
IEEE CEDA DATC: Expanding Research Foundations for IC
Physical Design and ML-Enabled EDA

Invited Paper

Jinwook Jung
IBM Research

Yorktown Heights, NY, USA
jinwookjung@ibm.com

Andrew B. Kahng
UC San Diego

La Jolla, CA, USA
abk@ucsd.edu

Ravi Varadarajan
UC San Diego

La Jolla, CA, USA
rvaradarajan@ucsd.edu

Zhiang Wang
UC San Diego

La Jolla, CA, USA
zhw033@ucsd.edu

ABSTRACT
This paper describes new elements in the RDF-2022 release of the
DATC Robust Design Flow, along with other activities of the IEEE
CEDA DATC. The RosettaStone initiated with RDF-2021 has been
augmented to include 35 benchmarks and four open-source tech-
nologies (ASAP7, NanGate45 and SkyWater130HS/HD), plus timing-
sensible versions created using path-cutting. The Hier-RTLMP
macro placer is now part of DATC RDF, enabling macro placement
for large modern designs with hundreds of macros. To establish a
clear baseline for macro placers, new open-source benchmark suites
on open PDKs, with corresponding flows for fully reproducible re-
sults, are provided. METRICS2.1 infrastructure in OpenROAD and
OpenROAD-flow-scripts now uses native JSON metrics reporting,
which is more robust and general than the previous Python script-
based method. Calibrations on open enablements have also seen
notable updates in the RDF. Finally, we also describe an approach
to establishing a generic, cloud-native large-scale design of experi-
ments for ML-enabled EDA. Our paper closes with future research
directions related to DATC’s efforts.

CCS CONCEPTS
•Hardware→ Physical design (EDA);Methodologies for EDA.

KEYWORDS
VLSI CAD, open source, EDA, machine learning

ACM Reference Format:
Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang.
2022. IEEE CEDA DATC: Expanding Research Foundations for IC Physical
Design and ML-Enabled EDA: Invited Paper. In ICCAD’22: IEEE/ACM 2022
International Conference On Computer Aided Design, October 30–November 03,
2022, San Diego, CA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3508352.3561379

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD’22, October 30–November 03, 2022, San Diego, CA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3561379

1 INTRODUCTION
IEEE CEDA Design Automation Technical Committee (DATC) [21]
has developed a public reference design flow, named DATC Ro-
bust Design Flow (RDF) [2–4, 10, 11]. The RDF preserves leading
research codes in a complete design flow, and serves as a reposi-
tory of academic point tools. It is also intended to foster flow-scale
and cross-stage optimization research, rather than single-stage,
“point-tool” optimizations. To this end, RDF also enables measure-
ment of quality of results (QoR) throughout the tool flow, using
a standardized metrics format. The first release, named OpenDe-
sign Flow Database, appeared in 2016 and was built upon CAD
contest-winning tools. The RDF subsequently evolved both verti-
cally and horizontally to achieve a complete RTL-to-GDS flow with
multiple tool options available [2–4, 10, 11]. In the 2020 release [3],
RDF brought the integrated OpenROAD app [23] into its inventory,
solidifying the RTL-to-GDS implementation flow. The RDF scope
and mission were also updated, bringing attention to analysis and
verification research; validation of research in a full-flow context;
and infrastructure (from obfuscation and anonymization to metrics
collection) to support ML-enabled EDA (ML EDA) research. RDF is
currently built upon many academic tools, as shown in Table 1.

With RDF as a foundation, the IEEE CEDA DATC is extending
its activities beyond flow enablement, with the goal of establishing
and expanding research foundations for IC physical design and ML
EDA. In the following, we describe three main directions of effort
from the past year.
• First, there have been continuous improvements to the existing
RDF elements. (i) The RosettaStone format conversion capability,
based on the OpenDB data model and in-memory database, has
been improved to create more timing-sensible netlists. (ii) The
METRICS2.1 infrastructure in OpenROAD [23] and OpenROAD-
flow-scripts [24] has been updated to report metrics in the MET-
RICS2.1 format natively in JSON. (iii) The Calibrations effort [51]
has been extended to include additional analysis data to guide
academic researchers. This effort compiles datasets for algorithm
and machine learning research that aims to improve analysis and
verification accuracy, especially in open-source tools. The need
for the research community to carefully maintain the quality and
accuracy of its open enablements is highlighted with a recent
example of RC extraction in the SKY130 technology.

