
Physically Accurate Learning-based Performance Prediction of
Hardware-accelerated ML Algorithms

Hadi Esmaeilzadeh
University of California San Diego

La Jolla, CA, USA

Soroush Ghodrati
University of California San Diego

La Jolla, CA, USA

Andrew B. Kahng
University of California San Diego

La Jolla, CA, USA

Joon Kyung Kim
University of California San Diego

La Jolla, CA, USA

Sean Kinzer
University of California San Diego

La Jolla, CA, USA

Sayak Kundu
University of California San Diego

La Jolla, CA, USA

Rohan Mahapatra
University of California San Diego

La Jolla, CA, USA

Susmita Dey Manasi
University of Minnesota
Minneapolis, MN, USA

Sachin S. Sapatnekar
University of Minnesota
Minneapolis, MN, USA

Zhiang Wang
University of California San Diego

La Jolla, CA, USA

Ziqing Zeng
University of Minnesota
Minneapolis, MN, USA

ABSTRACT
Parameterizable ML accelerators are the product of recent break-
throughs in machine learning (ML). To fully enable the design space
exploration, we propose a physical-design-driven, learning-based
prediction framework for hardware-accelerated deep neural network
(DNN) and non-DNNML algorithms. It employs a unified method-
ology, coupling backend power, performance and area (PPA) anal-
ysis with frontend performance simulation, thus achieving realistic
estimation of both backend PPA and system metrics (runtime and
energy). Experimental studies show that the approach provides ex-
cellent predictions for both ASIC (in a 12nm commercial process)
and FPGA implementations on the VTA and VeriGOOD-ML plat-
forms.

CCS CONCEPTS
• Hardware → Physical design (EDA); Hardware accelerators;
Application specific integrated circuits.
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1 INTRODUCTION
Recent advances in machine learning (ML) algorithms have fueled
a growing demand for application-specific ML hardware accelera-
tors. The design of these accelerators is non-trivial: the design cycle
from architecture to silicon implementation often takes months to
years and involves a large team of cross-disciplinary experts. Un-
der stringent time-to-market requirements, it is imperative to reduce
turnaround time without sacrificing performance.
Recent research has developed automation flows for generating

parameterizable FPGA- and/or ASIC-based accelerators. Parameter-
izable deep neural networks (DNNs) accelerators include VTA [3,
18], GeneSys [7], and Gemmini [8]. Accelerators for non-DNNML
algorithms [23], such as support vector machines or linear/logistic
regression, have widespread applications, but have seen more lim-
ited research, with the TABLA platform [16] being a prominent ex-
ample of a general-purpose non-DNN accelerator.
Generators such as those listed above allow a designer to config-

ure key parameters of a DNN/non-DNN ML accelerator, e.g., the
number of processing units or the on-chip memory configuration.
The accelerator hardware description is then automatically trans-
lated to hardware at the register-transfer level (RTL). The search
for an optimal configuration involves tradeoffs between the power
dissipation, performance, and area (PPA) of the hardware platform,
and the energy and runtime required to execute an ML algorithm
on the platform. Therefore, this optimization involves the solution
of two problems: (1) generating a hardware platform that optimizes
the PPA metrics of the hardware, and (2) selecting a PPA-optimized
hardware configuration that optimizes system-level metrics such as
the runtime and energy required to run an ML algorithm.
The prediction of platform PPA based on an architectural descrip-

tion is a longstanding challenge in electronic design automation. In
modern nanoscale technologies, the link between physical design
and PPA is particularly acute; moreover, for many ML hardware
platforms, a considerable fraction of the layout area is occupied by
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Figure 1: Miscorrelation of post-synthesis and post-routing metrics: to-
tal power and clock frequency for TABLA designs.

large memory macros which exacerbates the problem of PPA pre-
diction. The prediction of system-level metrics, such as the runtime
and energy required to execute anML algorithm, is performed using
system-level simulation engines. These simulators model data trans-
fer and computation within the accelerator to determine the number
of operations, stall cycles, memory latencies, etc. Since they use the
frequency and power metrics of the hardware platform as inputs,
their accuracy depends on the quality of PPA prediction.
Given an ML accelerator and a target clock period, the metrics

of interest are the PPA of the hardware and the energy and runtime
required to run ML algorithms. Optimizing PPA does not guaran-
tee optimal runtime and energy consumption, e.g., smaller hardware
consumes less power but requires more cycles to execute the ML
algorithm, which may result in larger energy consumption. Design
space exploration (DSE) finds an optimal architectural configura-
tion and its hardware implementation, meeting designer-specified
tradeoffs between PPA, runtime, and energy consumption. The large
number of tunable architectural parameters in an ML accelerator
results in a huge design space, and DSE requires a fast evaluator
of PPA, runtime, and energy consumption for numerous architec-
tural configurations in this space. A DNN accelerator may easily
have 5-10 million instances, and conventional evaluators require
several days of synthesis, place, and route (SP&R) runs to evalu-
ate even a single configuration. Parallel evaluation runs offer scant
relief due to limited compute resources and restrictions on EDA tool
licenses. Using post-synthesis PPA without P&R is inadequate: Fig-
ure 1 shows poor correlation between the post-synthesis and post-
SP&R results for TABLA designs, visually and through the Kendall
rank correlation coefficient (𝜏) (0⇒ no correlation, ±1⇒ strong cor-
relation). Similar miscorrelation is observed for other designs. The
𝜏 values of four VTA designs for total power are 0.61, −0.20, 0.07,
0.47 and for effective clock frequency are 0.45, −0.20, −0.16, 0.10.
Contributions: To enable full utilization of the power of param-
eterizable ML accelerator synthesis, we propose a physical-design-
driven, learning-based prediction framework for hardware-accelerated
ML algorithms. Our ML-based approach accurately estimates PPA
and system performance. It overcomes the limitations associated
with the high cost of exploring the design space by using a modest
number of SP&R backend runs to train ML models to predict the

