
Assessment of Reinforcement Learning for
Macro Placement

Chung-Kuan Cheng[1], Andrew B. Kahng[1][2], Sayak
Kundu[2], Yucheng Wang[1] and Zhiang Wang[2]

[1]CSE and [2]ECE Departments, UC San Diego
GitHub: https://github.com/TILOS-AI-Institute/MacroPlacement

https://github.com/TILOS-AI-Institute/MacroPlacement/

2

June 2021: Google’s Nature Paper
• Google Brain’s highly acclaimed Nature paper proposed a

reinforcement learning (RL) based macro placer
• Did not release code or dataset

Claimed superior or comparable macro placement
solutions compared to human experts, in under six hours!

3

January 2022: Google’s Circuit Training

• Circuit Training open-sourced “reproduces the methodology published in the Nature 2021 paper”

• Missing dataset and code elements: format translator, simulated annealing

No dataset, and insufficient code to reproduce the Nature results

4

March 28, 2022: Stronger Baselines
• “Stronger Baselines” manuscript was made available

• Evaluated on Google’s internal benchmarks and old academic benchmarks
• Used weak evaluation metrics
• No open-source code

States shortcomings of the Nature paper, but also
lacks code and dataset to reproduce results

5

Why MacroPlacement ?

June 2021: Nature Paper January 2022: Circuit Training

March 28, 2022: Stronger Baselines manuscript

Breakthrough
Claims

Partial Release of
Supporting Code

States Shortcomings

6

June 2022: MacroPlacement repository open-sourced

Our MacroPlacement Effort

• Key elements:
• New testcases

• Open enablements

• Public evaluation flows

• Reverse engineering

• Reimplementation in
open source

• Stronger baselines

• This talk and paper: The Story of MacroPlacement

7

• Background and Motivation
• Replication of Circuit Training (CT)

• Mismatch of CT and Google Nature paper
• Blackbox and missing elements of CT

• MacroPlacement Repository
• Experimental Results
• Academic Benchmarks
• Conclusion

Outline

8

Circuit Training (CT) Flow
• Input to CT: Placed Netlist

• CT’s “grouping” flow consists of three steps
• Gridding: divides the chip canvas into grid cells

whose size promotes close packing of macros
• Grouping: creates groups to ensure closely

connected logic elements stay together
• Clustering: creates standard-cell clusters

• CT training
• Input: clustered netlist
• Optimizes the proxy cost (𝑅):
𝑅 = 𝑊𝑖𝑟𝑒𝑙𝑒𝑛𝑔𝑡ℎ + γ×𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + λ×𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 (1)

Placed Netlist

LEF / DEF to
Protobuf converter

*CT Grouping Flow

*CT Training

Final Macro
Placement Solution

Gridding

Grouping

Clustering

*Grouping and training flows are open-sourced in CT repository by the TensorFlow Agents team

9

Mismatch Between CT and The Nature Paper

• CT assumes that the input is a placed netlist
• Nature paper: does not mention this
• Critical: poor initial placement increases routed

wirelength by 7%

• Different weight of proxy cost components
• Nature: γ = 0.01 and λ = 0.01
• CT: γ = 1.0 and λ = 0.5
• Suggested by Google: γ = 0.5 and λ = 0.5*
• Result for different weight combinations in Slide 25

• Adjacency matrix generation
• Nature considers register distance for a pair of nodes
• CT does not consider register distance

Gridding

Grouping

Clustering

Placed Netlist

LEF / DEF to
Protobuf converter

CT Grouping Flow

CT Training

Final Macro
Placement Solution

*G. Wu, Google Brain, personal communication, August 2022

10

• Main blackbox elements of CT:
hidden behind plc_client
• Force-directed (FD) placement
• Proxy cost components: Wirelength, Density

and Congestion cost
• FD consists of two force components

• Attractive force: 𝐹!!, attractive factor: 𝑘!
𝐹!! = 𝑘!×𝑎𝑏𝑠 𝑃1. 𝑥 − 𝑃2. 𝑥 (2)

• Repulsive force: 𝐹"!, repulsive factor: 𝑘" and max repulsive force: 𝐹""#!