• Second, macro placement is now a separate engine (i.e., no longer
embedded within the floorplanning step) in the RDF flow tax-
onomy. Our efforts have focused on benchmark creation as well
as improvements to macro placement capability in RDF. (i) To

https://doi.org/10.1145/3508352.3561379
https://doi.org/10.1145/3508352.3561379
https://doi.org/10.1145/3508352.3561379


ICCAD’22, October 30–November 03, 2022, San Diego, CA Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang

Table 1: RDF-2022 Components

Component Tools
RTL generator Chisel/FIRRTL
RTL obfuscation ASSURE
Logic synthesis Yosys, ABC
DFT insertion Fault
Floorplanning TritonFP
Macro Placement TritonMP, RTL-MP, Hier-RTLMP
Global placement RePlAce, FZUplace, NTUPlace3, ComPLx, Eh?Placer,

FastPlace3-GP, mPL5/6, Capo
Detailed placement OpenDP, MCHL, FastPlace3-DP
Flip-flop clustering Mean-shift, FlopTray
Clock tree synthesis TritonCTS
Global routing FastRoute4-lefdef, NCTUgr, CUGR
Detailed routing TritonRoute, NCTUdr, DrCU
Layout finishing KLayout, Magic
Gate sizing Resizer, TritonSizer
Parasitic extraction OpenRCX
STA OpenSTA, iTimerC
Database OpenDB
Libraries/PDK NanGate45, SKY130, ASAP7, GF180MCU, NCTUcell
Integrated app OpenROAD
Benchmark conversion RosettaStone (timing-sensible)

drive physical design research with relevant testcases, we incor-
porate macro-dominated benchmarks that are based on modern
open-source designs and open-source PDKs, along with mixed
academic-commercial tool flows and corresponding reference
results. Here, a recent policy change by Cadence Design Sys-
tems [8] enables a larger solution space for flow research, and
we provide early examples of what is possible. (ii) We add two
new macro placers into RDF-2022: RTL-MP [17], and Hier-RTLMP
[16]. The latter works with a multilevel physical hierarchy that
is derived from the RTL logical hierarchy, allowing it to handle
large IP blocks that have hundreds or even thousands of macros.

• Third, we establish a generic cloud-native enablement for large-
scale design of experiments. As is well-known, interest in ML-
enabled EDA has been increasing, but generating large amounts
of data for ML EDA can require substantial compute resources.
We therefore call attention to the wide availability of cloud com-
puting and describe the use of public cloud resources to generate
large-scale data for ML EDA research.
The remainder of this paper is organized as follows. Section 2 de-

scribes improvements to existing elements of RDF: timing-sensibility
in RosettaStone, deployment of METRICS2.1, and amplification of
the Calibrations effort. Section 3 describes efforts related to auto-
matic macro placement. Section 4 describes the cloud-native en-
ablement of large-scale designs of experiments. Section 5 concludes
with a summary of current plans and open directions for DATC
activity.

2 RECENT IMPROVEMENTS TO RDF
This section reviews three main avenues of improvement made in
RDF-2022: timing-sensibility in RosettaStone (Section 2.1), native
JSON-based deployment of METRICS2.1 (Section 2.2), and amplifi-
cation of the Calibrations effort (Section 2.2).

2.1 Timing-Sensibility of Rose�aStone
The DATC RDF includes academic contest benchmarks and contest-
winning tools from more than 15 years ago. For some years, these
benchmarks and tools were stuck in a “parallel universe”: the old
tools could not be run on modern designs, and the old benchmarks
could not be fed to modern tools. To cope with this, an open-source

Table 2: Effect of logic cutting on timing sensibility of
DAC2012 benchmarks. PreLC ECP (resp. PostLC ECP) is the
original, pre-logic-cutting (resp. post-logic-cutting) effective
clock period. PreLC #Stage on WTP (resp. PostLC #Stage on
WTP) is the pre-logic-cutting (resp. post-logic-cutting) num-
ber of stages on the worst timing path.