performance of unseen ML accelerator designs. Our primary contri-
butions are summarized as follows:
• Backend and System Predictors for ASICs with prediction errors
below 10% (DNNs), 10% (small ML), and 6% (non-DNNs).

• Backend and System Predictors for FPGAs with average errors
below 12% for a set of non-DNN ML algorithms.

• We use DNN-based ML accelerators (GeneSys [7] and VTA [3,
18]), and non-DNN-based accelerators (TABLA [16] and Axi-
line [7]), to validate our framework. All the designs go through
full SP&R ASIC flow in a foundry 12nm enablement to generate
the training and validation datasets. We demonstrate the applica-
tion of our framework for accurate model-guided DSE.

2 RELATEDWORK
Prior efforts have sought to predict power, performance, and area
(PPA) at different stages of the design flow using two classes of
predictors, based on analytical models and ML models. The works
in [10, 12] introduce ML models and demonstrate significant im-
provement in PPA prediction over previous analytical models such
as ORION [21] andMcPAT [13] models. ML algorithms, and specif-
ically neural networks (NNs), have made it possible to model high-
level and gate-level designs to predict PPAmore accurately forASIC
and FPGA implementations. Recent works include power metric
prediction for high-level synthesis (HLS) [6] and PPA prediction for
memory compilers [15]. These approaches indicate that ML mod-
els outperform analytical models, and are more convenient to train
a wide range of ready-to-use ML models. To the best of our knowl-
edge, no prior work builds MLmodels based on full backend SP&R
for ASIC, as in this paper. In [2], an NN-based ML model is used to
predict power and performance for different microarchitectures and
to find Pareto-optimal design points for power and performance. An
ML model to estimate power metrics in HLS, along with sampling-
based techniques to prune the search space, is presented in [14];
thesemethods are used to find the Pareto frontier and Pareto-optimal
designs for FPGA implementations.
There is limited prior work on early prediction of DNN perfor-

mance. Aladdin [20] combines PPA-characterized building blocks
with a dataflow graph representation to estimate performance, but
does not incorporate the impact of physical design (PD) decisions
beyond the block level. However, these decisions can substantially
impact system performance. NeuPart [17] develops an analytical
model to predict energy for computation and communication in a
DNN accelerator. AutoDNNchip [22] proposes a predictor for en-
ergy, throughput, latency, and area overhead of DNN accelerators
based on architectural parameters. It determines system-level perfor-
mance metrics in an analytical-model-based coarse-grained mode
and a runtime-simulation-based fine-grained mode, but has no clear
engagement with backend design optimizations. On the other hand,
it is well-understood that the performance of an ML accelerator is
acutely dependent on the tradeoffs made in backend design. Numer-
ous technology, methodology, and tool/flow effects must be compre-
hended, modeled and exploited – e.g., [1] shows that post-routing
HPWL can be improved by about 15%with different settings of flow
knobs.ML accelerators are considerablymore complex than the test-
cases used in [1], and can be expected to show even more overall
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variation in post-routing outcomes due to tool/flow effects. In con-
trast to all previous works, our approach takes the effect of backend
flows into account and effectively ties the prediction of system-level
performance metrics to backend PPA.

3 DEFINITIONS
We formally define a set of key terms used in our work.
• ML accelerator (design). An ML accelerator or design is the
RTL netlist created by a parameterizable ML hardware generator.

• Workload.Aworkload is a user-specified ML algorithm (or a set
of algorithms) that runs on anML accelerator. Due to the inherent
structure of the computation, for a given network, the cost metrics
for a workload – i.e., the energy and runtime of the accelerator –
depend on the network topology and not on the specific input data.

• Architectural parameters. These are a set of parameters used by
a parameterizable ML hardware generator to generate an ML ac-
celerator. A configuration is a specific setting of architectural pa-
rameters. The parameterizable ML hardware generator can only
generate oneML accelerator for a given configuration. Thismeans
there is a one-to-one mapping between ML accelerators and con-
figurations for a parameterizable ML hardware generator.

• Target clock period. The target clock period is the clock period
in the .sdc (Synopsys Design Constraints) file. The target clock
frequency (𝑓target) is the reciprocal of target clock period.

For an ML accelerator:
• Power (𝑃) is the sum of internal, switching, and leakage power,
as reported by the SP&R tool after post-routing optimization.

• Performance is the effective clock frequency(𝑓effective). This is the
reciprocal of effective clock period, defined as the target clock
periodminus the worst slack reported by the SP&R tool after post-
routing optimization.

