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Abstract 

Minimizing clock skew is a very important problem 
in the design of high performance VLSI systems. We 
present a general clock routing scheme that achieves ex- 
tremely small clock skews, while still using a reasonable 
amount of wire length. This routing solution is based 
on the construction of a binary tree using recursive ge- 
ometric matching. We show that in the average case 
the total wire length of the perfect path-balanced tree 
is within a constant factor of the wire length in an opti- 
mal Steiner tree, and that in the worst case, is bounded 
by O( f i  when the n leaves are arbitrarily distributed 
in the unit square. We tested our algorithm on numer- 
ous random examples and also on industrial benchmark 
circuits and obtained very promising results: our clock 
routing yields near-zero average clock skew while using 
similar or even shorter total wire length in comparison 
with the methods of 171. 

1 Introduction 

Circuit speed is a major consideration in the design 
of high-performance VLSI systems. In a synchronous 
VLSI design, limitations on circuit speed are deter- 
mined by two factors: the delay on the longest path 
through combinational logic and the maximum clock 
skew among the synchronizing components. With ad- 
vances in VLSI fabrication technology, the switching 
speed of combinational logic increases dramatically. 
Thus, the clock skew induced by non-symmetric clock 
distribution becomes a more significant limitation on 
circuit performance. 
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Minimization of clock skew has been studied by a 
number of researchers in recent years. H-tree construc- 
tions have been used extensively for clock routing in reg- 
ular systolic arrays [2] [5] [SI [22]. Although the H-tree 
structure can significantly reduce clock skew [5] [22], it 
is applicable only when the synchronizing components 
are identical in size and are placed in a symmetric array. 

Ramanathan and Shin [14] proposed a clock distribu- 
tion scheme for building block design where all blocks 
are organized in a hierarchical structure. They assume 
that a clock entry point is given at each level of the 
hierarchy and, moreover, that the number of blocks at 
each level is small since an exhaustive search algorithm 
is used to enumerate all possible routes. 

Jackson, Srinivasan and Kuh [7] presented a clock 
routing scheme for circuits with many small cells. Their 
algorithm recursively partitions a circuit into two equal 
parts, and then connects the center of mass of the whole 
circuit t o  the centers of mass of the t w o  sub-circuits. 
Although it was shown that the maximum difference 
in path length from the root to different synchronizing 
components is bounded by O( h) on average, one may 
easily construct examples for which the wirelengths be- 
tween clock source and clock pins in their solution may 
vary by as much as the entire chip diameter [SI. 

In this paper, we study the problem of high- 
performance clock routing for the design of circuits 
with many small cells, as in standard-cell or sea-of- 
gates design styles. Here, the H-tree approach cannot 
be used since synchronizing components may be of dif- 
ferent sizes and may be in arbitrary locations in the 
layout. The method of [14] cannot be applied either, 
since there is no natural hierarchy in the design and 
the number of components is usually too large to allow 
exhaustive examination-of all possible routes. 

This paper presents a basic algorithm and several 
variants, which minimize skew by constructing a clock 
tree that is balanced with respect to  root-leaf path- 
lengths in the tree. Our algorithm always yields per- 
fect pathlength balanced trees for inputs of two, three 
or four pins. Extensive experimental results indicate 
that as the size of the clock signal net becomes large, 
the maximum difference of pathlengths in the clock tree 
constructed by our algorithm remains essentially zero. 
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This performance is obtained without undue sacrifice 
of wirelength: we prove that on average the total wire 
length in our clock tree construction is within a con- 
stant factor of the wire length in the optimal Steiner 
tree. Furthermore, the worst-case heuristic clock tree 
length is bounded by O(J.3 for n points in the unit 
square, which is the same bound as for the worst-case 
length of the minimal Steiner tree. 

Since both our work and the work in [7] are intended 
to solve the same problem (i.e. clock routing for circuits 
with a large number of small cells), we implemented the 
method of [7] and compared the results of the two algo- 
rithms. For uniformly distributed sets of up to  1024 pins 
in the unit square, our method produced clock routings 
with near-zero clock skew both in the average case and 
worst case, with total wirelength of the clock tree signif- 
icantly lower than that produced by the method of [7]. 
In addition, routing results for layouts of the MCNC 
Primary1 and Primary2 benchmarks are significantly 
better than those reported in [7]; we obtain perfectly 
balanced root-leaf pathlengths in the clock tree using 
several percent less total wire length. 

