
IEEE CEDA DATC: Expanding Research Foundations for IC
Physical Design and ML-Enabled EDA

Invited Paper

Jinwook Jung
IBM Research

Yorktown Heights, NY, USA
jinwookjung@ibm.com

Andrew B. Kahng
UC San Diego

La Jolla, CA, USA
abk@ucsd.edu

Ravi Varadarajan
UC San Diego

La Jolla, CA, USA
rvaradarajan@ucsd.edu

Zhiang Wang
UC San Diego

La Jolla, CA, USA
zhw033@ucsd.edu

ABSTRACT
This paper describes new elements in the RDF-2022 release of the
DATC Robust Design Flow, along with other activities of the IEEE
CEDA DATC. The RosettaStone initiated with RDF-2021 has been
augmented to include 35 benchmarks and four open-source tech-
nologies (ASAP7, NanGate45 and SkyWater130HS/HD), plus timing-
sensible versions created using path-cutting. The Hier-RTLMP
macro placer is now part of DATC RDF, enabling macro placement
for large modern designs with hundreds of macros. To establish a
clear baseline for macro placers, new open-source benchmark suites
on open PDKs, with corresponding flows for fully reproducible re-
sults, are provided. METRICS2.1 infrastructure in OpenROAD and
OpenROAD-flow-scripts now uses native JSON metrics reporting,
which is more robust and general than the previous Python script-
based method. Calibrations on open enablements have also seen
notable updates in the RDF. Finally, we also describe an approach
to establishing a generic, cloud-native large-scale design of experi-
ments for ML-enabled EDA. Our paper closes with future research
directions related to DATC’s efforts.

CCS CONCEPTS
•Hardware→ Physical design (EDA);Methodologies for EDA.

KEYWORDS
VLSI CAD, open source, EDA, machine learning

ACM Reference Format:
Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang.
2022. IEEE CEDA DATC: Expanding Research Foundations for IC Physical
Design and ML-Enabled EDA: Invited Paper. In ICCAD’22: IEEE/ACM 2022
International Conference On Computer Aided Design, October 30–November 03,
2022, San Diego, CA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3508352.3561379

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD’22, October 30–November 03, 2022, San Diego, CA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3561379

1 INTRODUCTION
IEEE CEDA Design Automation Technical Committee (DATC) [21]
has developed a public reference design flow, named DATC Ro-
bust Design Flow (RDF) [2–4, 10, 11]. The RDF preserves leading
research codes in a complete design flow, and serves as a reposi-
tory of academic point tools. It is also intended to foster flow-scale
and cross-stage optimization research, rather than single-stage,
“point-tool” optimizations. To this end, RDF also enables measure-
ment of quality of results (QoR) throughout the tool flow, using
a standardized metrics format. The first release, named OpenDe-
sign Flow Database, appeared in 2016 and was built upon CAD
contest-winning tools. The RDF subsequently evolved both verti-
cally and horizontally to achieve a complete RTL-to-GDS flow with
multiple tool options available [2–4, 10, 11]. In the 2020 release [3],
RDF brought the integrated OpenROAD app [23] into its inventory,
solidifying the RTL-to-GDS implementation flow. The RDF scope
and mission were also updated, bringing attention to analysis and
verification research; validation of research in a full-flow context;
and infrastructure (from obfuscation and anonymization to metrics
collection) to support ML-enabled EDA (ML EDA) research. RDF is
currently built upon many academic tools, as shown in Table 1.

With RDF as a foundation, the IEEE CEDA DATC is extending
its activities beyond flow enablement, with the goal of establishing
and expanding research foundations for IC physical design and ML
EDA. In the following, we describe three main directions of effort
from the past year.
• First, there have been continuous improvements to the existing
RDF elements. (i) The RosettaStone format conversion capability,
based on the OpenDB data model and in-memory database, has
been improved to create more timing-sensible netlists. (ii) The
METRICS2.1 infrastructure in OpenROAD [23] and OpenROAD-
flow-scripts [24] has been updated to report metrics in the MET-
RICS2.1 format natively in JSON. (iii) The Calibrations effort [51]
has been extended to include additional analysis data to guide
academic researchers. This effort compiles datasets for algorithm
and machine learning research that aims to improve analysis and
verification accuracy, especially in open-source tools. The need
for the research community to carefully maintain the quality and
accuracy of its open enablements is highlighted with a recent
example of RC extraction in the SKY130 technology.

• Second, macro placement is now a separate engine (i.e., no longer
embedded within the floorplanning step) in the RDF flow tax-
onomy. Our efforts have focused on benchmark creation as well
as improvements to macro placement capability in RDF. (i) To

https://doi.org/10.1145/3508352.3561379
https://doi.org/10.1145/3508352.3561379
https://doi.org/10.1145/3508352.3561379

ICCAD’22, October 30–November 03, 2022, San Diego, CA Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang

Table 1: RDF-2022 Components

Component Tools
RTL generator Chisel/FIRRTL
RTL obfuscation ASSURE
Logic synthesis Yosys, ABC
DFT insertion Fault
Floorplanning TritonFP
Macro Placement TritonMP, RTL-MP, Hier-RTLMP
Global placement RePlAce, FZUplace, NTUPlace3, ComPLx, Eh?Placer,

FastPlace3-GP, mPL5/6, Capo
Detailed placement OpenDP, MCHL, FastPlace3-DP
Flip-flop clustering Mean-shift, FlopTray
Clock tree synthesis TritonCTS
Global routing FastRoute4-lefdef, NCTUgr, CUGR
Detailed routing TritonRoute, NCTUdr, DrCU
Layout finishing KLayout, Magic
Gate sizing Resizer, TritonSizer
Parasitic extraction OpenRCX
STA OpenSTA, iTimerC
Database OpenDB
Libraries/PDK NanGate45, SKY130, ASAP7, GF180MCU, NCTUcell
Integrated app OpenROAD
Benchmark conversion RosettaStone (timing-sensible)

drive physical design research with relevant testcases, we incor-
porate macro-dominated benchmarks that are based on modern
open-source designs and open-source PDKs, along with mixed
academic-commercial tool flows and corresponding reference
results. Here, a recent policy change by Cadence Design Sys-
tems [8] enables a larger solution space for flow research, and
we provide early examples of what is possible. (ii) We add two
new macro placers into RDF-2022: RTL-MP [17], and Hier-RTLMP
[16]. The latter works with a multilevel physical hierarchy that
is derived from the RTL logical hierarchy, allowing it to handle
large IP blocks that have hundreds or even thousands of macros.