𝐹"! = 𝑘"×𝐹""#!×
𝑎𝑏𝑠(𝑀1. 𝑥 − 𝑀2. 𝑥)

𝑑𝑖𝑠𝑡(𝑀1,𝑀2)
(3)

à Horizontal force 𝐹# = 𝐹!! + 𝐹"! (4)

• More details: Section 3.2.1 of our paper

Blackbox Element: Force-Directed Placement

11

• Wirelength cost:
1

|𝑛𝑒𝑡𝑠|
I
$%&

𝑛𝑒𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡 ×𝐻𝑃𝑊𝐿(𝑛𝑒𝑡)
𝑐𝑎𝑛𝑣𝑎𝑠. 𝑤𝑖𝑑𝑡ℎ + 𝑐𝑎𝑛𝑣𝑎𝑠. ℎ𝑒𝑖𝑔ℎ𝑡

(5)

• Density cost: Average density of the top
10% densest grid cells

• Congestion cost: Average of top 5% grid cell
Hcong and Vcong values

• Two components of congestion cost:
• Macro congestion: Routing layers blocked by macros
• Routing congestion: Routing resources occupied by routed nets
à Grid cell congestion: Sum of macro and routing congestion

Blackbox Element: Proxy Cost

RL Agent optimizes these proxy cost components

12

• Format translators to generate Protobuf netlist
• MacroPlacement repo includes two format translators

• LEF/ DEF à Protobuf
• Bookshelf à Protobuf

• Simulated Annealing (SA) implementation
• Our SA implementation follows the Stronger Baselines (SB) description
• Five actions of our SA

• Nature includes swap, shift, and mirror actions
• Nature does not include move and shuffle

• Two initializations
• Nature includes greedy packing
• Nature does not include spiral initialization

Missing Elements: Format Translator and SA

Our implementation of missing elements enables
anyone to run CT and SA on their own designs !!

13

• Background and Motivation
• Replication of Circuit Training (CT)
• MacroPlacement Repository

• New benchmarks
• Commercial evaluation flow

• Experimental Results
• Academic Benchmarks
• Conclusion

Outline

14

• Modern benchmarks: Open testcases on open enablements
• Testcases: Ariane, BlackParrot, MemPool Group and NVDLA
• Enablements: SKY130HD FakeStack, NanGate45 and ASAP7 (includes FakeRAM generator)

• Major changes in EDA vendor policies allow us to share our Tcl scripts in GitHub
for research purposes! ß Kudos and thanks to Cadence and Synopsys !!!

• Our repo includes commercial synthesis, place-and-route (SP&R) tool flow scripts
• Cadence Genus iSpatial physical synthesis flow and Cadence Innovus P&R flow
• Synopsys Design Compiler Topographical physical synthesis flow

MacroPlacement: Modern Benchmarks

Testcase #FFs #Macros #Macro
Types

#Insts
on NG45

Ariane 19,807 133 1 117,433
NVDLA 45,295 128 1 155,711
BlackParrot 214,441 220 6 768,631
MemPool Group 360,724 324 4 2,729,405

15

Commercial Evaluation Flow
• Macro placers: CT, *CMP, SA, RePlAce,

**AutoDMP and Human expert
• Logic synthesis: Genus 21.1
• Physical synthesis:

• Genus iSpatial flow
• Design Compiler Topographical R-2020.09

• Place and route: Cadence Innovus 21.1
• Ground truth / Nature Table 1 metrics:

• ***postRouteOpt wirelength, WNS, TNS,
power, standard cell area and DRC count

*CMP: Cadence Innovus Concurrent Macro Placer
**AutoDMP: DREAMPlace-based macro placer from Nvidia Research
***Nature paper reports postPlaceOpt metrics

16

• Background and Motivation
• Replication of Circuit Training (CT)
• MacroPlacement Repository
• Experimental Results

• Ablation studies
• Different macro placement solutions

• Academic Benchmarks
• Conclusion

Outline

17

• Similar training curve and Nature Table 1 metrics of Ariane-NG45 for
our and Google’s CT runs à Correct CT Setup (Ref. [50] of our paper)

• Effect of initial placement
• Ran CT for three vacuous placements: all standard cells and macros are placed

at lower left corner, at upper right corner and at (600, 600)
• The routed wirelength of our baseline CT solution is 7.24%, 8.17% and 10.32%

less than the above three cases respectively

Ablation Study of CT (Section 5.2)

Initial placement is important for CT !!