Design PreLC
ECP (ns)

PreLC
#Stages
on WTP

PostLC
ECP (ns)

PostLC
#Stages
on WTP

superblue2 8.55 327 2.47 11
superblue3 13.28 495 1.89 24
superblue5 7.26. 271 2.62 26
superblue6 7.18 267 2.67 26
superblue7 5.42 211 2.87 10
superblue9 8.14 308 2.05 82
superblue11 70.47 2497 2.37 27
superblue12 3.91 141 3.11 20
superblue14 16.76 450 2.78 26
superblue16 4.72 144 1.31 21
superblue19 7.25 279 1.79 18

benchmark conversion platform, RosettaStone, was added in RDF-
2021. Figure 1 illustrates the scope of RosettaStone: by leveraging
an industry-strength (LEF5.8) data model and in-memory database,
RosettaStone can go beyond tool chaining and enable deeper inte-
grations whereby (i) flow stages can consider or co-operate with
subsequent stages; or (ii) academic tools can be cross-evaluated on
both commercial and academic benchmarks. As elaborated in [13],
RosettaStone not only connects past academic tools to the present
and future of physical design research, but also enables academic
research and contests to be framed in a complete flow context, with
canonical evaluations such as post-route timing or number of DRC
violations.

A limitation of RosettaStone in RDF-2021 is that it only lever-
ages OpenDB [20], which does not store timing information. In
RDF-2022, we add the use of OpenSTA [48] in RosettaStone to avoid
generation of unrealistic timing paths during conversion between
Bookshelf and LEF/DEF formats. The unrealistic timing paths are
typically caused by original contest creators’ remapping of logic
gates (e.g., for obfuscation purposes) without consideration of tim-
ing constraints. To address this issue, RosettaStone now includes a
tunable logic path cutting flow. We call OpenSTA APIs to retrieve
the worst timing paths and convert single-output/single-input com-
binational logic gates into flip-flops, or else insert flip-flops and
create associated output nets, so as to not exceed a user-defined
maximum path length. In practice, the timing-aware logic cutting
flow eliminates the strange timing structures that can exist in old
academic benchmarks.

Table 2 shows the results of logic cutting on DAC-2012 bench-
marks. All the benchmarks are implemented in the ASAP7 enable-
ment [37]. Timing results are measured for the unplaced netlists
using OpenSTA. We follow the convention seen in commercial
tools, and ignore timing paths that pass through nets that have
fanout larger than or equal to 100. Additional experimental results
on other benchmarks are available in the repo [40], which also
includes scripts that implement the path cutting flow.



IEEE CEDA DATC: Expanding Research Foundations for IC Physical Design and ML-Enabled EDA ICCAD'22, October 30�November 03, 2022, San Diego, CA

Figure 1: RosettaStone completes the vision of previous re-
search enablements (RDF [4] and A2A [ 14]). Figure adapted
from [13].

2.2 METRICS2.1
Both OpenROAD and OpenROAD-�ow-scripts (ORFS) have been
updated to report metrics in the METRICS2.1 [6, 7, 9] format using
native JSON reporting. Previously, the metrics were reported by a
Python script which �mined� tool log�les to extract the relevant
metrics information and report it in the METRICS2.1 format. This
was error-prone, as the Python script had to be updated frequently
to keep track of changes to the log�les generated by the various
engines in OpenROAD.

The change to native JSON-based METRICS2.1 reporting is in
the latest public releases of OpenROAD and ORFS. Usage of this
reporting is outlined in the steps below.
� Invoke OpenROAD with-metrics <metric_�le_name.json>. This

will print all of the collected metrics into the json �le. Some met-
rics are implicitly collected during the execution of an engine
such as global placement, global or detailed routing, etc.; exam-
ples include wirelength and DRC errors during each iteration
of the detailed router. ORFS also has Tcl commands to explicitly
print aggregated metrics such as area, power or timing metrics
at any stage in the �ow.