• Third, we establish a generic cloud-native enablement for large-
scale design of experiments. As is well-known, interest in ML-
enabled EDA has been increasing, but generating large amounts
of data for ML EDA can require substantial compute resources.
We therefore call attention to the wide availability of cloud com-
puting and describe the use of public cloud resources to generate
large-scale data for ML EDA research.
The remainder of this paper is organized as follows. Section 2 de-

scribes improvements to existing elements of RDF: timing-sensibility
in RosettaStone, deployment of METRICS2.1, and amplification of
the Calibrations effort. Section 3 describes efforts related to auto-
matic macro placement. Section 4 describes the cloud-native en-
ablement of large-scale designs of experiments. Section 5 concludes
with a summary of current plans and open directions for DATC
activity.

2 RECENT IMPROVEMENTS TO RDF
This section reviews three main avenues of improvement made in
RDF-2022: timing-sensibility in RosettaStone (Section 2.1), native
JSON-based deployment of METRICS2.1 (Section 2.2), and amplifi-
cation of the Calibrations effort (Section 2.2).

2.1 Timing-Sensibility of RosettaStone
The DATC RDF includes academic contest benchmarks and contest-
winning tools from more than 15 years ago. For some years, these
benchmarks and tools were stuck in a “parallel universe”: the old
tools could not be run on modern designs, and the old benchmarks
could not be fed to modern tools. To cope with this, an open-source

Table 2: Effect of logic cutting on timing sensibility of
DAC2012 benchmarks. PreLC ECP (resp. PostLC ECP) is the
original, pre-logic-cutting (resp. post-logic-cutting) effective
clock period. PreLC #Stage on WTP (resp. PostLC #Stage on
WTP) is the pre-logic-cutting (resp. post-logic-cutting) num-
ber of stages on the worst timing path.

Design PreLC
ECP (ns)

PreLC
#Stages
on WTP

PostLC
ECP (ns)

PostLC
#Stages
on WTP

superblue2 8.55 327 2.47 11
superblue3 13.28 495 1.89 24
superblue5 7.26. 271 2.62 26
superblue6 7.18 267 2.67 26
superblue7 5.42 211 2.87 10
superblue9 8.14 308 2.05 82
superblue11 70.47 2497 2.37 27
superblue12 3.91 141 3.11 20
superblue14 16.76 450 2.78 26
superblue16 4.72 144 1.31 21
superblue19 7.25 279 1.79 18

benchmark conversion platform, RosettaStone, was added in RDF-
2021. Figure 1 illustrates the scope of RosettaStone: by leveraging
an industry-strength (LEF5.8) data model and in-memory database,
RosettaStone can go beyond tool chaining and enable deeper inte-
grations whereby (i) flow stages can consider or co-operate with
subsequent stages; or (ii) academic tools can be cross-evaluated on
both commercial and academic benchmarks. As elaborated in [13],
RosettaStone not only connects past academic tools to the present
and future of physical design research, but also enables academic
research and contests to be framed in a complete flow context, with
canonical evaluations such as post-route timing or number of DRC
violations.

A limitation of RosettaStone in RDF-2021 is that it only lever-
ages OpenDB [20], which does not store timing information. In
RDF-2022, we add the use of OpenSTA [48] in RosettaStone to avoid
generation of unrealistic timing paths during conversion between
Bookshelf and LEF/DEF formats. The unrealistic timing paths are
typically caused by original contest creators’ remapping of logic
gates (e.g., for obfuscation purposes) without consideration of tim-
ing constraints. To address this issue, RosettaStone now includes a
tunable logic path cutting flow. We call OpenSTA APIs to retrieve
the worst timing paths and convert single-output/single-input com-
binational logic gates into flip-flops, or else insert flip-flops and
create associated output nets, so as to not exceed a user-defined
maximum path length. In practice, the timing-aware logic cutting
flow eliminates the strange timing structures that can exist in old
academic benchmarks.

Table 2 shows the results of logic cutting on DAC-2012 bench-
marks. All the benchmarks are implemented in the ASAP7 enable-
ment [37]. Timing results are measured for the unplaced netlists
using OpenSTA. We follow the convention seen in commercial
tools, and ignore timing paths that pass through nets that have
fanout larger than or equal to 100. Additional experimental results
on other benchmarks are available in the repo [40], which also
includes scripts that implement the path cutting flow.

IEEE CEDA DATC: Expanding Research Foundations for IC Physical Design and ML-Enabled EDA ICCAD’22, October 30–November 03, 2022, San Diego, CA

Figure 1: RosettaStone completes the vision of previous re-
search enablements (RDF [4] and A2A [14]). Figure adapted
from [13].

2.2 METRICS2.1
Both OpenROAD and OpenROAD-flow-scripts (ORFS) have been
updated to report metrics in the METRICS2.1 [6, 7, 9] format using
native JSON reporting. Previously, the metrics were reported by a
Python script which ”mined” tool logfiles to extract the relevant
metrics information and report it in the METRICS2.1 format. This
was error-prone, as the Python script had to be updated frequently
to keep track of changes to the logfiles generated by the various
engines in OpenROAD.