• Energy (𝐸) is the total energy required to run the user-specified
workload on the ML accelerator. Given an ML accelerator and a
workload, a simulator computes the energy based on the instruc-
tion mix and the post-SP&R performance/power metrics of the
accelerator submodules.

• Runtime (𝑇 ) is the time required to run the user-specified work-
load. For an ML accelerator and a specific workload, a perfor-
mance simulator is used to compute the runtime.

4 DEMONSTRATION PLATFORMS AND
SIMULATORS

We demonstrate our approach on the accelerator engines from four
parameterizable open-source ML hardware generators,
TABLA [16] implements non-DNN ML algorithms such as linear
regression, logistic regression, support vectormachines (SVMs), back-
propagation, and recommender systems.
GeneSys [7] executes DNNs using an 𝑀 × 𝑁 systolic array for
GEMM operations such as convolution, and an 𝑁 × 1 SIMD array
for vector operations such as ReLU, pooling, and softmax.
Axiline [7] builds hard-coded implementations of small ML algo-
rithms (e.g., SVM, logistic/ linear regression) for training/inference.
VTA [3, 18] is a DNN accelerator where compute module includes
a GEMM core for convolution, with a 2D array of PEs. VTA is in-
tegrated with Apache TVM [5], a deep learning compiler stack.

Integrating system simulations with backend data. The simula-
tors are integrated with the backend analyses, where they receive
PPA characteristics generated by our SP&R flow. The simulators
used in our study are obtained from the GitHub repository of the
VeriGOOD-ML project [24] and VTA hardware design stack [26].
For a specific hardware configuration point provided as an input, the
PPA characteristics feed the simulator with data such as the clock
frequency, energy per access for each of the on-chip buffers, and
dynamic and leakage power of systolic and SIMD hardware compo-
nents or GEMM and ALU hardware components. The performance
statistics provided by the simulator are combined with these back-
end data from the SP&R flow to produce end-to-end runtime, en-
ergy, and power for execution of the ML algorithm.

5 OUR APPROACH
5.1 Problem Formulation
For a specific parameterizableML hardware generator, we build ma-
chine learning models to solve the following problems:
Problem 1 (Backend PPA prediction): Train a model such that

(𝑃, 𝑓 ) = 𝐵𝑎𝑐𝑘𝑒𝑛𝑑𝑀𝐿𝑀𝑜𝑑𝑒𝑙 ({𝑥1, 𝑥2, · · · , 𝑥𝑛; 𝑓target}) (1)

where {𝑥1, · · · , 𝑥𝑛} is the user-specified configuration, 𝑓target is the
user-specified target clock frequency, 𝑃 is the total power and 𝑓 is
the effective clock frequency.
Problem 2 (System metrics prediction): Train a model such that

(𝐸,𝑇 ) = 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝐿𝑀𝑜𝑑𝑒𝑙 ({𝑥1, 𝑥2, · · · , 𝑥𝑛; 𝑓target}) (2)

where {𝑥1, · · · , 𝑥𝑛} is the user-specified configuration, 𝑓target is the
user-specified target clock frequency, 𝐸 is the total energy consump-
tion and 𝑇 is the runtime.
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Figure 2: Backend PPA and system-level metrics prediction flows.

Backend PPA prediction.We approach backend PPA prediction in
a supervised manner. Figure 2 presents the flow for backend PPA
prediction when 𝐼𝑠𝐵𝑎𝑐𝑘𝑒𝑛𝑑 is 𝑌𝑒𝑠. As shown in Figure 2, we first
sample a subset of configurations from the architectural parameter
space and use anML hardware generator to generate the correspond-
ing design. We then create a PPA curve by running the SP&R flow
multiple times with different 𝑓target. This is very time-consuming: for
a typical GeneSys design with 1–2 million instances, it involves 63
SP&R runs, which takes between 7 and 14 license days of runtime. 1
These PPA curves are used as a dataset to train the𝐵𝑎𝑐𝑘𝑒𝑛𝑑𝑀𝐿𝑀𝑜𝑑𝑒𝑙 .
Finally, the trained 𝐵𝑎𝑐𝑘𝑒𝑛𝑑𝑀𝐿𝑀𝑜𝑑𝑒𝑙 predicts backend metrics for
unseen configurations and given 𝑓target.
System metrics prediction. We adopt a similar approach for sys-
tem metric prediction. Figure 2 presents this prediction flow when
1All of our SP&R runs use 8-thread runs on Intel Xeon server hardware with 2.4GHz
clock frequency and 192GB or larger RAM. The P&R runtime for a single 1M-instance
GeneSys design is 1 day, which is approximately 5.5 times the synthesis runtime.
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𝐼𝑠𝐵𝑎𝑐𝑘𝑒𝑛𝑑 is 𝑁𝑜 . Here the PPA curves generated from the SP&R
flow are further fed into the simulator to create the energy and run-
time curves, and these are used as a dataset to train the𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝐿𝑀𝑜𝑑𝑒𝑙 .
Finally, the trained 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝐿𝑀𝑜𝑑𝑒𝑙 predicts systemmetrics for un-
seen configurations and given 𝑓target. For clarity, the differences be-
tween the two prediction flows are highlighted with the red outline
in Figure 2.