� Use the Tcl commandset_metrics_stage �<metrics_stage>�to set
the metrics stage in the �ow. This stage is used for all the metrics
printed during the OpenROAD call until the stage is changed
with a subsequent call to set_metrics_stage. The current stages
in METRICS2.1 are
� set_metrics_stage ��oorplan__{}�
� set_metrics_stage �globalplace__{}�
� set_metrics_stage �placeopt__{}�
� set_metrics_stage �detailedplace__{}�
� set_metrics_stage �cts__{}�
� set_metrics_stage �globalroute__{}�
� set_metrics_stage �detailedroute__{}�
� set_metrics_stage ��nish__{}�

� Use Tcl commandspush_metrics_stageandpop_metrics_stageto
apply metrics modi�ers to print metrics at di�erent substages
as required. For example, ORFS uses the following commands to
print metrics pre- and post-timing repair during CTS.
� push_metrics_stage �cts__{}__pre_repair�
� push_metrics_stage �cts__{}__post_repair�

Figure 2: OpenROAD metrics from detailed route.

Figure 3: Pre- and post-optimization metrics reporting ob-
tained through use of metrics modi�ers.

Figure 2 shows an example of the metrics reported during de-
tailed routing. The detailed router in OpenROAD can print wire-
length and number of DRC errors after each iteration, based on
a metrics modi�er for thedetailedroute__route__wirelengthand
detailedroute__route__drc_errorsmetrics. The metrics modi�er is
iter:<iteration_count>. Figure 3 shows how metrics modi�ers change
the pre- and post-timing optimization metrics reporting after CTS
bu�er insertion.

2.3 On the Use of Open Enablements
With continued development and adoption of the RDF and Open-
ROAD, we observe that open enablements (tools, PDKs, libraries,
etc.) are only as good as how they are used. The open-source con-
text allows both tools and enablements to degrade in the absence
of strong regression testing, and/or proper checks and balances
in the development and release process. A concrete example is
seen in the use of the OpenRCX 2.5D RC extraction tool for the
open-source SKY130HD enablement. Here, the golden commercial
enablement, used by SkyWater Technology with its commercial
customers, is S8 [28]; the corresponding open-source SKY130 PDK
[27] was derived from S8. The OpenROAD use of OpenRCX for
SKY130 [26] has shown good correlation for years, as seen in the
Cadence Ostrich tool plot of Figure 4. However, OpenLane [25]
(commit hash: 7b15116)modi�es the lookup tables that guide the



ICCAD'22, October 30�November 03, 2022, San Diego, CA Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang

Figure 4: RC correlation between OpenROAD OpenRCX on
SKY130HD open enablement [27], and commercial RCX tool
on S8 commercial enablement [28].

Figure 5: RC correlation between OpenLane OpenRCX on
SKY130HD open enablement [27], and commercial RCX tool
on S8 commercial enablement [28].

OpenRCX extractor, such that correlation has degraded substan-
tially as seen in Figure 5. [38] describes another example involving
incorrect use of static timing analysis. We believe this highlights a
need for added attention to the DATC's Calibrations e�ort [51].

3 MACRO PLACEMENT
Macro placement is an important challenge for both IC physical
design and ML-enabled EDA. In IC physical design, it is well-
understood that the placement of macros in the �oorplan will sig-
ni�cantly impact �nal design QoR. Moreover, in today's physical
synthesis �ows (e.g., Synopsys Fusion Compiler or Cadence Genus
iSpatial), a �oorplan .def with macro and pin placements is typically
needed as an input to the front-end physical synthesis. From the
perspective of ML-enabled EDA, the scale of a macro placement
problem instance is much smaller than that of standard cell P&R,
which makes the related ML models much easier to train and un-
derstand. Thus, it is important to establish research foundations for
macro placement. Toward this goal, progress includes the follow-
ing. (i) We have established a modern set of open benchmarks for
macro placement, and provided fully reproducible and reliable �ows
for these benchmarks. (ii) A new macro placer,Hier-RTLMP, can
handle modern designs with complex logical hierarchies and hun-
dreds to thousands of macros. This can serve as a baseline for other
macro placers. (iii) We note implications for research directions in
ML-enabled macro placement.