The change to native JSON-based METRICS2.1 reporting is in
the latest public releases of OpenROAD and ORFS. Usage of this
reporting is outlined in the steps below.
• Invoke OpenROAD with -metrics <metric_file_name.json>. This
will print all of the collected metrics into the json file. Some met-
rics are implicitly collected during the execution of an engine
such as global placement, global or detailed routing, etc.; exam-
ples include wirelength and DRC errors during each iteration
of the detailed router. ORFS also has Tcl commands to explicitly
print aggregated metrics such as area, power or timing metrics
at any stage in the flow.

• Use the Tcl command set_metrics_stage ”<metrics_stage>” to set
the metrics stage in the flow. This stage is used for all the metrics
printed during the OpenROAD call until the stage is changed
with a subsequent call to set_metrics_stage. The current stages
in METRICS2.1 are
– set_metrics_stage “floorplan__{}”
– set_metrics_stage “globalplace__{}”
– set_metrics_stage “placeopt__{}”
– set_metrics_stage “detailedplace__{}”
– set_metrics_stage “cts__{}”
– set_metrics_stage “globalroute__{}”
– set_metrics_stage “detailedroute__{}”
– set_metrics_stage “finish__{}”

• Use Tcl commands push_metrics_stage and pop_metrics_stage to
apply metrics modifiers to print metrics at different substages
as required. For example, ORFS uses the following commands to
print metrics pre- and post-timing repair during CTS.
– push_metrics_stage “cts__{}__pre_repair”
– push_metrics_stage “cts__{}__post_repair”

Figure 2: OpenROAD metrics from detailed route.

Figure 3: Pre- and post-optimization metrics reporting ob-
tained through use of metrics modifiers.

Figure 2 shows an example of the metrics reported during de-
tailed routing. The detailed router in OpenROAD can print wire-
length and number of DRC errors after each iteration, based on
a metrics modifier for the detailedroute__route__wirelength and
detailedroute__route__drc_errors metrics. The metrics modifier is
iter:<iteration_count>. Figure 3 shows howmetrics modifiers change
the pre- and post-timing optimization metrics reporting after CTS
buffer insertion.

2.3 On the Use of Open Enablements
With continued development and adoption of the RDF and Open-
ROAD, we observe that open enablements (tools, PDKs, libraries,
etc.) are only as good as how they are used. The open-source con-
text allows both tools and enablements to degrade in the absence
of strong regression testing, and/or proper checks and balances
in the development and release process. A concrete example is
seen in the use of the OpenRCX 2.5D RC extraction tool for the
open-source SKY130HD enablement. Here, the golden commercial
enablement, used by SkyWater Technology with its commercial
customers, is S8 [28]; the corresponding open-source SKY130 PDK
[27] was derived from S8. The OpenROAD use of OpenRCX for
SKY130 [26] has shown good correlation for years, as seen in the
Cadence Ostrich tool plot of Figure 4. However, OpenLane [25]
(commit hash: 7b15116) modifies the lookup tables that guide the

ICCAD’22, October 30–November 03, 2022, San Diego, CA Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang

Figure 4: RC correlation between OpenROAD OpenRCX on
SKY130HD open enablement [27], and commercial RCX tool
on S8 commercial enablement [28].

Figure 5: RC correlation between OpenLane OpenRCX on
SKY130HD open enablement [27], and commercial RCX tool
on S8 commercial enablement [28].

OpenRCX extractor, such that correlation has degraded substan-
tially as seen in Figure 5. [38] describes another example involving
incorrect use of static timing analysis. We believe this highlights a
need for added attention to the DATC’s Calibrations effort [51].

3 MACRO PLACEMENT
Macro placement is an important challenge for both IC physical
design and ML-enabled EDA. In IC physical design, it is well-
understood that the placement of macros in the floorplan will sig-
nificantly impact final design QoR. Moreover, in today’s physical
synthesis flows (e.g., Synopsys Fusion Compiler or Cadence Genus
iSpatial), a floorplan .def with macro and pin placements is typically
needed as an input to the front-end physical synthesis. From the
perspective of ML-enabled EDA, the scale of a macro placement
problem instance is much smaller than that of standard cell P&R,
which makes the related ML models much easier to train and un-
derstand. Thus, it is important to establish research foundations for
macro placement. Toward this goal, progress includes the follow-
ing. (i) We have established a modern set of open benchmarks for
macro placement, and provided fully reproducible and reliable flows
for these benchmarks. (ii) A new macro placer, Hier-RTLMP, can
handle modern designs with complex logical hierarchies and hun-
dreds to thousands of macros. This can serve as a baseline for other
macro placers. (iii) We note implications for research directions in
ML-enabled macro placement.

3.1 Modern Benchmarks for Macro Placement
Improvement of optimizers, including EDA tools, requires relevant
and probative testcases or benchmarks. Often, “classical” bench-
marks are outdated and/or incomplete – e.g., placement bench-
marks in Bookshelf format do not have well-formed functional or
timing information – and cannot be used for flow-scale evaluation.
To address this, modern and fully-formed benchmarks are needed.
The MacroPlacement repo [31] provides open-source designs in
open enablements, along with multiple EDA tool flows.
Open-source designs include the following.
• Ariane [32] is a 64-bit RISC-V CPU design. Ariane_136 contains
136 macros, and is generated by instantiating 16-bit memories.
Ariane_133 contains 133 macros, and is generated by updating
the memory connections of the Ariane_136 design.

• MemPool [33] is a many-core system targeting image processing
applications. It implements 256 RISC-V cores that can access a
large, shared L1 memory in at most five cycles.

• NVDLA (NVIDIA Deep Learning Accelerator) [34] is a free and
open architecture that promotes a standard way to design deep
learning inference accelerators.