5.2 ML Models
As described in Section 2, several ML techniques have been applied
to PPA prediction and/or DSE. Among all these techniques, we have
found the following regression approaches to be most effective:
• Gradient Boosted Decision Trees (GBDT) utilize multiple deci-
sion trees as weak predictors. New trees are added sequentially to
minimize the loss function during the training process.

• RandomForest (RF) also uses decision trees, but trains each tree
independently using random samples of data. The final decision
is generated based on the voting over a set of trees or from the
average of the prediction generated by each tree.

• Artificial Neural Network (ANN) is a biologically-inspiredmodel
consisting of multiple neuron/node layers: an input layer, one or
more hidden layers, and an output layer consisting of single node.
The output of a node is a linear transformation of the previous
layer input followed by a non-linear/linear activation function.

• Stacked Ensemble uses multiple “base learner” algorithms to
outperform individual base learners. Training entails (i) training
of multiple base learners (e.g., RF and GBDT models); and (ii)
training of a second-level “metalearner” to find the optimal com-
bination of the base learners as the stacked ensemble model.

We train GBDT, RF and ANN models using the open-source plat-
form H2O [25]. H2O enables fast, distributed, in-memory, and scal-
able machine learning-based model training. We use the H2O Au-
toML grid search (based on random discrete [4] search algorithm)
for hyperparameter tuning. This search method uniformly samples
the hyperparameters from the given set and trains the model. The
search process can be terminated based on the number of the trained
models, runtime, or metric-based stopping criteria. We use maxi-
mum runtime-based termination in the hyperparameter tuning. Fi-
nally, we use these trained models as base learners and train the
H2O stacked ensembles using linear regression. Theorem 1 in [11]
proves that the stacked ensemble model will perform as the best
learner asymptotically. Our framework utilizes the stacked ensem-
bles to predict backend and systemmetrics.We describe the detailed
steps to train the models in Section 6.

5.3 Two-Stage Inference Model
Design space exploration seeks an optimal implementation of an ac-
celerator for a specified workload, to achieve better backend PPA
and system metrics. To explore the design space more efficiently,
we should pay more attention to a region of interest (ROI) in the
design space, i.e., the region that contains the “optimal” implemen-
tation. Figure 3 gives an example of how to determine the ROI. In
the example, we first use the Axiline platform to generate two accel-
erators (Design-I andDesign-II) with different configurations, to im-
plement a recommender system algorithm. We then run full SP&R

flows for the two accelerators under 21 different 𝑓target and com-
pute corresponding energy and runtime system metrics. Figure 3(a)
shows energy versus runtime ofDesign-I andDesign-II for different
𝑓target. We observe a typical division of the design space into three
regions: (i) region of runtime where we can reduce the runtime at
the cost of increasing energy; (ii) region of balance where we can
achieve lowest energy without introducing too much runtime over-
head; and (iii) region of energy where the energy will also increase
when the runtime increases. In our work, we set the ROI to be the
above region of balance. To visualize the ROI in terms of 𝑓target, we
show plots of runtime versus 𝑓target in Figure 3(b). We can observe
that the ROI excludes both extremely high and low 𝑓target. Then, by
examining 𝑓effective versus 𝑓target (Figure 3(c)), we may further charac-
terize the ROI in terms of the difference between 𝑓target and 𝑓effective:
post-routed designs tend to have smaller negative slacks at higher
𝑓target and larger positive slacks at lower 𝑓target. Given the above, we
define our ROI in terms of the difference between 𝑓target and 𝑓effective,
as follows (𝜖 is a parameter to determine the size of the ROI, with
default value of 10%):

𝑅𝑂𝐼 = {𝑓target |𝑎𝑏𝑠 (𝑓effective − 𝑓target) ≤ 𝜖 × 𝑓target} (3)

We further propose a two-stage inference model that is based on
the above ROI definition. The model works as follows: (i) we first
train models for backend PPA (power and performance) and sys-
tem metrics (energy and runtime) independently; (ii) we invoke the
trained performance model to predict the effective clock frequency
𝑓effective for a given target clock frequency 𝑓target; (iii) if 𝑓target and
𝑓effective satisfy Equation (3), we invoke trained power, energy and
runtime models to generate corresponding metrics; (iv) otherwise,
we abandon the given 𝑓target and explore alternative 𝑓target. The two-
stage inference not only helps explore design space more efficiently,
but also increases the prediction accuracy of our model. Our experi-
mental results in Section 7.1 confirm the accuracy improvement of
the two-stage inference model.

