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• June 2021: Google Brain Nature paper proposed RL-based macro placer
• Claimed superior or comparable macro placement solutions compared to human 

experts, in under six hours
• Did not release code or data as had been committed

• January 2022: Google Research open-sourced Circuit Training (CT)  
• “reproduces the methodology published in the Nature 2021 paper”
• No dataset, and insufficient code to reproduce the Nature results

• March 28, 2022: “Stronger Baselines” manuscript posted during ISPD-22
• States shortcomings of the Nature paper
• Also lacks code and dataset to reproduce results or confirm claims

• MacroPlacement: open, transparent assessment of Nature, CT
• Goal: resolve controversy; foster calm discussion and scientific progress
• June 2022: MacroPlacement repository open-sourced

Why MacroPlacement ?



3

Circuit Training (CT): Important Surprises and Gaps
• Surprise: CT uses placement information from its input 

• Nature paper does not mention this 
• Ablation: use of placement info reduces routed wirelength by 7-10%

• CT optimizes proxy cost during training
• RL agent places hard macros on gridded canvas
• Stdcell clusters placed using force-directed (FD) placer
• Proxy cost (𝑅) is then evaluated:

𝑅 = 𝑊𝑖𝑟𝑒𝑙𝑒𝑛𝑔𝑡ℎ + γ×𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + λ×𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
• Gap: key elements hidden behind plc_client APIs

• FD placer, proxy cost calculation
• We reverse-engineered these and released as open source

• Thanks to the TensorFlow Agents team for open-sourcing   
the grouping and training flows in the CT repository, and to 
Google Brain engineers for extensive Q&A and checking ! 

Gridding
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Clustering

Placed Netlist
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CT Grouping Flow

CT Training

Final Macro 
Placement Solution
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• Code: Includes open-source implementation of missing, blackbox elements of CT
• Missing elements: Format translators, Baselines for comparison (simulated annealing, human expert)
• Blackbox elements: force-directed placement, proxy cost components

• Modern benchmarks: Open testcases on open enablements
• Testcases (#macros, #insts): Ariane (133, 117K), BlackParrot (220, 769K),

MemPool Group (324, 2729K), NVDLA (128, 156K)
• Enablements: SKY130HD+FakeStack, NanGate45, ASAP7+FakeRAM

• Reproducible results with commercial synthesis, place and route evaluation flow
• Cadence Genus iSpatial physical synthesis flow and Cadence Innovus P&R flow
• Synopsys Design Compiler Topographical physical synthesis flow
• Major changes in EDA vendor policies allow us to share our Tcl scripts in GitHub for research 

purposes!   ß Kudos and thanks to Cadence and Synopsys !!!

• Extensive documentation and data: See FAQs, Docs, “Our Progress”

Scope of MacroPlacement

*Simulated annealing is implemented following the description in the “Stronger Baselines” manuscript
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CT, SA and Human results for Modern Benchmarks

• Normalized routed wirelength, proxy cost, and TNS à Lower values are better
• All data is normalized to CT results
• More details: Table 1 of our paper

*Routed Wirelength Proxy Cost*TNS

CT

CT
CT

Human Human

Human

SA

SA

SA

*postRouteOpt metrics

For postRouteOpt metrics, Human outperforms CT for macro-heavy BlackParrot, MemPool Group
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Macro Placement Solutions: Ariane133

CT CMP RePlAce SA

AutoDMP Human

• *Ariane133 with 68% utilization, 1.3ns target clock period on NG45

*Nature implements Ariane133 on a different enablement

• CMP: Innovus Concurrent Macro Placer
• AutoDMP: DREAMPlace based macro 

placer from Nvidia Research
• The human macro placement is from 

Dr. Jinwook Jung of IBM Research
• postRouteOpt metrics in Table 1 of our paper
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CT, SA and RePlAce Comparison on ICCAD04 Benchmarks

• Data is normalized based on CT
• Table 6 of our paper gives raw data

CT

SA

RePlAce

CT

SA

RePlAce In terms of proxy cost, SA outperforms CT 
and in terms of HPWL, SA produces better 
result than CT in 16 out of 17 cases

Proxy Cost: RePlAce beats SA, 
and SA beats CT

HPWL: RePlAce beats SA and SA beats CT 
in most of the testcases
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• MacroPlacement = open, transparent assessment and implementation 
• Source code for CT’s missing and blackbox elements
• Modern, macro-heavy testcases on open enablements
• Commercial evaluation flow with all runscripts
• Baselines cited in Nature: human expert, simulated annealing
• Extensive documentation: FAQs, “Our Progress”, and more

• CT benefits from placement information in incoming physical synthesis netlist

• Baselines (SA and Human experts) outperform CT
• For 17 ICCAD04 designs and 4 out of 6 modern testcases, SA generates better proxy cost than CT
• For large macro-heavy designs, human experts outperform CT in terms of Nature Table 1 metrics

• “There is no substitute for source code (and data)”

Conclusions

Please see the long video and our FAQs in GitHub for more information !!!
https://github.com/TILOS-AI-Institute/MacroPlacement

https://github.com/TILOS-AI-Institute/MacroPlacement
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Design CT
(Hours)

CMP
(Hours)

RePlAce
(Hours)

SA
(Hours)

AutoDMP
(Hours)

Ariane-NG45 32.31 0.05 0.06 12.50 0.29
BlackParrot-NG45 50.51 0.33 2.52 12.50 0.71
MemPool-NG45 81.23 1.97 *N.A. 12.50 1.73

FAQ: Runtimes (Wall Times) of Different Macro Placers

• CT: only includes CT training time
• SA: stopped after 12.5 hours automatically
• CMP: only the runtime of place_design -concurrent_macros command
• Resources used:

• CT: Training and evaluation jobs run on (8 NVIDIA-V100 GPU, 96 CPU thread, Memory: 354 GB) 
machine and 13 collector jobs on each of two (96 CPU thread, Memory: 354 GB) machines

• SA: 320 parallel jobs where each job used 1 thread
• RePlAce: used 1 thread
• CMP: Innovus launched with 8 threads
• AutoDMP: run on NVIDIA DGX-A100 machine with two GPU workers

*RePlAce run for MemPool Group did not complete



10

THANK YOU !

We thank David Junkin, Patrick Haspel, Angela Hwang and their colleagues at Cadence and 
Synopsys for policy changes that permit our methods and results to be reproducible and sharable 
in the open, toward advancement of research in the field. We thank many Google engineers 
(Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Eric Johnson, Roger Carpenter, Sergio 
Guadarrama, Guanhang Wu, Joe Jiang, Ebrahim Songhori, Young-Joon Lee and Ed Chi) and the 
TensorFlow Agents team for their time and discussions to clarify aspects of Circuit Training, and to 
run their internal flow with our data. We thank Ravi Varadarajan for early discussions and flow 
setup, and Mingyu Woo for guidance on RePlAce versions and setup. Support from NSF CCF-
2112665 (TILOS) and DARPA HR0011-18-2-0032 (OpenROAD) is gratefully acknowledged.