Open-source enablements include the following.
• NanGate45 Open Cell Library based on FreePDK45 [35], with the
bsg_fakeram black-box SRAM generator [36] used to generate
fake single-port SRAMs (i.e., LEF abstracts and Liberty models
for P&R).

• ASAP7 [37] 7nm predictive PDK, with FakeRAM2.0 [39] used to
generate fake single-port SRAMs.

• SKY130HD [41], with the metal stack extended to nine layers
since the original five-layer metal stack is insufficient to route
macro-dominated testcases. [36] is used to generate fake single-
port SRAMs.

Implementation flows enable fully reproducible example macro
placement solutions for each of the testcases and enablements.
These include the following.
• Flow-1 is the logical synthesis-based SP&R flow using Cadence
Genus and Innovus.1 See Figure 6(a).

• Flow-2 is the physical synthesis-based SP&R flow using Cadence
Genus iSpatial and Innovus. See Figure 6(b).

• Flow-3 is the logical synthesis-based SP&R flow using Yosys and
OpenROAD. See Figure 6(c).

All runscripts, including for both macro placement and standard
cell SP&R, are provided for these flows to ensure full transparency
and reproducibility. Here, we highlight the very significant recent
change in policy by Cadence Design Systems [8], which opens up
new synergies between RDF and commercial EDA tools and flows.
The new Cadence policy allows researchers to openly share tool
runscripts; this is a big step toward mitigating the “irreproducibility
of research, by construction” noted in previous RDF updates.

3.2 A Macro Placer for Large-Scale Designs
Macro placement in RDF2019 was performed by TritonMacroPlace,
which divides the layout region into four quadrants and uses a

1These scripts were written and developed by ABKGroup students at UCSD; however,
the underlying commands and reports are copyrighted by Cadence. We thank Cadence
for granting permission to share our research to help promote and foster the next
generation of innovators.

IEEE CEDA DATC: Expanding Research Foundations for IC Physical Design and ML-Enabled EDA ICCAD’22, October 30–November 03, 2022, San Diego, CA

(a)

(b)

(c)

Figure 6: Multiple flows (a)–(c) provided by theMacroPlace-
ment repo [31].

modified ParquetFP [42] to pack and snap macros into corners of
the layout. TritonMacroPlace has been replaced by RTL-MP [17]
which combines several key elements to produce human-quality
macro placements: (i) exploitation of RTL logical hierarchy and au-
toclustering to transform the original netlist into a clustered netlist;
(ii) sequential graph analysis and capture of dataflow using vir-
tual connections between physical clusters of the clustered netlist;
and (iii) comprehension of pin access, notch region avoidance and
placement guidance for macros in its placement cost function.

However, RTL-MP cannot handle very large complex IP blocks, as
its clustered netlist corresponds to a single-level physical hierarchy,
and macros are constrained to be placed along the block periphery.
A recently-developed Hier-RTLMP [16] escapes this limitation by
adopting a multilevel methodology and new features that include
the following. (i) Hier-RTLMP converts the logical hierarchy of the
netlist into a multilevel physical hierarchy, which allows handling
of large-scale complex designs and placement of macros in the core
area. The dataflow of the design is captured through selectively

merging and dissolving logical modules in the logical hierarchy. (ii)
Initial shape functions for physical clusters are calculated bottom-
up from leaf clusters, and then a given cluster’s shape is refined
during top-down hierarchical macro placement as the location and
shape of its parent cluster are determined. This two-step shaping
process leads to improved runtime and QoR outcomes. (iii) To
avoid global congestion issues, a hierarchical bus planning engine
performs route planning for the global nets at each level of the
physical hierarchy, to determine the pin access regions for each of
the physical clusters.

Hier-RTLMP has been integrated into the latest OpenROAD flow
and run on the benchmarks mentioned in Subsection 3.1. Figure
7 shows results from running Hier-RTLMP on a large-scale, com-
plex machine learning accelerator 𝑡𝑎𝑏𝑙𝑎_02 with 760 macros, from
the open-source project [5]. (The Hier-RTLMP macro placement is
the starting point for commercial P&R flow.) Figures 7(a)–(c) show
views of the post-routing layout. Figure 7(d) shows the placement
of the child clusters of the root (top-level) cluster, along with the
corresponding bus planning result. There is one IO cluster contain-
ing memories, and eight functional units (𝑃𝑈 _0 to 𝑃𝑈 _7) each of
which is an individual cluster containing both macros and standard
cells. Standard-cell clusters at the top level contain muxing logic
that processes the IOs and interfaces with the eight functional units.
The figure shows how the macro placement follows the design’s
dataflow, with the IO cluster close to the IOs, and the standard-cell
clusters in the middle of the eight functional unit clusters. In Figure
7(d), black lines show inter-cluster connections and the dark rectan-
gles show the result of bus planning and pin access region definition
along the cluster boundaries. Dark blue rectangles in Figure 7(d)
correspond to orange rectangles in Figure 7(b) that highlight pin
access regions. Hier-RTLMP creates the bus plan and pin access
regions to help ensure global route access into the physical clusters.

3.3 ML-Driven Macro Placement
Machine learning approaches have been applied to different stages
of physical design, such as standard cell placement [1] and clock tree
synthesis [18]. Two basic directions can be seen: (i) the ML-aided
approach, which tries to use ML techniques to enhance existing
tools or optimizers; and (ii) the ML-driven approach, which tries to
use ML techniques to “replace” existing tools or optimizers. Each
of these directions is applicable to macro placement.