6 EXPERIMENTAL SETUP
6.1 Dataset Generation
Dataset generation includes three steps: (i) sampling architectural
parameters and RTL generation; (ii) generating backend metrics us-
ing the ASIC or FPGA flow; (iii) generating system-level metrics.
(i) Sampling of architectural parameters and RTL generation.
All platforms (TABLA, GeneSys, VTA and Axiline) are parameter-
izable, with corresponding tunable architectural parameters shown
in Table 1. We use a variety of strategies to generate multiple config-
urations for each platform. Prior works on DNN accelerators based
on systolic arrays [9, 19] and vector dot-products [3] report archi-
tectural parameters such as array dimension, data bitwidth, on-chip
buffer size and off-chip bandwidth. For GeneSys and VTA, we use
these insights from prior works to guide our choice of architectural
parameters. We proportionally scale buffer size and bandwidth pa-
rameters based on array dimension. For each array dimension, we
select other architectural parameters by changing the ratio of the
buffer size to exercise various data reuse tradeoffs in DNNs. For ex-
ample, a larger WBUF facilitates more weight reuse while a larger
OBUF biases a design toward more on-chip reduction of the partial
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(a) (b) (c)

Figure 3: Illustration for region of interest (ROI). (a) Energy versus runtime. The ROI is the pink region. (b) Runtime versus target clock frequency.
Again, the ROI is the pink region. (c) Target clock frequency versus effective clock frequency. The ROI is the region where 𝑓target = 𝑓effective.

sums. For TABLA, we explore multiple configurations using vari-
ations of the structures shown in [16]. For Axiline, we use Latin
Hypercube Sampling for integer architectural parameters such as di-
mension and number of cycles, thus achieving uniform coverage in
each dimension; and we simply enumerate all the combinations for
all other remaining architectural parameters.

Platforms Feature Candidate Values Description

TABLA

PU 4, 8 # processing units
PE 8, 16 # processing engines in each PU
bitwidth 8, 16 bit width of internal bus
input bitwidth 16, 32 bit width of IO bus

benchmark recommender systems ML algorithmsbackpropagation

GeneSys

weight data width 4 – 8 (integer) bit width of weight data (bit)
activation data width 4 – 8 (integer) bit width of input activation data (bit)
accumulation width 32 (integer) bit width of output accumulation (bit)
WBUF capacity 16 – 256 (integer) size of weight buffer (KB)
IBUF capacity 16 – 128 (integer) size of input buffer (KB)
OBUF capacity 128 – 1024 (integer) size of output buffer (KB)
SIMD VMEM capacity 128 – 1024 (integer) size of vector memory in VMEM (KB)
WBUF AXI data width 64 – 256 (integer) AXI bandwidth for the WBUF (bits/cycle)
IBUF AXI data width 128 – 256 (integer) AXI bandwidth for the IBUF (bits/cycle)
OBUF AXI data width 128 – 256 (integer) AXI bandwidth for the OBUF (bits/cycle)
SIMD AXI data width 128 – 256 (integer) AXI bandwidth for the VMEM (bits/cycle)

VTA

weight data width 8 (integer) bit width of weight data (bit)
activation data width 8 (integer) bit width of input activation data (bit)
accumulation width 32 (integer) bit width of output accumulation (bit)
WBUF capacity 16 – 256 (integer) size of weight buffer (KB)
IBUF capacity 16 – 128 (integer) size of input buffer (KB)
OBUF capacity 32 – 512 (integer) size of output buffer (KB)
off-chip bandwidth 64 – 512 (integer) total external bandwidth (bits/cycle)

Axiline

benchmark
SVM, linear regression,

ML algorithmslogistic regression,
recommender systems

bitwidth 8, 16 bitwidth for computation units
input bitwidth 4, 8 bitwidth for initial inputs
dimension 5 – 50 (integer) dimension for stage 1 and 3

num of cycles 1 – 32 (integer) number of cycles required for stage
1 or 3 to process one input vector

Table 1: Architectural parameters for four design platforms.

(ii) Generation of backend metrics.We implement all the designs
in a standardASIC flowwithGLOBALFOUNDRIES 12LP foundry
enablement (Arm 9-track triple-VT cell libraries). We use Synopsys
Design-Compiler-R-2020.09 to synthesize the netlist and Cadence
Innovus 20.1 for place-and-route. To capture the entire PPA curve,
we sweep the target clock period from 0.5ns to 10ns. In light of tool
noise, we execute three SP&R runs for each target clock period by
varying the target clock period by ±0.01ns. Backend PPA metrics
(effective clock frequency 𝑓𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 and power 𝑃) are extracted
from DRC-clean post-routed layouts. We run 480, 344, 473 and
4558 SP&R runs for TABLA, GeneSys, VTA and Axiline designs
respectively. We further implement TABLA designs on two differ-
ent (Xilinx) FPGAs: Virtex-7 (xc7vx1140tflg1926-2G) and Kintex
(xcku115-flva1517-1LV-i). Given the lower performance of these

FPGAs compared to 12nm ASIC, we sweep the target clock period
from 2ns to 30ns for each design. Similar to the ASIC flow, we run
three runs for each target clock period to mitigate tool noise. A total
of 630 data points are generated for each FPGA.
(iii) Generation of system metrics.We feed backend PPA metrics
to simulators to obtain corresponding system metrics (energy 𝐸 and
runtime𝑇 ). Here we set the widely used ResNet-50 and MobileNet-
v1 networks as the workloads for GeneSys and VTA designs respec-
tively. The workload of each TABLA or Axiline design is deter-
mined by its benchmark parameter (see Table 1).

