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ABSTRACT

Since June 2018, the OpenROAD project has developed an open-

source, RTL-to-GDS EDA system within the DARPA IDEA pro-

gram. The tool achieves no-human-in-loop generation of design-rule

clean layout in 24 hours. This enables system innovation and de-

sign space exploration, while also democratizing hardware design

by lowering barriers of cost, expertise and risk. Since November

2021, The Institute for Learning-enabled Optimization at Scale (TI-

LOS), an NSF AI institute for advances in optimization partially

supported by Intel, has begun its work toward a “new nexus” of AI,

optimization, and the leading edge of practice for use domains that

include IC design. This paper traces a trajectory of “leveling up” in

the research enablement for IC physical design automation and EDA

in general. This trajectory has OpenROAD and TILOS as waypoints,

and advances themes of openness, infrastructure, and culture change.

CCS CONCEPTS

• Hardware → Electronic design automation; Physical design

(EDA); •Computingmethodologies→Artificial intelligence;Ma-

chine learning; • Applied computing→ Computer-aided design.
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1 INTRODUCTION

Scaling is the realization of more value while consuming less re-

sources (energy, time, area, cost). Scaling makes the impossible

possible, propelling EDA, IC design and the broader semiconductor

ecosystem forward into the future. For EDA, scaling means optimiza-

tion that is faster, better and cheaper – because EDA is optimization.

There are never enough resources for optimization.

With the slowdown of device and process scaling, more burden

is placed on “equivalent scaling” from EDA that improves IC prod-

uct quality, development schedule and cost. Here, machine learning

(ML) offers important boosters to EDA that enable better chip designs

in less time. ML models provide predictions that can be leveraged in

design exploration, while also serving as objectives for higher-level

optimizations. ML also helps to solve difficult optimizations, while
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also affording new perspectives on classic optimization formulations

via frameworks such as learning to optimize [9] or graphical neural

network (GNN)-based embedding [5]. Deploying learning and op-

timization on modern cloud and GPU compute resources provides

new paths to scalable “EDA2.0”.

This paper describes a trajectory of “leveling up” in the research

enablement for IC physical design automation and EDA in general.

At its core, this trajectory is one of openness, infrastructure and

culture change. It spans open source, open data, benchmarking and

roadmapping – and it ultimately seeks scaling and empowerment

of people and a future workforce, as well as culture change at the

research interface between academia and industry. One waypoint in

this trajectory is The OpenROAD Project, which since June 2018

has developed an open-source, RTL-to-GDS EDA system within

the DARPA IDEA program. A hoped-for second waypoint is The

Institute for Learning-enabled Optimization at Scale (TILOS), an

NSF AI institute for advances in optimization, partially supported by

Intel, that began work in November 2021 toward a “new nexus” of

AI, optimization, and the leading edge of practice for use domains

that include IC design.

2 THE OPENROAD PROJECT

The OpenROAD project https://theopenroadproject.org/ seeks to de-

liver an open-source RTL-to-GDS tool that generates manufacturable

layout from input RTL – in 24 hours, with no human in the loop

– as part of the DARPA IDEA program. To date, the OpenROAD

tool has been used in over 180 tapeouts in technologies ranging from

12nm to 130nm. This section will review the project’s goals, status,

and contributions to a trajectory of “leveling up” for the physical

design and EDA field. These contributions include disruptive en-

ablement for semiconductor design innovation and education, and

support for research toward a future nexus of AI/ML, optimization,

and IC design and EDA.

2.1 OpenROAD Goals

OpenROAD tackles a crisis which has been decades in the making:

Hardware design, and system innovation in hardware, are simply too

difficult. Design process outcomes are difficult to predict, even with

expert tool users. As a result, hardware innovation faces barriers of

cost, expertise, and risk. A potential solution is intelligent automa-

tion, with “self-driving” design tools and flows. OpenROAD is part

of the DARPA IDEA program, which broadly aims for Hardware

Compilers 2.0 – automated generation of manufacturable layout in

24 hours, with no human in the loop, and eventually with no loss

of quality of results in Power, Performance or Area (PPA). The

IDEA program shifts the focus from tools that squeeze out every

last picosecond or microwatt from the manufacturing technology,

to “self-driving” tools that require neither expertise nor complex,

manually-derived tool settings to tape out a working chip.