3.3.1 ML-aided Macro Placement. EDA tools usually have many
knobs and parameters, such as the timing-driven and congestion-
driven options and effort levels seen with standard-cell P&R tools.
Traditionally, tool developers set default values for these knobs and
human design engineers tune the knobs further to achieve better
PPA. However, the manual tuning is time-consuming and inefficient.
Agnesina el al. [1] use a deep reinforcement learning framework to
optimize the placement knobs or parameters of a commercial EDA
tool. Such a methodology can be also be applied to a macro placer
such as Hier-RTLMP. The cost function of Hier-RTLMP is [17]

𝑐𝑜𝑠𝑡 = 𝛼 ×𝐴𝑟𝑒𝑎 + 𝛽 ×𝑊𝐿 + 𝛾 × 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 + 𝜁 × 𝑝𝑏𝑖𝑎𝑠

+ 𝜂 × 𝑝𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 + 𝜃 × 𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 + 𝜆 × 𝑝𝑛𝑜𝑡𝑐ℎ
(1)

where 𝐴𝑟𝑒𝑎 is the area of the current floorplan,𝑊 is a wirelength
estimate (HPWL), 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 is the penalty for violating the fixed

ICCAD’22, October 30–November 03, 2022, San Diego, CA Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang

(a) (b) (c) (d)

Figure 7: Hier-RTLMP results for the tabla_02 design [5]. (a) Post-placement layout. (b) Post-placement layout with highlighted
pin access regions. (c) Post-routing layout. (d) Top-level bus planning result.

(a) (b)

Figure 8: Post-routing layouts of design Ariane-133 [32] im-
plemented in NanGate45 [35]. The macro placements in (a)
and (b) are created respectively by the Circuit Training RL-
based approach [19] [43] and by Hier-RTLMP.

outline constraint, 𝑝𝑏𝑖𝑎𝑠 is the penalty to promote macro peripheral
bias, 𝑝𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 is the penalty for pin access and macro blockage,
𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 is the penalty for macro guidance, 𝑝𝑛𝑜𝑡𝑐ℎ is the penalty
for notch regions, and 𝛼 , 𝛽 , 𝛾 , 𝜁 , 𝜂, 𝜃 , 𝜆 are the corresponding
weights. Currently, the hyperparameter tuning tool Tune [29] is
used for automatic design-specific weight tuning. On the other
hand, the work of [1] suggests that RL-based parameter tuning
might better optimize the weights within less runtime. Since all
codes and algorithms of Hier-RTLMP are available, a trained RL
model based on Hier-RTLMP should have better interpretability,
compared to any that are based on commercial tools.

3.3.2 ML-driven Macro Placement. We may also train ML mod-
els to perform macro placement from scratch. In this vein, the
Google Brain reinforcement learning-based approach [19] to macro
placement has stimulated a great deal of interest across academia
and industry. As part of a broad discussion of the method and its
replication, we have released the MacroPlacement repo [31], which
provides macro-heavy open-source benchmark designs in open en-
ablements (see Section 3.1), along with implementations of missing
or binarized code elements from [43]. This enables the RL-based
approach of [19] [43] to be run on the macro placement benchmarks
in Section 3.1.

Figure 8 shows example macro placement results of the Ariane-
133 design [32] implemented in NanGate45 [35]. Figure 8(a) shows
the macro placement generated by the Google RL-based approach,
while Figure 8(b) shows the macro placement generated by Hier-
RTLMP. The remaining standard-cell P&R flow is performed using
a 2021 release of a state-of-the-art commercial tool. More examples
and an account of progress on ML-driven macro placement are
available from [47] and linked documents.

4 CLOUD-NATIVE ENABLEMENT OF
LARGE-SCALE DESIGNS OF EXPERIMENTS

Machine learning requires data, hence ML EDA also requires data.
However, in the EDA and IC design context, generating large
amounts of data typically requires enormous compute resources
and takes significant time. To enable efficient generation of the
large volume of data needed to support ML EDA, our efforts focus
on bringing attention to use of cloud computing resources which
are now prevalent and easily accessible from commercial providers.
Cloud-native enablement will help enable scalable CAD/EDA opti-
mizations that leverage massive data and parallelism [12].

An important question is how to best utilize a public cloud to
generate large-scale data for ML EDA. Merely obtaining bare cloud
instances, installing libraries and compiling tools every time does
not scale well and is not easily portable to alternate cloud/compute
environments. This section describes a generic, cloud-native way
to enable large-scale designs of experiments for ML-enabled EDA
using public cloud services.

4.1 Container and Container Orchestration
A container is a software package which contains the application
and all its dependencies to run the application. It isolates different
applications from each other, while sharing the same OS kernel. A
containerized application comes with all its dependencies but does
not include the full OS, avoiding latency or performance overhead
issues.

A container orchestration service abstracts the underlying com-
pute infrastructure, which can be on-premises datacenter, local
servers, public cloud services, or even a mixture of those. It is
used to deploy, manage, and scale-out containers on a large-scale
compute infrastructure. Thanks to this abstraction of the compute
environment, container orchestration is a standard and generic way
of deploying containerized applications regardless of the underly-
ing compute infrastructure. Kubernetes [49] is the most widely used
container orchestration platform. Here are a few key terminologies.
• A node is a compute machine, such as a physical server, a virtual
machine, or a cloud instance.

• A set of nodes that are grouped together is called a cluster.
• A pod is a construct to run containers in a Kubernetes cluster,
providing an isolated environment for containers in a node.

• Storage resources are abstracted by persistent volume (PV). A PV
is external storage made available in a cluster, such as a network
file system or cloud file storage.

IEEE CEDA DATC: Expanding Research Foundations for IC Physical Design and ML-Enabled EDA ICCAD’22, October 30–November 03, 2022, San Diego, CA

Experiments

NodeNode

Experiment

PV

PVC Pod

Kubernetes

Container

Pod

Container

Pod

Container

Pod

Container

Storage Ray

Figure 9: Kubernetes cluster example for large-scale DoE.
PV/PVC stores PDK and cell libraries, serves as common data
storage, and is mounted on pods. Ray is used to distribute an
individual experiment to the pods.