6.2 Dataset Separation
An accelerator implementation depends on its (i) configuration, used
by a platform to generate the accelerator; and (ii) target clock fre-
quency, used by the SP&R flow to implement the accelerator in sil-
icon. Thus, we evaluate our framework from two different aspects:
Predicting at unseen target clock frequency.Our framework should
be able to predict backend and system metrics for known configura-
tions at unseen target clock frequency. Hence, we split the dataset
into training and test data by randomly shuffling and then uniformly
sampling target clock frequencies. The training:test ratio is 4:1.
Predicting for unseen configuration. Our framework should pre-
dict backend and system metrics for unseen configurations. For this
evaluation, we split the dataset into training dataset and test dataset
based on configurations. The training:test ratio here is also 4:1.

6.3 Model Training
We train and evaluate a total of 192 ML models in this work.2 For
ASIC, there are four platforms (TABLA,GeneSys, Axiline andVTA),
four metrics (power, performance, energy, runtime) and four ML
model types (GBDT, RF, ANN and Stacked ensembles). For FPGA,
there is one platform (TABLA),3 two devices (Virtex, Kintex), and
again, four metrics and four ML model types. The H2O package is
used to autotune the hyperparameters of each model. The hyperpa-
rameters of each ML model type that we tune are shown in Table 2.
We first train the ANN, GBDT and RF models using H2O. We

set the walltime of hyperparameter autotuning for GBDT, RF and
ANN to 300s, 300s and 600s respectively.We use 16 CPU threads in
parallel to accelerate the tuning process. Five-fold cross-validation
is enabled and root mean squared error (RMSE) is used as the score
2For ASIC, there are 4 platforms × 4 metrics × 4 models × 2 separations of dataset,
yielding 128 models. For FPGA, there are 2 devices × 4 metrics × 4 models × 2 sepa-
rations of dataset, yielding 64 models.
3GeneSys designs, with millions of instances, are too large for our FPGAs.
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function. The trained models with the best scores are used as the es-
timators to perform prediction on the test datasets. Then we use the
grid search results of GBDT, RF and ANN models as base learners
to train the stacked ensemble model. Here only the top sevenmodels
are chosen as the base learners to introduce enough variation while
filtering out the poorly-performing models.4

Model Parameters Type Range Description

GBDT n_estimator integer [20,500] # gradient boosted tree
max_depth integer [2,20] maximum tree depth

RF
n_estimator integer [50 - 1000] # decision trees in the forest
mtries 𝑒𝑛𝑢𝑚 [1-total feature count] # features considered for best split
max_depth integer [5 - 100] max tree depth

ANN
num_layer integer [1-4] # hidden layers
num_node integer [30-200] # nodes in each hidden layer
act_func enum [Tanh, Rectifier, Maxout] activation function

Table 2: Tuned hyperparameters for GBDT, RF and ANN.

7 RESULTS AND DISCUSSION
7.1 ML Model Assessment
We use mean absolute percentage error (𝜇𝐴𝑃𝐸) and maximum abso-
lute percentage error (𝑀𝐴𝑃𝐸) to evaluate our model.
Predicting at unseen target clock frequency. The results are pre-
sented in Table 3 and 4. Table 3 shows the performance of ML mod-
els for ASIC implementation (including TABLA, GeneSys, VTA
and Axiline platforms) at unseen 𝑓target. Table 4 shows the perfor-
mance ofMLmodels for FPGA implementations (TABLA platform
only) at unseen 𝑓target. We make the following observations regard-
ing the performance of our ML models at unseen 𝑓target:
• The reported 𝜇𝐴𝑃𝐸 for all four models are less than 5%, and the
maximum𝑀𝐴𝑃𝐸 for the best model is about 20%.

• In order to compare the performance of different types of ML
models (GBDT, RF, ANN and Ensemble), we first rank the four
types of models from one to four based on the reported 𝜇𝐴𝑃𝐸 for
each prediction task. Then we compute the average rank for each
type of ML models by summing up its rank for each task, and
dividing the sum of rank by the number of tasks. For the ASIC
implementation, the average ranks for GBDT, RF, ANN and En-
semblemodels are respectively 2.6, 1.8, 3.8 and 1.7; for the FPGA
implementation, the average ranks for GBDT, RF, ANN and En-
semble models are respectively 2.6, 1.6, 4.0 and 1.8. We can see
that the RF and Ensemble models dominate for both ASIC and
FPGA implementations.

Predicting for unseen configuration. Tables 5 and 6 show the per-
formance of ML models for unseen ASIC (TABLA, GeneSys, VTA
and Axiline) and FPGA (TABLA) implementations. Here we use
black and red color to respectively indicate results of single-stage
and two-stage inference models. We observe that:
• For ASIC implementations of unseen configurations across dif-
ferent platforms, the 𝜇𝐴𝑃𝐸 of backend PPA prediction and system
metrics prediction is less than 10%.

• Our framework accurately predicts the backend and system met-
rics for FPGA implementation of unseen configurations. The 𝜇𝐴𝑃𝐸
of backend PPA prediction is less than 7% (5% in the correspond-
ing ASIC flow) while the 𝜇𝐴𝑃𝐸 for system metrics prediction is

4Experimental results suggest that choosing the top seven models gives the best results.

less than 12% (6% in the corresponding ASIC flow). For the cor-
responding ASIC implementation of unseen TABLA configura-
tions, the prediction error is higher due to the noisy outcome of
the FPGA flow at higher 𝑓target.