OpenROAD’s scope is digital IC design: the tool takes Verilog

hardware description in, and delivers a merged tapeout-ready GDSII
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layout database. As described in [1], achieving 24-hour automation

requires three foundational base technologies: extreme partitioning

to decompose the design problem into bite-sized chunks; intelligent

orchestration of distributed and parallel optimization using cloud

resources; and machine learning to model and predict what will

happen when a given tool is run on a given design input with a given

target. Freedoms from choice are also expected in a no-humans tool,

just as a self-driving car will eventually have no steering wheel.

2.2 OpenROAD Status

OpenROAD v1.0 in Summer 2020 achieved a modern, integrated

EDA tool architecture – industry-strength database and timing anal-

ysis, Tcl and Python scripting interfaces for users – plus design-rule

clean layout generation in the GF12LP process. OpenROAD v2.0

in Summer 2021 brought new features such as early chip-package

planning, and parasitic extraction to feed timing signoff. Users have

brought up OpenROAD on new commercial technologies, and given

feedback that has resulted in numerous improvements to usability.

v2.0 PPA improved over v1.0 by roughly the equivalent of a full

technology node of scaling. A recent no-human-in-the-loop auto-

tuning capability finds better tool configurations than expert human

users.

The use of OpenROAD for tapeouts of user designs includes over

180 tapeouts in SkyWater 130nm and an SoC tapeout in GF12LP;

Army Research Labs has a project in flight in Intel 22FFL. Open-

ROAD is also the heart of the ASIC design platform from Efabless

called OpenLane, which has been used in the design work for tape-

outs on four Google-SkyWater SKY130 shuttle runs. The OpenLane

repo became part of The OpenROAD Project’s organization GitHub

in July 2021. OpenROAD is also the default EDA solution in Efab-

less’s commercial offering called ChipIgnite. The project is growing

a community of users and developers. Users range from novices

to experts, with applications that include Trust, 3D-IC, and AI and

machine learning. Figure 1 shows daily statistics from a two-week

period at the end of July 2021. The upper plot shows nearly a thou-

sand downloads a day from nearly four thousand unique GitHub

users.

Figure 1: OpenROAD GitHub metrics in July 2021.

Key evolutions and facets of the OpenROAD ecosystem span

infrastructure, engines, user support, and partnerships with industry

and professional societies. Following are 12 examples.

• The DATCRobust Design Flow.OpenROADworks closely with

IEEE CEDA’s Design Automation Technical Committee, whose

main task for several years has been to develop and support the

RDF academic reference design flow [7] [8]. RDF was launched in

2016, based on winning tools and benchmark suites from academic

contests in the physical design field. Since 2019, RDF has included

the OpenROAD tool chain and hence a complete RTL-to-GDS

flow. This backplane for research stimulates flow-scale research

as well as new cross-stage optimizations.

• OpenDB as RosettaStone. The IEEE CEDA RDF includes con-

test benchmarks and contest-winning tools that in some cases date

from over 15 years ago. These benchmarks and tools exist in a

“parallel universe”, whereby old tools could not be run on modern

designs, and old benchmarks could not be fed to modern tools. A

root cause is that past academic contests never established a con-

sistent, underlying data model. On the other hand, OpenROAD’s

OpenDB database realizes an industry-standard (LEF/DEF 5.8)

physical design data model. Along with OpenDB APIs, this en-

ables RosettaStone [21] to connect not just the past, present and

future of academic physical design research, but research and in-

dustry practice as well. With RosettaStone, all Bookshelf-based

contest benchmarks since 2005 can be run through modern P&R

tools, and modern designs in current enablements (e.g., a RISC-V

core in foundry 12nm) can be run through old academic tools that

are available only as executable binaries. Figure 2 contrasts the file-

based tool chain paradigm with integration using an in-memory

database and common data model.