• To use PVs in pods, we create persistent volume claims (PVCs). A
PVC makes a PV mountable to pods as their storage.

4.2 Kubernetes Cluster for Large-Scale Design
of Experiments

Figure 9 shows a generic Kubernetes cluster suitable for large-scale
designs of experiments (DoEs). It includes a set of nodes, each of
which can be a local machine, such as a laptop or a server. Since
we also need storage for our data (PDK, libraries, and designs), we
have a PV and its PVC in the cluster, which is associated with a
storage element; this can be local storage or cloud-hosted storage.2
We have a single pod that runs the application container, which
is the application of interest, e.g., a logic synthesis or P&R tool
container. Note that Figure 9 is a cloud-native Kubernetes cluster,
meaning that we can deploy it to any sort of compute environment
(local machine, laptop, private/public cloud, etc.).

To enable large-scale design experiments, we want larger Kuber-
netes clusters that have more resources. One way to achieve the
larger cluster is to scale-out the number of containers within the
cluster. A natural subsequent question would be how to efficiently
distribute multiple design experiments across different pods. For
example, it is possible to issue a Kubernetes command multiple
times to execute each experiment, but this will not scale well.

Here, we introduce Ray [29] as shown in Figure 9. Ray is a widely-
used distributed execution framework developed by UC Berkeley.
It provides a simple Python API to build distributed applications.
Ray works well with Kubernetes via Ray Kubernetes Operator [44],
and also supports other cloud-based clusters. Ray and Kubernetes
can be used to enable distributed design experiments: we describe
experiments using the Ray Python API, and deploy experiments
across the Kubernetes cluster using Ray.3

4.3 Example: Cloud-Native Design of
Experiments with Kubernetes and Ray

To deploy a given design of experiments into the Kubernetes cluster
shown in Figure 9, we create a Docker image that can run on
the Kubernetes cluster as containers and communicate with Ray.
2It is possible to have multiple PVs and corresponding PVCs, each of which may
contain PDK, libraries, and designs separately.
3In last year’s RDF update [4], we described the use of Ray for flow autotuning [50].
In this subsection, we discuss use of Ray clusters to deal with the underlying compute
fabric to build distributed applications.

1 FROM openroad/openroad
2
3 # For kubectl
4 RUN yum install -y kubectl
5
6 # For Ray
7 RUN yum -y update \
8 && yum install -y python39 kubectl \
9 && alternatives --set python /usr/bin/python3 \
10 && python -m pip install kopf kubernetes ray

Figure 10: Dockerfile template for deploying into Kubernetes
cluster with Ray.

1 import ray
2 import subprocess
3
4 @ray.remote(num_cpus=2)
5 def sweep_utilization(util):
6 # 1. Copy experiment template
7 template = "/workspace/experiment-template"
8 workspace = "/workspace/experiment-{}".format(util)
9 subprocess.call("cp -r {} {}".format(template, workspace),
10 shell=True)
11
12 # 2. Change the utilization.
13 with open("{}/config.mk".format(workspace), 'a') as f:
14 f.write("export CORE_UTILIZATION = {}\\n".format(util))
15
16 # 3. Execute the flow
17 subprocess.call("cd {} && make DESIGN_CONFIG=./config.mk"
18 .format(workspace), shell=True)
19
20 ray.init(address)
21 obj_refs = [sweep_utilization.remote(_) for _ in range(40,60)]
22 while True:
23 _, remain = ray.wait(obj_refs)
24 if len(remain) == 0:
25 break

Figure 11: An example OpenROAD DoE using Ray.

Figure 10 shows an example of such a Docker image for OpenROAD.
We first create a dedicated Docker image for the application (Line
1). Here, we assume that the image is named openroad:openroad;
in this way, we can utilize the original application’s Docker image
as-is, and install additional packages to make it cloud-native. We
then install the necessary packages to make it work with Ray (Lines
3–10). The packages include kubectl as well as Python modules
kopf, kubernetes, and ray, as shown in Figure 10.

A Ray Python code example is shown in Figure 11, taking a
maximum floorplan utilization design goal as an example. We im-
port necessary packages (Lines 1–2) and define a function named
sweep_utilization (Lines 4–18). By adding the ‘@ray.remote’
decorator (Line 4), we can make the function distributable by Ray.
The function copies a reference flow template (Lines 6–10). It then
modifies the template to the desired utilization (Lines 12–14), and
finally runs the flow (Lines 16–18). With the function defined, we
can call the function in parallel with different utilizations (Lines 20–
25). The argument address of ray.init() (Line 20) specifies the
Kubernetes cluster URL, which can be obtained by Kubernetes com-
mands. Once the address is registered to Ray, the distribution of
multiple experiments is handled by Ray under the hood. Several de-
tailed examples are available in our GitHub repository [45], which

ICCAD’22, October 30–November 03, 2022, San Diego, CA Jinwook Jung, Andrew B. Kahng, Ravi Varadarajan, and Zhiang Wang

provides full Kubernetes/Ray examples for finding the maximum
utilization and the maximum clock frequency of a design.

5 CONCLUSION
This paper has described several recent developments in RDF-2022.
(1) Existing RDF elements have been improved, as follows. The
RosettaStone effort to bridge past academic contests and codes to
modern designs and enablements has been enhanced for improved
timing-sensibility in benchmark netlists. METRICS2.1 infrastruc-
ture in OpenROAD and OpenROAD-flow-scripts now uses native
JSON metrics reporting. Calibrations data has been augmented;
moreover, recent examples of incorrect or “uncalibrated” use of
open enablements motivate increased attention to the issue of cali-
bration. (2) Multiple efforts have focused on macro placement. (i)
New open-source benchmarks on open PDKs, with corresponding
flows for fully reproducible results, give improved baselines for aca-
demic research. (ii) The macro placement step has been explicitly
added into the RDF-2022 flow, along with the RTL-MP and Hier-
RTLMP engines. (iii) We describe potential use of these additions to
RDF in bothML-aided andML-driven macro placement research. (3)
We also present an approach to establishing a generic, cloud-native
large-scale design of experiments for ML-enabled CAD.