3.1 Modern Benchmarks for Macro Placement
Improvement of optimizers, including EDA tools, requiresrelevant
and probativetestcases or benchmarks. Often, �classical� bench-
marks are outdated and/or incomplete � e.g., placement bench-
marks in Bookshelf format do not have well-formed functional or
timing information � and cannot be used for �ow-scale evaluation.
To address this, modern and fully-formed benchmarks are needed.
The MacroPlacementrepo [31] provides open-source designs in
open enablements, along with multiple EDA tool �ows.

Open-source designs include the following.
� Ariane[32] is a 64-bit RISC-V CPU design.Ariane_136contains

136 macros, and is generated by instantiating 16-bit memories.
Ariane_133contains 133 macros, and is generated by updating
the memory connections of theAriane_136design.

� MemPool[33] is a many-core system targeting image processing
applications. It implements 256 RISC-V cores that can access a
large, shared L1 memory in at most �ve cycles.

� NVDLA(NVIDIA Deep Learning Accelerator) [34] is a free and
open architecture that promotes a standard way to design deep
learning inference accelerators.

Open-source enablements include the following.
� NanGate45Open Cell Library based on FreePDK45 [35], with the

bsg_fakeram black-box SRAM generator [36] used to generate
fake single-port SRAMs (i.e., LEF abstracts and Liberty models
for P&R).

� ASAP7[37] 7nm predictive PDK, with FakeRAM2.0 [39] used to
generate fake single-port SRAMs.

� SKY130HD[41], with the metal stack extended to nine layers
since the original �ve-layer metal stack is insu�cient to route
macro-dominated testcases. [36] is used to generate fake single-
port SRAMs.

Implementation �ows enable fully reproducible example macro
placement solutions for each of the testcases and enablements.
These include the following.
� Flow-1is the logical synthesis-based SP&R �ow using Cadence

Genus and Innovus.1 See Figure 6(a).
� Flow-2is the physical synthesis-based SP&R �ow using Cadence

Genus iSpatial and Innovus. See Figure 6(b).
� Flow-3is the logical synthesis-based SP&R �ow using Yosys and

OpenROAD. See Figure 6(c).
All runscripts, including for both macro placement and standard
cell SP&R, are provided for these �ows to ensure full transparency
and reproducibility. Here, we highlight the very signi�cant recent
change in policy by Cadence Design Systems [8], which opens up
new synergies between RDF and commercial EDA tools and �ows.
The new Cadence policy allows researchers to openly share tool
runscripts; this is a big step toward mitigating the �irreproducibility
of research, by construction� noted in previous RDF updates.

3.2 A Macro Placer for Large-Scale Designs
Macro placement in RDF2019 was performed byTritonMacroPlace,
which divides the layout region into four quadrants and uses a

1These scripts were written and developed by ABKGroup students at UCSD; however,
the underlying commands and reports are copyrighted by Cadence. We thank Cadence
for granting permission to share our research to help promote and foster the next
generation of innovators.



IEEE CEDA DATC: Expanding Research Foundations for IC Physical Design and ML-Enabled EDA ICCAD'22, October 30�November 03, 2022, San Diego, CA

Figure 6: Multiple �ows (a)�(c) provided by the MacroPlace-
ment repo [31].

modi�ed ParquetFP[42] to pack and snap macros into corners of
the layout.TritonMacroPlacehas been replaced byRTL-MP[17]
which combines several key elements to produce human-quality
macro placements: (i) exploitation of RTL logical hierarchy and au-
toclustering to transform the original netlist into a clustered netlist;
(ii) sequential graph analysis and capture of data�ow using vir-
tual connections between physical clusters of the clustered netlist;
and (iii) comprehension of pin access, notch region avoidance and
placement guidance for macros in its placement cost function.