• AutoTuner. Autotuning encompasses black-box optimization or

adaptive sampling that seeks successful combinations of tool hy-

perparameters within a given budget of tool runs. OpenROAD’s

AutoTuner provides true no-human-in-the-loop operation and ob-

tains better QoR than can be found by internal expert users. As

detailed in [16], AutoTuner uses the Python Ray and Tune APIs

[27], which afford easy-to-use parallelization and in-built search

algorithms. AutoTuner is now being deployed on Google Cloud

in collaboration with Google engineers.

• METRICS2.1. The open-source nature of OpenROAD lets it en-

able research on machine learning for EDA and IC design, in

a way that is currently impossible with commercial EDA tools.

Again in collaboration with IEEE CEDA, the project has published

large-scale metrics datasets harvested from thousands of runs of

the OpenROAD design flow, to stimulate data collection and pub-

lication that we hope will enable machine learning research. The

recent METRICS2.1 syntax and OpenROAD-based realization,

plus public repos of metrics data and example Jupyter notebooks

for visualization and ML applications, are detailed in [16]. Open-

ROAD’s logging and metrics infrastructure also feed into the score

function evaluations used by the AutoTuner.

• RTL-MP. Another recent advance in the project is RTL-MP, a

new RTL macro placer [25]. RTL-MP tries to “mimic’’ the be-

havior of human experts. It captures the dataflow defined by RTL

designers by exploiting logical hierarchy, and by extracting logical

modules-based connection signatures. Further, RTL-MP under-

stands relevant constraints such as macro placement blockages

and preferred locations for macros.



• External Contributions. There have been many contributions

from outside the formal project team. [37] currently lists over 50

contributors to themain OpenROAD application. An early external

contribution by students in Brazil spanned global routing, clock

tree synthesis and pin placement [13]. A more recent example

is Professor Andrew Kennings’ contribution of the dpo detailed

placement optimizer, a toolkit that includes MIS matching, global

moves and swaps, vertical moves and swaps, optimal reordering,

and greedy random improvement.

• Software Methodology. A key strength of OpenROAD is its

software development methodology and testing within an open-

source, “fork and pull” framework. Project members [38] include

both student researchers and EDA industry veterans, enabling a

balance between prototyping for innovation and robust feature

development. A continuous integration framework using Jenkins

and GitHub hooks ensures that no code that breaks tests can be

integrated. Secure confidential data is also used to test the system,

ensuring tool stability for partners with confidential data [24].

• ASAP7/ASAP5. Since 2020, OpenROAD has been a home to the

ASAP PDK and library development [10]. Open-sourcing of the

ASAP7 PDK and libraries in December 2020 was a milestone for

the research community. An ASAP5 PDK and libraries is nearing

release; ASAP5 uses horizontal nanowire transistors, with ground

rules that track advanced-node scaling boosters such as single

diffusion break and contact over active gate.

• Calibrations. OpenROAD and the IEEE CEDA DATC also col-

laborate to support academic research on signoff electrical analy-

ses. The Calibrations effort [34] leverages open PDKs to produce

open data against which academic researchers can measure and

report progress. Reference analysis results for STA, RC extraction,

and IR drop analysis are obtained based on running OpenROAD

with open designs and enablements (currently four designs and

three PDKs); data include post-route .def and .spef, .v, .sdc, and

worst paths and endpoint slacks in an open *.json format. Avail-

able scripts introduce noise for data obfuscation as contributors

desire.

• GUI. The quest to achieve critical mass, critical quality, maximum

velocity and maximum openness – while supporting clean foundry

tape-out automation and the needs of early-adopter users – is why

a project that aims for no-human-in-loop automation has a GUI.

The GUI supports both developers and users, as shown in the

project’s 2021 DARPA ERI Summit presentation [35]. Figure 3

shows a placement density heatmap and the option (requested by

a Ph.D. student in Brazil) to dump this data to a file for machine

learning.