One area of future work is the addition of more Designs of Exper-
iments in the Metrics4ML repo [30], with open ML model-building
and prediction challenges for the research community. An example
would be the data-driven modeling and prediction of congestion
and routed wirelength from structural netlists. Another important
direction is enhancement of the MacroPlacement repo [31] – and
RDF overall – to include additional open-source designs and enable-
ments (e.g., GF180MCU [46]), and to understand more clearly how
ML can further improve the achievable PPA for relevant testcases.
The MacroPlacement effort also highlights the importance of filling
in gaps such as open-source memory generators or “fake-stack”
alternate BEOL generators, which are typically not available with
open PDKs and cell libraries but are crucial to address relevant
research questions.

6 ACKNOWLEDGMENTS
This work is supported in part by the IEEE Council on Electronic
Design Automation (CEDA), by DARPA HR0011-18-2-0032, and by
NSF CCF-2112665.

REFERENCES
[1] A. Agnesina, K. Chang and S. K. Lim. “VLSI placement parameter optimization

using deep reinforcement learning”, Proc. ICCAD, 2020, pp. 1–9.
[2] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, et al., “DATC RDF-2019:

towards a complete academic reference design flow”, Proc. ICCAD, 2019, pp. 1–6.
[3] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, et al., “DATC RDF-2020:

strengthening the foundation for academic research in IC physical design”, Proc.
ICCAD, 2020, pp. 1–6.

[4] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, S. Kim, et al., “DATC RDF-2021: design
flow and beyond”, Proc. ICCAD, 2021, pp. 1–6.

[5] H. Esmaeilzadeh, S. Ghodrati, J. Gu, S. Guo, A. B. Kahng, et al., “VeriGOOD-ML:
an open-source flow for automated ML hardware synthesis”, Proc. ICCAD, 2021,
pp. 1–7.

[6] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik, and B. Thielges, “METRICS:
a system architecture for design process optimization”, Proc. DAC, 2000, pp. 705–
710.

[7] S. Hashemi, C. T. Ho, A. B. Kahng, H. Y. Liu and S. Reda, “METRICS 2.0: a machine-
learning based optimization system for IC design”, Proc. Workshop on Open-Source
EDA Technology, 2018, pp. 1–4.

[8] D. Junkin, “Supporting the scientific method for the next generation of innova-
tors”, Open-Source EDA and Benchmarking Summit ACM/IEEE DAC birds-of-a-
feather session, July 2022. https://open-source-eda-birds-of-a-feather.github.io/
doc/slides/BOAF-Junkin-DAC-Presentation.pdf

[9] J. Jung, A. B. Kahng, S. Kim, and R. Varadarajan, “METRICS2.1 and flow tuning in
the IEEE CEDA robust design flow and OpenROAD”, Proc. ICCAD, 2021, pp. 1–9.

[10] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, et al., “DATC RDF: an academic
flow from logic synthesis to detailed routing”, Proc. ICCAD, 2018, pp. 1–4.

[11] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, et al., “DATC RDF: an open design
flow from logic synthesis to detailed routing”, Proc. Workshop on Open-Source
EDA Technology, 2018, pp. 1–4.

[12] A. B. Kahng, “Machine learning for CAD/EDA: the road ahead”, IEEE Design &
Test (2022).

[13] A. B. Kahng, M. Kim, S. Kim and M. Woo, “RosettaStone: Connecting the past,
present and future of physical design research”, IEEE Design & Test (2022).

[14] A. B. Kahng, H. Lee and J. Li, “Horizontal benchmark extension for improved
assessment of physical CAD research”, Proc. GLSVLSI, 2014, pp. 27–32.

[15] A. B. Kahng and S. Mantik, “A system for automatic recording and prediction of
design quality metrics”, Proc. ISQED, 2001, pp. 81–86.

[16] A. B. Kahng, R. Varadarajan and Z.Wang, “Hier-RTLMP: A hierarchical automatic
macro placer for large-scale complex IP blocks”, draft in submission, 2022.

[17] A. B. Kahng, R. Varadarajan and Z. Wang, “RTL-MP: toward practical, human-
quality chip planning and macro placement”, Proc. ISPD, 2022, pp. 3–11.

[18] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi and S. K. Lim, “GAN-CTS: a generative
adversarial framework for clock tree prediction and optimization”, Proc. ICCAD,
2019, pp. 1–8.

[19] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, et al., “A graph
placement methodology for fast chip design”, Nature 594 (2021), pp. 207–212.
https://github.com/google-research/circuit_training

[20] T. Spyrou, “OpenDB, OpenROAD’s database”, Proc. Workshop on Open-Source
EDA Technology, 2019.

[21] IEEE CEDA design automation technical committee. https://ieee-ceda.org/node/
2591.