The remainder of this paper is organized as follows. 
Section 2 defines a number of basic concepts and gives a 
precise formulation of our skew minimization problem. 
In Section 3, we present the clock routing algorithm 
in detail. Experimental results of our algorithm and 
comparisons with the method of [7] are presented in 
Section 4, and Section 5 gives concluding remarks. 

2 Preliminaries 
A synchronous VLSI circuit consists of two types of ele- 
ments, synchronizing elements and combinational logic 
gates. The synchronizing elements are connected to one 
or several system-wide clock signals. Every closed path 
in a synchronous circuit contains at least one synchr- 
nizing element. The speed of a synchronizing circuit 
is mainly determined by the clock periods. It is well 
known [3] [7] that the clock period Cp of each clock 
signal net satisfies the inequality 

where td is the delay on the longest path through com- 
binational logic, t s k e w  is the clock skew, t , ,  is the set 
up time of the synchronizing elements (assuming that 
the synchronizing elements are edge triggered), and tds 
is the propagation delay within the synchronizing ele- 
ments. As VLSI feature sizes become smaller, the terms 
t d ,  t , ,  , and t d s  all decrease significantly. Therefore clock 
skew becomes a more dominant factor in determining 
circuit performance. 

Given a routing solution for a clock signal net, the 
clock skew is defined to be the maximum difference 
among the delays from the clock entry point (CEP) to 
synchronizing elements in the net. The delay from the 
CEP to any synchronizing element depends on the wire 

length from the CEP to the synchronizing element, RC 
constants of wire segments in the routing, and the topol- 
ogy of the solution. Usually, the clock routing may be 
described as a RC tree [15], and we commonly use the 
first-order moment of the impulse response (also called 
Elmore’s delay) to approximate delay in an RC tree. 
The formulas derived in [15] give both upper and lower 
bounds on delay in an RC tree, thus yielding a more 
accurate approximation. 

However, although both the formula for Elmore’s de- 
lay and those in [15] are very useful for simulation 
or timing verification, they involve sums of quadratic 
terms and are difficult to  compute and optimize during 
the layout design process. Thus, a linear RC model and 
the wire length between CEP and the synchronizing el- 
ement are often used to derive a simpler approximation 
for circuit delay (e.g., [14] [ll]). In this paper, we also 
use wire length as a simple approximation of the delay 
in a routing solution. The clock skew is hence defined 
to be the maximum difference in wire length from the 
CEP to synchronizing elements in the clock signal net. 
We now give several important definitions, along with 
a formal statement of the skew minimization problem. 

Recall that a clock routing solution is represented by 
a rooted (Steiner) tree in the layout whose root is the 
CEP and whose leaves are synchronizing elements in the 
clock signal net. A rooted tree is a binary tree if each 
non-leaf node has exactly two children. The length, 
or cost, of an edge in the tree is the Manhattan or L1 
distance between the two endpoints of the edge, and the 
tree cost is the sum of all edge costs in the tree. 

Definition: The pathlength skew of a tree is defined 
to be the maximum difference of the pathlengths in the 
tree from the root to any two leaves. 

A tree is called a perfect pathlength balanced tree if its 
pathlength skew is zero. The objective of our algorithm 
is to construct a binary tree whose pathlength skew is as 
small as possible. In the VLSI regime, we may formulate 
this as follows. 

The Path Balanced Tree (PBT) Problem: Given 
a set of points P in the L1 unit square and a real number 
S, find a minimum-cost tree T connecting P such that 
for some distinguished node r of T, the costs of paths 
in T from r to any two leaf nodes differ by at most S. 

It is not difficult to show that the PBT problem is 
NP-hard [SI. The objective of this paper is to present 
a heuristic algorithm for the PBT problem. In partic- 
ular, we wish to construct a clock tree using O ( q  
wirelength with pathlength skew as small as possible. 
Before developing the algorithm, we introduce the no- 
tion of a geometric matching: 

Note that a zero skew tree can be trivially achieved by routing 
n = If‘] separate wires of constant length from the clock source to 
all of the clock pins, but this will entail a total clock tree cost of 
O(n) .  We would like to obtain a solution whichuses O ( \ n  total 
wirelength because the optimal Steiner tree will also use O(m 
wirelength in the average caSe [18]. 
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Definition: Given a point set S of 2n points on the 
plane, a geometric matching on S is a set of n line 
segments whose endpoints are in S, with no two line 
segments sharing an endpoint. 