• Efabless and OpenLane. Beyond the use of Efabless’s OpenLane

flow in numerous SKY130 tapeouts, OpenLane is widely used

in IC design education around the world (e.g., [40]), and the two

teams are increasingly focused on OpenLane development.

• Outreach. Outreach to stakeholders has also been a key project

goal. Active engagements beyond IEEE CEDA include CHIPS

Alliance and Si2. The project has organized and sponsored prizes

for academic contests (e.g., ICCAD-2019, TAU-2020), organized

new workshops and meetings (e.g., the Workshop on OpenSource

EDA Technology (WOSET)), and presented tutorials and invited

talks at numerous conferences. This outreach complements Open-

ROAD’s organic growth as an open-source software project.

Figure 2: RosettaStone based on OpenDB.

Figure 3: Heatmap of placement density and writing to CSV.

2.3 Trajectory Impacts of OpenROAD

OpenROAD has provided “leveling up” in several key dimensions

that amplify researchers’ efforts and reduce wasted energy. This

helps scale the efficiency of discovery and innovation in physical

design automation, as well as the education and training of a future

workforce.

• Openness can succeed, and infrastructurematters.OpenROAD

has developed and open-sourced core EDA infrastructure, includ-

ing an industry-strength database and static timing engine, within

a modern, integrated EDA tool architecture. The tool is built to

last, with a robust software engineering methodology. It is now a

viable platform for future research and innovation. From a train-

ing and workforce development standpoint, OpenROAD uniquely

documents in open source how robust EDA software is architected

and developed. For physical design research, the project provides

an integration backplane that reduces the effort barrier to starting

research, accelerates exploration and evaluation of new ideas, im-

proves transparency and reproducibility, and otherwise “lifts all

boats”.

• There is a virtuous cycle of democratization and innovation.

OpenROAD has enabled high-schoolers to tape out working chips

and served as the tool platform for thousands of students in online

VLSI design courses. The project has the potential to be a disrup-

tive enabler for semiconductor design innovation, education and

workforce development. Seeing the virtuous cycle of openness,

democratization and impact is rewarding for project contributors,

and sparks broader culture change as well.1

1Ongoing culture change is seen in the growing body of open-sourced research software
and research data in the literature. The research community is also experiencing the
zeitgeist of replication and reproducibility that has swept over fields such as AI [14]

and funding agencies such as the U.S. NIH [36].



• Reaching critical mass and critical quality is essential. Open-

ROAD has from its outset been “Not Research As Usual”. The

project has afforded further understanding of the concept of open-

source EDA [17] [18], adding to the learnings from past efforts

such as the Bookshelf [4], OA Gear [32] and METRICS [12] [23].

In retrospect, the qualitative aiming point of “critical mass and

critical quality” has been invaluable to help keep in mind the bar

for new, lasting research foundations. Aiming points such as this

also reveal the skill sets, attitudes and collaborations needed to

develop new foundations.2

• Sustainability and transition are first-class concerns. Develop-

ing a tool in open source naturally raises the issue of sustainability

and transitions beyond the traditional research funding model.

Comprehending and managing this issue with adequate lead time

is another important aspect of “leveling up”. As a project, Open-

ROAD has had to sharpen its thinking about many aspects of

its transition to sustainability, such as project governance, sta-

ble funding and/or revenue model, organizational structure and

non-technical skillsets, technology roadmap, and stakeholders.

After four years, original aims of OpenROAD such as acceler-

ating research, enabling reproducibility of leading-edge research,

and providing an open platform for data collection and machine

learning have become important features of the project. The project

team plans to continue pursuing “critical mass and critical quality”

on multiple axes, and to continue as a platform for basic research

on EDA, including research toward a future nexus of AI/ML, opti-

mization, and IC design and EDA. Looking forward, OpenROAD’s

technology roadmap will advance both functionality (improved sup-

port for power intent, hierarchical and incremental flows, low-power

and other PPA optimizations, and exploitation of modern compute

fabrics) and adoptability (robustness, usability, and the traditional

criteria of QOR, capacity and turnaround time). Transition and sus-

tainability demand continued attention to building both the developer

and user communities.3

3 THE TILOS AI INSTITUTE

TILOS – The Institute for Learning-enabled Optimization at Scale –

is an NSF National AI Research Institute for advances in optimiza-

tion, partially supported by Intel Corporation. The institute began

operations in November 2021 with a mission to “make impossible

optimizations possible, at scale and in practice”.