Wirelength Cost Density Cost Congestion Cost

18

Nature Table 1 Metrics: Modern Benchmarks

CT

CMP
SA

AutoDMP

Human

CMP

AutoDMP

CT
SA

Human

AutoDMP

CT

SA

Human

CMP

CMP outperforms CT

• Lower values in normalized routed wirelength, proxy cost, and TNS à Better performance
• Data is normalized based on CT
• More details: Table 1 of our paper

Routed Wirelength Proxy Cost TNS

19

Design
Enablement

Macro
Placers

Area
(um2)

rWL
(mm)

Power
(mW)

WNS
(ps)

TNS
(ns)

BlackParrot
NG45

CT 1,956,712 36,845 4627.4 -185 -1040.8
Human 1,919,928 25,916 4469.6 -97 -321.9

MemPool
NG45

CT 4,890,644 123,330 2760.5 -69 -119.3
Human 4,873,872 107,598 2640.0 -49 -11.9
Note: Metric values for GF12 are normalized

BlackParrot
GF12

CT 0.179 1.000 1.000 0.000 0.0
Human 0.178 0.642 0.928 0.000 0.0

MemPool
GF12

CT 0.410 1.000 1.000 -0.195 -1849.4
Human 0.406 0.888 0.920 -0.149 -1766.5

Human Outperforms CT for Macro-Heavy Designs

For GF12 metric values
• Routed wirelength and total power: normalized based on CT result
• TNS and WNS: normalized based on target clock frequency
• Standard cell area: normalized based on canvas area

In terms of all the Nature Table 1 metrics, Human outperforms CT for macro-heavy testcases

20

Macro Placement Solutions: Ariane133

CT CMP RePlAce SA

AutoDMP Human

• *Ariane133 with 68% utilization, 1.3ns target clock period on NG45

*Nature implements Ariane133 on a different enablement

21

• BlackParrot (Quad-Core) with 68% utilization on GF12
Macro Placement Solutions: BlackParrot

CT CMP RePlAce SA

AutoDMP Human

Note: Metric values (excluding proxy cost) are normalized

22

• Background and Motivation
• Replication of Circuit Training (CT)
• MacroPlacement Repository
• Experimental Results
• Academic Benchmarks

• Evaluation flow and CT, SA and RePlAce results
• CT vs. SA result for different weight combinations in proxy cost

• Conclusion

Outline

23

• Study on ICCAD04 mixed-size placement
benchmarks includes CT, SA, and RePlAce

• Initial placement: RePlAce + NTUplace3
• Used to generate clustered netlist for CT and SA

• Standard cell placement of CT and SA
solutions à RePlace + NTUplace3

• Evaluation metrics:
• Half-perimeter wirelength (HPWL) of placed design
• Proxy cost reported using plc_client available in CT

• More details: Section 6 of our paper

Academic Benchmark: Evaluation Flow

24

CT, SA and RePlAce Result of ICCAD04 Benchmarks

• Data is normalized based on CT
• Table 6 of our paper gives raw data

CT

SA

RePlAce

CT

SA

RePlAce

Proxy Cost: RePlAce beats SA,
and SA beats CT

HPWL: RePlAce beats SA,
and SA beats CT , except:

• HPWL: CT beats SA on 1 of 17 cases

• HPWL: SA beats RePlAce on 2 of 17
cases

25

CT vs. SA: Different Proxy Cost Weight Combinations

CT

SA

CT

SA

CT

SA

CT

SA

• Normalized data:
based on CT

• Raw data: see Table 7
of the paper

• γ = Density weight
λ = Congestion weight

SA produces better proxy cost than CT

SA produces better HPWL than CT

SA produces better proxy cost and HPWL
results than CT, across different weight
combinations, for the above two testcases

26

• How difficult is Ariane? à Shuffling test

• Are CT and SA results stable? à Variance test

• What is the correlation of proxy cost with Nature Table 1 metrics?