Each line segment in the matching defines an edge. 
The cost of a geometric matching is the sum of the 
lengths of its edges. A geometric matching on S is opti- 
mal if its cost is minimum among all possible geometric 
matchings on S. 

3 A Clock Routing Algorithm 

To construct a tree by recursive matching, we begin 
with a forest of n isolated nodes (for convenience, as- 
sume n = 2 k ) ,  each of which is a tree with clock entry 
point being the node itself. The minimum-cost match- 
ing on these n points yields ; segments, each of which 
defines a subtree with two nodes. The optimal CEP 
into each subtree of two nodes is the midpoint of the 
corresponding segment, i.e., so that the clock signal will 
have zero skew between the segment endpoints. In gen- 
eral, the matching operation will pair up the clock entry 
points (i.e., roots) of all trees in the current forest. At 
each level, we choose the root of the new merged tree 
to be the balance point which minimizes the pathlength 
skew to the leaves of the two subtrees (Figure 1). 

The balance point is computed by finding the point p 
along the straight line connecting the roots of the two 
subtrees, such that the difference in pathlengths from 
p to any two leaves in the combined tree is minimum. 
Computing the balance point requires constant time if 
we know the minimum and maximum root-leaf path- 
lengths in each of the two subtrees, and these values 
can be maintained incrementally using constant time 
per node added to the clock tree. 

Notice that at  each level of the recursion, we only 
have to match half as many nodes as before. Thus, 
in k = LlognJ matching iterations, we obtain the com- 
plete clock tree topology. (In practice, we actually com- 
pute a min-cost maximum cardinality matching, i.e., if 
there are 2rn + 1 nodes, we find the optimal m segment 
matching and match m + 1 points at the next level.) 
Figure 2 gives a formal description of the algorithm. 

The following two results show that our recursive 
matching approach indeed uses a reasonable amount of 
wirelengt h. 

Theorem: For n points arbitrarily distributed in the 
unit square, the total edge length of any clock tree de- 
rived in this manner will be O(fi), which is of the 
same order as the maximum possible edgelength for the 

0 optimal Steiner tree on n points [18]. 

Theorem: For pointsets taken from a uniform distri- 
bution in the unit square, the total edgelength of our 
heuristic clock tree will be on average within a constant 
factor of the total edgelength in the minimum Steiner 

0 tree. 

Figure 1: Example of the algorithm running on a random %point 
set. Solid dots denote the original points, and hollow dots repre- 
sent the balance points of edges. At each level a geometric match- 
ing is performed on the balance points of the previous level. 

while IPI > 1 
M = optimal geometric matching over P 
P' = 0 
for ( P l , P 2 )  E do 

TI = subtree of T rooted at p1 
T2 = subtree of T rooted at p2 
p = point on segment between p1 and p2 

such that p minimizes skew of tree 
Tl U T2 U { ( P , P l ) ,  ( P , P d )  w/root P 

P' = P' U { p }  
T=TU{(P,Pl),(P,P2)1 

P = P' plus an unmatched node if IPI odd 
CEP = Root of T = sinele remaining voint in P 

Figure 2: The recursive matching-based clock tree algorithm. 

For proofs of these results the reader is referred to 
[SI. The balancing operation to determine the CEP of 
a merged tree is necessary because the root-leaf path- 
length might vary between subtrees at  a given stage of 
the construction. In general, when we merge subtrees 
Tl and T2 into a higher-level subtree T ,  the optimal en- 
try point of T will not be equidistant from the entry 
points of TI and Tz (this can be seen by examining the 
solution of the example in Figure 1). Intuitively, bal- 
ancing entails "sliding" the CEP along the "bar of the 
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4 Experimental Results 

Figure 3: Example of iiipping an H as to minimize dock skew: 
the clock tree on the left has n o  ZercFskew balance point dong 

the middle segment of the H, while the clock tree on the right 
does. 

H”. However, it might not always be possible to obtain 
perfectly balanced pathlengths in this manner (see Fig- 
ure 3). We therefore use a further optimization, which 
we call H-flipping: for each edge e added to the lay- 
out which matches CEP’s on edges e l  and e2, replace 
the “H” formed by the three edges e, e l ,  and e2 by 
the “H” over the same four points which (i) minimizes 
pathlength skew, and (ii) further minimizes tree cost 
in the case of ties in pathlength skew. Two formal re- 
sults are given in [8], proving that for four points it is 
always possible find an “H” orientation which achieves 
zero clock skew, and also limiting the increase in wire- 
length caused by H-flipping for nets of size four. Ex- 
tensive empirical tests confirm that even for very large 
inputs, the H-flipping refinement almost always yields 
perfectly path-balanced trees with essentially no added 
wirelength expense. 