• Two-stage inference models achieve better (resp. worse) 𝜇𝐴𝑃𝐸 or
𝑀𝐴𝑃𝐸 than single-stage models in 44 (resp. 28) “head-to-head”
comparisons. This suggests our two-stage model can effectively
filter out “uninteresting” noisy points in the design space.

• Similar to the prediction for unseen target clock frequencies, we
also evaluate different types of ML models in terms of average
rank, to compare their ability to predict for unseen configurations.
For the ASIC implementation, the average ranks for GBDT, RF,
ANN and Ensemble models are respectively 2.94, 2.38, 2.50 and
2.19; for the FPGA implementation, the average ranks for GBDT,
RF, ANN and Ensemble models are respectively 2.13, 2.25, 3.50
and 2.13. We can see that Ensemble models dominate for both
ASIC and FPGA implementations.

As no previous work builds a post-SP&R PPA prediction model for
ML accelerators, no comparisons can be shown against prior work.

Table 3: Performance ofMLmodels for ASIC implementation at unseen
target clock frequencies.

Design ML Model Backend-Perf Backend-Power Sys-Runtime Sys-Energy
𝜇𝐴𝑃𝐸 MAPE 𝜇𝐴𝑃𝐸 MAPE 𝜇𝐴𝑃𝐸 MAPE 𝜇𝐴𝑃𝐸 MAPE

TABLA

GBDT 3.55 36.09 2.59 11.82 3.68 17.35 2.44 14.36
RF 3.25 17.43 2.67 10.59 3.45 11.04 1.33 8.09
ANN 4.04 20.92 3.37 9.96 3.69 15.05 1.50 7.02
Ensemble 3.18 14.43 2.38 10.93 3.63 15.03 1.45 7.60

GeneSys

GBDT 2.23 9.93 2.62 9.68 2.88 18.37 0.74 10.64
RF 2.18 9.98 2.30 7.95 2.19 10.45 0.84 11.45
ANN 3.23 13.83 5.28 18.81 3.80 13.71 4.17 27.65
Ensemble 1.94 9.42 2.46 7.42 2.18 10.82 0.74 10.63

VTA

GBDT 2.03 9.15 2.26 8.91 2.23 12.05 1.07 7.20
RF 1.96 11.60 2.19 15.17 2.19 11.38 1.37 8.70
ANN 3.19 14.82 2.14 7.48 2.65 11.75 7.23 24.87
Ensemble 1.93 9.63 1.63 8.65 2.24 10.36 1.23 7.23

Axiline

GBT 1.11 14.40 3.23 21.99 1.43 13.78 1.05 19.87
RF 1.05 15.82 1.50 23.00 1.24 14.67 1.46 25.50
ANN 1.79 16.93 4.47 34.60 1.51 15.24 3.83 21.79
Ensemble 1.11 14.68 2.82 26.71 1.38 16.30 2.7 21.62

Table 4: Performance ofMLmodels for different FPGA implementation
(only TABLA) at unseen target clock frequencies.

FPGA MLModel Backend-Perf Backend-Power Sys-Runtime Sys-Energy
𝜇𝐴𝑃𝐸 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃𝐸 MAPE 𝜇𝐴𝑃𝐸 MAPE 𝜇𝐴𝑃𝐸 MAPE

Virtex-7

GBDT 2.61 11.91 2.54 13.43 2.91 9.27 1.64 7.55
RF 2.74 13.00 2.08 11.26 2.69 12.72 1.31 8.96
ANN 2.95 13.09 2.89 12.86 4.73 13.40 1.83 9.77
Ensemble 2.71 12.86 2.39 14.73 2.83 11.95 1.35 7.72

Kintex

GBDT 2.77 15.80 1.38 7.16 2.54 11.86 1.77 9.34
RF 2.76 17.80 1.22 7.69 2.70 13.21 1.55 7.19
ANN 3.16 13.78 1.56 7.07 3.11 13.20 1.91 7.39
Ensemble 2.47 12.24 1.32 6.21 2.43 9.59 1.74 8.95

7.2 Application of Our Approach
We apply our approach for design space exploration to two different
platforms: Axiline and VTA.

7.2.1 Design space exploration for Axiline platform. We first use
our approach to optimize the implementation of an accelerator that
runs the support vector machine (SVM) algorithm with 200 fea-
tures. The flow is as follows: (i) we choose two candidate config-
urations for architectural parameters of the Axiline platform (see
Table 1); (ii) we use the Axiline platform to generate corresponding
RTL netlists (denoted as SVM-200 design1 and SVM200 design2);
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Table 5: Performance (better of single- and two-stage ML models) for
ASIC implementation of different unseen configurations.