• What is the effect of physical synthesis tool choice on CT outcome?

• What is the effect of target clock period on CT outcome?

• What is the effect of utilization on CT outcome?

• What is the effect of the coordinate descent placer on CT outcome?

MacroPlacement Repo: More Ablation Studies

27

• Background and Motivation
• Replication of Circuit Training (CT)
• MacroPlacement Repository
• Experimental Results
• Academic Benchmarks
• Conclusion

Outline

28

• Nature presents a novel orchestration of multiple elements
• Proxy cost function that combines wirelength, density and congestion
• Sequential framework for deep RL-based macro placement
• Grouping flow to manage instance complexity
• Data and code (still) unavailable à our MacroPlacement assessment effort

• Baselines (SA and Human experts) outperform CT
• For 17 ICCAD04 designs and 4 out of 6 modern testcases, SA generates better

proxy cost than CT
• For large macro-heavy designs, human experts outperform CT in terms of Nature

Table 1 metrics
• CT benefits from placement information in the incoming physical synthesis netlist

• “There is no substitute for source code (and data)”

Conclusion

29

Design CT
(Hours)

CMP
(Hours)

RePlAce
(Hours)

SA
(Hours)

AutoDMP
(Hours)

Ariane-NG45 32.31 0.05 0.06 12.50 0.29
BlackParrot-NG45 50.51 0.33 2.52 12.50 0.71
MemPool-NG45 81.23 1.97 *N.A. 12.50 1.73

Runtimes (Wall Times) of Different Macro Placers

• CT: only includes CT training time
• SA: stopped after 12.5 hours automatically
• CMP: only the runtime of place_design -concurrent_macros command
• Resource required for different macro placers

• CT: Training and evaluation jobs run on (8 NVIDIA-V100 GPU, 96 CPU thread, Memory: 354 GB)
machine and 13 collector jobs on each of two (96 CPU thread, Memory: 354 GB) machines

• SA: 320 parallel jobs where each job used 1 thread
• RePlAce: used 1 thread
• CMP: Innovus launched with 8 threads
• AutoDMP: run on NVIDIA DGX-A100 machine with two GPU workers

*RePlAce run for MemPool Group did not complete

30

• What do your results tell us about the use of RL in macro placement?
• The solutions typically produced by human experts and SA are superior to those

generated by the RL framework in the majority of cases we tested.

• Did the work by Prof. David Pan show that Google open-source code
was sufficient?
• No. The arXiv paper “Delving into Macro Placement with Reinforcement

Learning” was published in September 2021, before the open-sourcing of Circuit
Training. To our understanding, the work focused on use of DREAMPlace instead
of force-directed placement.

• Did you replicate results from Stronger Baselines?
• We replicated RePlAce results and believe our SA obtains similar results.

However, there is no code or data available to reproduce S.B.’s reported CT
results, or proxy costs of SA results.

FAQ

31

THANK YOU !

We thank David Junkin, Patrick Haspel, Angela Hwang and their colleagues at Cadence and
Synopsys for policy changes that permit our methods and results to be reproducible and sharable
in the open, toward advancement of research in the field. We thank many Google engineers
(Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Eric Johnson, Roger Carpenter, Sergio
Guadarrama, Guanhang Wu, Joe Jiang, Ebrahim Songhori, Young-Joon Lee and Ed Chi) and the
TensorFlow Agents team for their time and discussions to clarify aspects of Circuit Training, and to
run their internal flow with our data. We thank Ravi Varadarajan for early discussions and flow
setup, and Mingyu Woo for guidance on RePlAce versions and setup. Support from NSF CCF-
2112665 (TILOS) and DARPA HR0011-18-2-0032 (OpenROAD) is gratefully acknowledged.

