symmetric VLSI Circuits”,
Proc. IEEE ICCAD, November 1989, pp. 398-401.
J . Rubinstein, P. Penfield and M. A. Horowitz,
“Signal Delay in RC Tree Networks”, IEEE T h s .
on C A D CAD-2(3) (1983), pp. 202-211.
T. L. Snyder and J. M. Steele, “Worst-Case Greedy
Matchings in the Unit d-Cube”, Networks 20

A. Srinivaaan, private communication, Oct. 1990.
J . M. Steele, “Growth Rates of Euclidean Minimal
Spanning Trees With Power Weighted Edges”, The
Annals of Probability 16(4) (1988), pp. 1767-1787.
K. J. Supowit and E. M. Reingold, “Divide and
Conquer Heuristics for Minimum Weighted Eu-
clidean Matching”, SIAM J. Computing 12(1)

K. J. Supowit, E. M. Reingold, and D. A. Plaisted,
“The Travelling Salesman Problem and Minimum
Matching in the Unit Square”, SIAM J. Computing

P. Vaidya, “Geometry Helps in Matching”, A C M
Symposium on the Theory of Computing, pp. 422-
425.
D. F. Wann and M. A. Franklin, “Asynchronous
and Clocked Control Structure for VLSI Based In-
terconnection Networks”, IEEE 7l-ans. on Com-
puters 21(3) (1983), pp. 284-293.

NOV. 1990, pp. 428-431.

3(4) (1984), pp. 331-349.

(1990), pp. 779-800.

(1983), pp. 118-143.

12(1) (1983), pp. 144-156.

H l l H11
min ave

0 0.00
0 0.00
0 0.00
0 0.00
0 0.00
o 1.02
o 0.92
0 0.62
0 0.m

30
46
31 i: 4

Tabli
and

e 4: Minimum, average, and maximum skew values for H11
:he method of [7].

HO HO H11 H11 skew cost
skew cost skew cost impr % impr

Prim1 I1 0.29 I 161.7 II 0.00 I 153.9 I1 0.29 I 4.13 I Prim2 11 0.74 I 406.3 11 0.00 1 376.7 11 0.74 I 7.3 1

Table 5: Comparison of HI1 and the method of [7] on Primary1
and Primary2 benchmarks: “skew” denotes standard deviation of
path length; “COst” denotes total wirelength.

Figure 4: Output of variant H11 on Primary1 benchmark layout

Figure 5: Output of variant H11 on Primary2 benchmark layout.

Paper 21.2
327