[22] DATC robust design flow. https://github.com/ieee-ceda-datc/datc-rdf
[23] The OpenROAD project. https://github.com/The-OpenROAD-Project
[24] The OpenROAD flow. https://github.com/The-OpenROAD-Project/OpenROAD-

flow-scripts
[25] OpenLane https://github.com/The-OpenROAD-Project/OpenLane
[26] OpenROAD SKY130HD RCX rules file. https://github.com/The-OpenROAD-

Project/OpenROAD-flow-scripts/blob/master/flow/platforms/sky130hs/rcx_
patterns.rules

[27] SKY130-PDK. https://github.com/google/skywater-pdk
[28] S8 PDK V2.0.1. https://foss-eda-tools.googlesource.com/skywater-src-nda/+/

refs/heads/master/s8/V2.0.1/
[29] Ray. https://www.ray.io
[30] Metrics4ML. https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
[31] Macro placement. https://github.com/TILOS-AI-Institute/MacroPlacement
[32] Ariane RISC-V CPU. https://github.com/lowRISC/ariane
[33] MemPool. https://github.com/pulp-platform/mempool
[34] NVDLA open source hardware. https://github.com/nvdla/hw/tree/nv_small
[35] FreePDK45. https://eda.ncsu.edu/downloads/
[36] BSG black-box SRAM generator. https://github.com/jjcherry56/bsg_fakeram
[37] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, et al., “ASAP: a 7-nm

FinFET predictive process design kit”,Microelectronics Journal (53) (2016), pp. 105–
115. https://github.com/The-OpenROAD-Project/asap7

[38] M. Venn, “MPW1 silicon arrived! What went wrong?”, https://www.youtube.
com/watch?v=lw9ucvgQJjk&t=413s

[39] FakeRAM2.0. https://github.com/ABKGroup/FakeRAM2.0
[40] RosettaStone. https://github.com/ABKGroup/RosettaStone
[41] SkyWater open source PDK. https://github.com/google/skywater-pdk
[42] “ParquetFP”. http://vlsicad.eecs.umich.edu/BK/parquet
[43] Google research “circuit training”. https://github.com/google-research/circuit_

training
[44] Ray Kubernetes operator. https://ray-project.github.io/kuberay/components/

operator/
[45] Kubernetes-based large-scale DoE. https://github.com/ieee-ceda-datc/datc-k8s-

doe
[46] GlobalFoundries GF180MCU open source PDK. https://github.com/google/

gf180mcu-pdk
[47] A. B. Kahng, “For the Record - An Update”, August 2022. https://docs.google.com/

document/d/1c-uweo3DHiCWZyBzAdNCqqcOrAbKq1sVIfY0_4bFCYE/edit
[48] OpenSTA : parallax static timing analyzer. https://github.com/The-OpenROAD-

Project/OpenSTA/tree/937efddf5ecade9b927829074ab3bb274290a949
[49] Kubernetes. https://kubernetes.io/
[50] DATC RDF AutoTuner. https://github.com/ieee-ceda-datc/datc-rdf-flow-tuner
[51] DATC RDF calibrations. https://github.com/ieee-ceda-datc/datc-rdf-calibrations

https://open-source-eda-birds-of-a-feather.github.io/doc/slides/BOAF-Junkin-DAC-Presentation.pdf
https://open-source-eda-birds-of-a-feather.github.io/doc/slides/BOAF-Junkin-DAC-Presentation.pdf
https://github.com/google-research/circuit_training
https://ieee-ceda.org/node/2591
https://ieee-ceda.org/node/2591
https://github.com/ieee-ceda-datc/datc-rdf
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/platforms/sky130hs/rcx_patterns.rules
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/platforms/sky130hs/rcx_patterns.rules
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/platforms/sky130hs/rcx_patterns.rules
https://github.com/google/skywater-pdk
https://foss-eda-tools.googlesource.com/skywater-src-nda/+/refs/heads/master/s8/V2.0.1/
https://foss-eda-tools.googlesource.com/skywater-src-nda/+/refs/heads/master/s8/V2.0.1/
https://www.ray.io
https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
https://github.com/TILOS-AI-Institute/MacroPlacement
https://github.com/lowRISC/ariane
https://github.com/pulp-platform/mempool
https://github.com/nvdla/hw/tree/nv_small
https://eda.ncsu.edu/downloads/
https://github.com/jjcherry56/bsg_fakeram
https://github.com/The-OpenROAD-Project/asap7
https://www.youtube.com/watch?v=lw9ucvgQJjk&t=413s
https://www.youtube.com/watch?v=lw9ucvgQJjk&t=413s
https://github.com/ABKGroup/FakeRAM2.0
https://github.com/ABKGroup/RosettaStone
https://github.com/google/skywater-pdk
http://vlsicad.eecs.umich.edu/BK/parquet
https://github.com/google-research/circuit_training
https://github.com/google-research/circuit_training
https://ray-project.github.io/kuberay/components/operator/
https://ray-project.github.io/kuberay/components/operator/
https://github.com/ieee-ceda-datc/datc-k8s-doe
https://github.com/ieee-ceda-datc/datc-k8s-doe
https://github.com/google/gf180mcu-pdk
https://github.com/google/gf180mcu-pdk
https://docs.google.com/document/d/1c-uweo3DHiCWZyBzAdNCqqcOrAbKq1sVIfY0_4bFCYE/edit
https://docs.google.com/document/d/1c-uweo3DHiCWZyBzAdNCqqcOrAbKq1sVIfY0_4bFCYE/edit
https://github.com/The-OpenROAD-Project/OpenSTA/tree/937efddf5ecade9b927829074ab3bb274290a949
https://github.com/The-OpenROAD-Project/OpenSTA/tree/937efddf5ecade9b927829074ab3bb274290a949
https://kubernetes.io/
https://github.com/ieee-ceda-datc/datc-rdf-flow-tuner
https://github.com/ieee-ceda-datc/datc-rdf-calibrations

	Abstract
	1 Introduction
	2 Recent Improvements to RDF
	2.1 Timing-Sensibility of RosettaStone
	2.2 METRICS2.1
	2.3 On the Use of Open Enablements

	3 Macro Placement
	3.1 Modern Benchmarks for Macro Placement
	3.2 A Macro Placer for Large-Scale Designs
	3.3 ML-Driven Macro Placement

	4 Cloud-Native Enablement of Large-Scale Designs of Experiments
	4.1 Container and Container Orchestration
	4.2 Kubernetes Cluster for Large-Scale Design of Experiments
	4.3 Example: Cloud-Native Design of Experiments with Kubernetes and Ray

	5 Conclusion
	6 Acknowledgments
	References