We now briefly discuss complexity issues and the re- 
quirement of an efficient implementation. Notice that 
since our algorithm is based on geometric matching, 
its time complexity depends on that of the matching 
subroutine. The fastest known algorithms for general 
matching are O(N3) [lo]. By taking advantage of pla- 
nar geometry, the algorithmic complexity can be re- 
duced to O(N2.5 log n) [21]. However, even this lower- 
complexity method will require long runtimes for large 
problem instances. To solve problems of practical in- 
terest, we chose to speed up the implementation by 
using efficient geometric matching heuristics [l] [19] 
[20]. Although most of these methods were designed 
for the Euclidean plane, they also perform well in the 
Manhattan metric, especially if their output is further 
improved by uncrossing pairs of intersecting edges in 
the matching; to this end, note that k intersections 
of n line segments may be found efficiently in time 
O(k +N(logn)2/loglogn) [13]. 

In the following section, we discuss empirical re- 
sults based on three matching methods which are O(ra), 
O(n log n )  and O(n3I2) respectively; all three yield very 
good clock routing solutions. When performance is crit- 
ical, an optimal geometric matching algorithm might 
give an improvement over our current implementations, 
but will also require greater computational resources. 

Three main variants of the algorithm were implemented 
in ANSI C for the Sun-4, Macintosh and IBM environ- 
ments; code is available from the authors. These vari- 
ants correspond to the different matching subroutines. 

The first heuristic variant (Hl) uses the linear-time 
space partitioning heuristic of [19] to compute an ap- 
proximate matching; the second variant (H2) uses an 
O(n3I2) greedy matching [l]; and the third variant (H3) 
uses an O(n log n) spacefilling curve-based method [4]. 
We have further tested these three variants by running 
each with and without two refinements: (1) removing 
all edge crossings in the heuristic matching, and (2) 
performing the “H-flipping” described above. Either of 
these optimizations can be independently added to any 
of the three variants, giving rise to a total of twelve dis- 
tinct versions of the basic algorithm. The variants of 
the algorithm are summarized as follows: 

H1- Use the space-partitioning matching heuristic 
of [19], which induces the matching by recursive 
bisection of the region (not the pointset). 

H2 - Use a greedy matching heuristic (i.e., match 
closest pair of unmatched points) [l]. 

H3 - Use a space-filling curve to induce a Hamil- 
tonian cycle through the points, and then choose 
the better embedded matching (i.e., either all odd 
edges or all even edges in the cycle) (41. 

H4 through H6- Same as H1 through H3, respec- 
tively, except the matching is improved by remov- 
ing all edge crossings. 

H7 through H12 - Same as H1 through H6, re- 
spectively, except that pathlength skew (or tree 
cost) is reduced by “H-flipping”. 

For comparison, we also implemented 

0 HO - The method of Jackson et al. [7]. 

The algorithms were tested on a large number of ran- 
dom pointsets of up to 1024 points, generated from a 
uniform distribution in the 1000 x 1000 grid. Results 
for a sample run with 50 random pointsets at each car- 
dinality are summarized in Tables 1 through 4. Table 1 
compares the average tree costs and Table 2 compares 
the average clock skews for all heuristics. 

The computational results indicate that both opti- 
mizations (edge-uncrossing and H-flipping) will signifi- 
cantly improve both skew and total wirelength. When 
the refinements are combined, average clock skew es- 
sentially vanishes completely, and the wirelength of sev- 
eral variants is noticeably superior to the output of HO 
(the method of [7]). The best variant appears to be 
H11, which is based on the greedy matching heuristic 
together with edge-uncrossing and H-flipping. This is 
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noteworthy because the greedy method is asymptoti- 
cally as good as the optimal matching [16]. 

Tables 3 and 4 highlight the contrast between H11 
and the method of [7], showing minimum, maximum 
and average values for both total wirelength and skew. 

As noted in [9], any set of approximation heuristics 
induces a meta-heuristic which returns the best solu- 
tion found by any heuristic in the set; we also imple- 
mented this as H13, which returns the minimum-skew 
result from H1 through H12. Interestingly, in our expe- 
rience H13 always returns a perfect pathlength balanced 
tree, i.e., for each problem instance, at  least one of the 
heuristics H1 through H12 will yield a zero clock skew 
solution (while HO never does). This is very useful, es- 
pecially when the heuristics are of similar complexity. 
For example, we can solve the Primaryl benchmark us- 
ing all twelve methods in less than two minutes on a 
Sun-4/60 workstation. 