Design ML Model Backend-Perf Backend-Power Sys-Runtime Sys-Energy
𝜇𝐴𝑃𝐸 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃𝐸 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃𝐸 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃𝐸 𝑀𝐴𝑃𝐸

TABLA

GBDT 5.19 19.95 12.20 31.83 2.01 6.90 15.76 24.57
RF 5.57 23.37 13.95 32.28 1.27 5.41 14.43 20.55
ANN 5.70 27.29 4.00 12.08 4.28 9.70 5.12 13.85
Ensemble 4.76 19.41 9.36 21.65 2.47 9.34 9.43 20.11

GeneSys

GBDT 3.63 12.27 5.70 14.88 7.33 14.16 16.77 23.81
RF 3.72 13.55 4.48 11.82 5.26 11.77 16.23 19.87
ANN 13.62 35.57 4.00 14.36 13.12 38.43 9.62 15.84
Ensemble 4.62 14.19 4.12 8.07 6.28 20.27 15.93 18.25

VTA

GBDT 12.40 38.43 7.81 31.61 9.32 21.06 2.75 6.17
RF 12.91 29.36 4.99 11.75 5.85 15.97 3.53 4.15
ANN 10.82 27.36 8.28 26.25 6.98 20.44 15.35 31.29
Ensemble 9.71 30.27 6.84 30.71 8.52 22.04 3.13 6.22

Axiline

GBDT 1.60 12.52 17.47 65.93 3.20 15.35 31.63 77.60
RF 1.66 14.17 13.40 37.51 5.32 17.23 25.98 68.44
ANN 1.95 11.92 9.84 40.98 0.91 5.16 6.92 21.51
Ensemble 1.62 11.98 16.47 53.61 4.02 17.39 26.39 71.34

Table 6: Performance (better of single- and two-stage ML models) for
FPGA implementation of different unseen TABLA configurations.

FPGA MLModel Backend-Perf Backend-Power Sys-Runtime Sys-Energy
𝜇𝐴𝑃E 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃E 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃E 𝑀𝐴𝑃𝐸 𝜇𝐴𝑃E 𝑀𝐴𝑃𝐸

Virtex-7

GBDT 2.73 11.32 8.04 20.91 3.55 10.50 10.34 14.17
RF 2.83 10.84 7.90 17.36 3.40 10.02 11.62 14.00
ANN 4.76 24.15 7.65 18.37 4.04 9.34 13.34 23.07
Ensemble 3.48 15.52 6.57 20.91 6.29 12.12 11.09 16.03

Kintex

GBDT 3.13 13.04 6.82 14.65 3.22 10.11 8.96 20.91
RF 4.47 21.48 5.79 14.56 3.07 13.13 10.15 21.09
ANN 5.61 33.30 3.79 8.67 4.63 11.05 12.36 26.80
Ensemble 3.75 22.40 4.86 9.91 3.29 13.63 8.55 16.65

(iii) we invoke the trained machine learning model to predict sys-
tem metrics (runtime and energy) for both designs under 32 differ-
ent target clock frequencies. The results are presented in Figure 4.

Figure 4: An application example of our framework. Left: Design space
exploration for Axiline platform. Right: Layout for the SVM-200 design
with the lowest predicted energy.

The memory bandwidth is calculated as: 𝑚𝑒𝑚𝑜𝑟𝑦_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
𝑛𝑢𝑚_𝑖𝑛𝑝𝑢𝑡_𝑣𝑒𝑐𝑡𝑜𝑟×𝑖𝑛𝑝𝑢𝑡_𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 , where 𝑖𝑛𝑝𝑢𝑡_𝑏𝑖𝑡𝑤𝑖𝑑𝑡ℎ is an archi-
tectural parameter of the Axiline platform and𝑛𝑢𝑚_𝑖𝑛𝑝𝑢𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 is
the number of input vectors of the workload. Based on this explo-
ration, we first circumscribe the set of points that meet system-level
specifications on runtime and memory bandwidth by the green box
shown in the 3D plot at left in Figure 4. We then select the lowest-
energy point within the box using the energy prediction from trained
ML models. Finally, we run a full SP&R flow at this point to im-
plement the “optimal” accelerator. The full layout for this “optimal”
accelerator is shown in the right half of Figure 4. Exhaustive ground-
truth analysis with full SP&R for all 72 points confirms that all pre-
dictions for runtime and energy, evaluated in less than 1s are within

5% of post-SP&R values. The best solution from our ML models
matches exhaustive implementation, which takes over 24 hours.

7.2.2 Design space exploration for VTA platform. Weuse our frame-
work to perform DSE to search for an optimal implementation of
an accelerator that implements MobileNet-v1 architecture using a
similar framework as was used for the Axiline platform above. The
results are presented in Figure 5. We first circumscribe the set of
points that meet system-level specifications for runtime and energy
by the green box shown in the 3D plot at left in Figure 5. We then
find that VTA design2 with target clock frequency of 50 MHz has
the least predicted runtime and the lowest predicted energy. The full
layout for this “optimal” accelerator is shown on the right half of Fig-
ure 5. Exhaustive ground-truth analysis with full SP&R for all 126
points confirms that the best solution identified by our ML models
matches what exhaustive implementation would have found.

Figure 5: An application example of our approach. Left: Design space
exploration for VTA platform. Right: Layout for the accelerator with
the least predicted runtime and the lowest predicted energy.

8 CONCLUSION
We describe a physical-design-driven ML-based framework that ac-
hieves high prediction accuracy for both backend PPA metrics and
system-level (energy and runtime) performance metrics. Our frame-
work incorporates ML modeling aspects such as focus on a “region
of interest”, a novel two-stage inference approach, and the use of
stacked ensemble models to enable efficient model-guided search
over large configuration spaces of accelerator architectures for a
given workload or ML algorithm. Our framework is extensively val-
idated on multiple ML architecture platforms, and both ASIC and
FPGA contexts.
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