However,RTL-MPcannot handle very large complex IP blocks, as
its clustered netlist corresponds to a single-level physical hierarchy,
and macros are constrained to be placed along the block periphery.
A recently-developedHier-RTLMP[16] escapes this limitation by
adopting a multilevel methodology and new features that include
the following. (i)Hier-RTLMPconverts the logical hierarchy of the
netlist into a multilevel physical hierarchy, which allows handling
of large-scale complex designs and placement of macros in the core
area. The data�ow of the design is captured through selectively

merging and dissolving logical modules in the logical hierarchy. (ii)
Initial shape functions for physical clusters are calculated bottom-
up from leaf clusters, and then a given cluster's shape is re�ned
during top-down hierarchical macro placement as the location and
shape of its parent cluster are determined. This two-step shaping
process leads to improved runtime and QoR outcomes. (iii) To
avoid global congestion issues, a hierarchical bus planning engine
performs route planning for the global nets at each level of the
physical hierarchy, to determine the pin access regions for each of
the physical clusters.

Hier-RTLMPhas been integrated into the latest OpenROAD �ow
and run on the benchmarks mentioned in Subsection 3.1. Figure
7 shows results from runningHier-RTLMPon a large-scale, com-
plex machine learning acceleratorC01;0_02with 760 macros, from
the open-source project [5]. (The Hier-RTLMP macro placement is
the starting point for commercial P&R �ow.) Figures 7(a)�(c) show
views of the post-routing layout. Figure 7(d) shows the placement
of the child clusters of the root (top-level) cluster, along with the
corresponding bus planning result. There is one IO cluster contain-
ing memories, and eight functional units (%*_0 to %*_7) each of
which is an individual cluster containing both macros and standard
cells. Standard-cell clusters at the top level contain muxing logic
that processes the IOs and interfaces with the eight functional units.
The �gure shows how the macro placement follows the design's
data�ow, with the IO cluster close to the IOs, and the standard-cell
clusters in the middle of the eight functional unit clusters. In Figure
7(d), black lines show inter-cluster connections and the dark rectan-
gles show the result of bus planning and pin access region de�nition
along the cluster boundaries. Dark blue rectangles in Figure 7(d)
correspond to orange rectangles in Figure 7(b) that highlight pin
access regions.Hier-RTLMPcreates the bus plan and pin access
regions to help ensure global route access into the physical clusters.

3.3 ML-Driven Macro Placement
Machine learning approaches have been applied to di�erent stages
of physical design, such as standard cell placement [1] and clock tree
synthesis [18]. Two basic directions can be seen: (i) the ML-aided
approach, which tries to use ML techniques to enhance existing
tools or optimizers; and (ii) the ML-driven approach, which tries to
use ML techniques to �replace� existing tools or optimizers. Each
of these directions is applicable to macro placement.

3.3.1 ML-aided Macro Placement.EDA tools usually have many
knobs and parameters, such as the timing-driven and congestion-
driven options and e�ort levels seen with standard-cell P&R tools.
Traditionally, tool developers set default values for these knobs and
human design engineers tune the knobs further to achieve better
PPA. However, the manual tuning is time-consuming and ine�cient.
Agnesina el al. [1] use a deep reinforcement learning framework to
optimize the placement knobs or parameters of a commercial EDA
tool. Such a methodology can be also be applied to a macro placer
such asHier-RTLMP. The cost function ofHier-RTLMPis [17]

2>BC= U� �A40 ¸ V� , ! ¸ W� ?>DC;8=4̧ Z � ?180B

¸ [ � ?1;>2:064 ¸ \ � ?6D830=24̧ _ � ?=>C2�
(1)

where�A40 is the area of the current �oorplan,, is a wirelength
estimate (HPWL),?>DC;8=4is the penalty for violating the �xed




	Abstract
	1 Introduction
	2 Recent Improvements to RDF
	2.1 Timing-Sensibility of RosettaStone
	2.2 METRICS2.1
	2.3 On the Use of Open Enablements

	3 Macro Placement
	3.1 Modern Benchmarks for Macro Placement
	3.2 A Macro Placer for Large-Scale Designs
	3.3 ML-Driven Macro Placement

	4 Cloud-Native Enablement of Large-Scale Designs of Experiments
	4.1 Container and Container Orchestration
	4.2 Kubernetes Cluster for Large-Scale Design of Experiments
	4.3 Example: Cloud-Native Design of Experiments with Kubernetes and Ray

	5 Conclusion
	6 Acknowledgments
	References