Finally, we tested our algorithm’s performance on the 
Primaryl and Primary2 benchmarks, using the same 
layouts as in [7]. Figures 4 and 5 illustrate the output of 
variant H11. Table 5 compares the results of H11 and 
the results of [7] which were provided by the authors 
[17]. H11 completely eliminates clock skew while using 
5% - 7% less wirelength. 

5 Conclusion 

We presented a heuristic method based on recursive 
matching which constructs clock tree routings with ex- 
tremely small skew. The method uses total wirelength 
that is on average within a constant factor of the wire- 
length in a minimum Steiner tree, and in the worst case 
bounded by O(fl for n terminals in the unit square. 
We verified our algorithm on numerous random exam- 
ples as well as on industry benchmark circuits; results 
show near-zero average clock skew while using total 
wirelength that compares very favorably with previous 
results. 

HI 
1199 
- 

1990 
3343 
5342 
a100 
11912 
17573 
15341 
36444 - 
H11 
1115 
1979 
3322 
5273 
7982 

11697 
16955 
24465 
34965 

HS 
1119 
1990 
3326 
5277 
8031 
l i r a 5  
17024 
24548 
35086 - 

Hl2 
1125 

19600 

5304 
8047 

11914 
17619 
25483 
36814 

3339 

- 
H 6  

1130 

3343 
5326 
8068 
11976 
17768 
25720 
37056 

- 
1991 

- 
- 

H13 
1125 
1960 
3268 
6151 
7844 
11566 
16919 
24480 
34992 

- 

- 
Table 1: Average tree costs for the various heuristics. 

Pts I H 0 1 H1 I Ha I H  3 I H4 1 H5 I H6 
4 111.31 3.98 15.52 0.00 0.00 0.00 0.00 
P an6 I n  4s 70 76-71 4.26 0.66 0.66 0.66 

512 153.90 321.23 399.29 85.46 14.79 15.26 15.73 
1024 ias.34 339.34 4 o a . s ~  89.76 17.14 16.71 1 5 . ~ 5  

0.00 0.00 
0.12 0.00 0.00 0.00 0.00 0.00 

1.80 3.80 0.12 0.00 0.00 0.00 0.00 

13.17 2’7.69 1.26 0.00 0.00 0.00 0.00 
128 30.79 40.34 3.18 0.00 1.02 0.24 0.00 

1024 n . 9 2  94.99 16.62 0.44 0.08 0.38 0.00 

Table 2: Average skew values for the various heuristics. 

3.63 8.64 0.00 0.00 0.00 0.00 0.00 

268 41.79 51.87 7.49 0.00 0.92 0.00 0.00 
512 76.35 90.66 13.51 0.39 0.62 0.39 0.00 

1089 
2841 
4813 
7624 

HO 
ave 
1197 
2136 

, 3506 
5598 

12276 
1 17874 
25666 

1 36765 

1 8377 

max 
1823 1125 
2943 1123 1979 
4221 2793 3322 
6216 4695 5273 
9266 7372 7932 
13136 11052 11697 
18549 16379 16955 
26291 23866 24465 
37561 34231 34965 

2810 
3993 

8556 
12243 
17543 
25325 
36179 

Table 3: Minimum, average, and maximum total wirelength val- 
ues for H11 and the method of [7]. 

References 

[l] D. Avis, “Worst Case Bounds for the Euclidean 
Matching Problem”, International J. Cornput. 
Math. Appl. 7 (1981), pp. 251-257. 

[2] H. Bakoglu, J .  T. Walker and J .  D. Meindl, “A 
Symmetric Clock-Distribution Tree and Optimized 
High- Speed Interconnections for Reduced Clock 
Skew in ULSI. and WSI Circuits”, Proc. IEEE 
ICCD,  Port Chester, Oct. 1986, pp. 118-122. 

[3] H. Bakoglu, Circuits, Interconnections and Pack- 
aging for VLSI , Addison-Wesley, 1990. 

[4] J .  J .  Bartholdi and L. K. Platzman, “A 
Fast Heuristic Based on Spacefilling Curves for 
Minimum-Weight Matching in the Plane”, Inf. 
Proc. Letters 17 (1983), pp. 177-180. 

[5] S. Dhar, M. A. F’ranklin and D. F. Wann, “Reduc- 
tion of Clock Delays in VLSI Structures”, Proc. 
IEEE ICCD,  Port Chester, Oct. 1984, pp. 778-783. 

[6] A. L. Fisher and H. T. Kung, “Synchronizing Large 
Systolic Arrays’’, Proc. SPIE 341, May 1982, pp. 

[7] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, 
“Clock Routing for High-Performance ICs”, Proc. 
ACM/IEEE DAC,  June 1990, pp. 573-579. 

[8] A. Kahng, J .  Cong and G. Robins, “High- 
Performance Clock Routing Based on Recursive 
Geometric Matching”, UCLA CSD TR-900045, 
Nov. 1990. 

44-52. 

Paper 21.2 
326 



[91 

Pta HO HO HO 
min ave max 

4 2 112.31 379 
8 46 186.10 407 
16 86 234.72 416 
32 118 262.61 540 
64 141 229.15 337 
128 120 201.55 282 
256 127 ia3.28 250 
512 103 153.90 203 
1024 94 125.34 167 

A. Kahng and G. Robins, “A New Family of Steiner 
Tree Heuristics With Good Performance: The It- 
erated 1-Steiner Approach”, Pmc.  IEEE ICCAD,  

E. Lawler, Combinatorial Optimization: Networks 
and Matroids, Holt Rinehart and Winston, New 
York, 1976. 
I. Lin and H. C. Du, “Performance-Driven Con- 
structive Placement”, Pmc.  D A C  (1990), pp. 103- 
105. 
T. M. Lin and C. A. Mead, “Signal Delay in Gen- 
eral RC Networks”, IEEE Tkans. on C A D  CAD- 

F. P. Preparata and M. 1. Shamos, Compulational 
Geometry: A n  Introduction, New York, Springer- 
Verlag, 1985. 
P. Ramanathan and K .  G. Shin, “A Clock Distri- 
bution Scheme for Non-Symmetric VLSI Circuits”, 
Proc. IEEE ICCAD,  November 1989, pp. 398-401. 
J .  Rubinstein, P. Penfield and M. A. Horowitz, 
“Signal Delay in RC Tree Networks”, IEEE T h s .  
on C A D  CAD-2(3) (1983), pp. 202-211. 
T. L. Snyder and J. M. Steele, “Worst-Case Greedy 
Matchings in the Unit d-Cube”, Networks 20 

A. Srinivaaan, private communication, Oct. 1990. 
J .  M. Steele, “Growth Rates of Euclidean Minimal 
Spanning Trees With Power Weighted Edges”, The 
Annals of Probability 16(4) (1988), pp. 1767-1787. 
K. J. Supowit and E. M. Reingold, “Divide and 
Conquer Heuristics for Minimum Weighted Eu- 
clidean Matching”, SIAM J. Computing 12(1) 

K. J. Supowit, E. M. Reingold, and D. A. Plaisted, 
“The Travelling Salesman Problem and Minimum 
Matching in the Unit Square”, SIAM J. Computing 

P. Vaidya, “Geometry Helps in Matching”, A C M  
Symposium on the Theory of Computing, pp. 422- 
425. 
D. F. Wann and M. A. Franklin, “Asynchronous 
and Clocked Control Structure for VLSI Based In- 
terconnection Networks”, IEEE 7l-ans. on Com- 
puters 21(3) (1983), pp. 284-293. 

NOV. 1990, pp. 428-431. 

3(4) (1984), pp. 331-349. 

(1990), pp. 779-800. 

(1983), pp. 118-143. 

12(1) (1983), pp. 144-156. 

H l l  H11 
min ave 

0 0.00 
0 0.00 
0 0.00 
0 0.00 
0 0.00 
o 1.02 
o 0.92 
0 0.62 
0 0.m 

30 
46 
31 i: 4 

Tabli 
and 

e 4: Minimum, average, and maximum skew values for H11 
:he method of [7]. 

HO HO H11 H11 skew cost 
skew cost skew cost impr % impr 

Prim1 I1 0.29 I 161.7 II 0.00 I 153.9 I1 0.29 I 4.13 I Prim2 11 0.74 I 406.3 11 0.00 1 376.7 11 0.74 I 7.3 1 

Table 5: Comparison of HI1 and the method of [7] on Primary1 
and Primary2 benchmarks: “skew” denotes standard deviation of 
path length; “COst” denotes total wirelength. 

Figure 4: Output of variant H11 on Primary1 benchmark layout 

Figure 5: Output of variant H11 on Primary2 benchmark layout. 
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