There are six universities in TILOS: UCSD, MIT, National Uni-

versity, Penn, UT-Austin, and Yale. The institute seeks a new nexus

of AI and machine learning, optimization, and use in practice. Figure

4 shows four virtuous cycles envisioned for the institute: (i) mu-

tual advances of AI and optimization provide the foundations; (ii)

challenges of scale, along with breakthroughs from scaling, bind

together foundations and the use domains of chip design, networks

and robotics; (iii) the cycle of translation and impact brings research

2Maintaining a long view is also helpful. Time scales, moving parts and overheads in
the project (e.g., recruiting personnel, tool development with robust software method-
ology, meeting bars for adoption, cycles of user interaction and support, emergence
of collaborations, establishing dialogues with stakeholders, etc.) can be off the charts
in a field where a new idea can become a Ph.D. student’s accepted conference paper
submission in a matter of weeks. However, the long view ultimately pays off in the form

of failure-proofing and lasting impact.
3OpenROAD’s community of contributors began with members of the project, then
expanded to others with interest in developing the core technology. It now includes

users interested in completing designs and adding new methodologies to the flow.

and the leading edge of practice closer together; and (iv) the cycle

of research, education, and broadening participation grows the field

and its workforce.4

Figure 4: Four virtuous cycles in TILOS.

3.1 Learning and Optimization Research

Practical optimization brings well-known challenges: (i) instances

have enormous scale; (ii) representations and abstractions are crucial

to success; (iii) objectives are hazy, particularly with multi-stage

optimizations and dynamic settings; (iv) optimization tools must

provide reliability and generalization; and (v) scaling of productivity

increasingly demands new ways to learn and optimize using modern

compute fabrics.5 Addressing these challenges requires new founda-

tions and an interplay of finding the right representations, developing

the right machine learning methods, and advancing optimization

methods.

At a high level, TILOS research at the AI-optimization interface

will pursue five thrusts [39] [20]: (i) bridges between continuous and

discrete optimization; (ii) parallel, distributed and federated optimiza-

tion; (iii) optimization on manifolds; (iv) dynamic decision making

under uncertain environments; and (v) nonconvex optimization in

deep learning.

3.2 The Chip Design Use Domain

Chip design brings challenges that include hierarchical-system con-

text; extreme cost of training data; “multi-everything” (physics, ob-

jectives) constrained optimization; and pervasive security aspects.

4Impacting the leading edge of optimization in practice requires new collaborations
between foundations, use-domains and industry practitioners. This “tripartite matching”
challenge, along with an ethos of being “a whole that is greater than the sum of its parts”,
brings hurdles of “team science” [11]. However, only with such an aiming point and
ethos can fewer than 30 faculty, with a similar number of Ph.D. students and postdoctoral

scholars, move the needle at the the leading edge.
5In TILOS, the three use domains of chip design, networks and robotics bring diverse
optimization challenges but inspire shared solutions, due to commonalities such as physi-
cal embeddedness, hierarchical-system context, underlying graphical models, safety and
robustness as first-class concerns, and the bridging of human-guided and autonomous

systems.



The scale of configuration spaces motivates research on (i) discovery

of exploitable structure in cost landscapes; (ii) distributed, data-

driven sampling and search methods; and (iii) metaheuristic “tem-

plates” to match discovered instance structure with optimization

strategies. Given its decades-long history as a driver of applied op-

timization and automation, chip design also highlights augmenting

rather than rediscovering domain expertise, by encoding expert

knowledge and intuition to serve optimization and decision-making

agents.

Five TILOS faculty comprise the Chips team: Sicun (Sean) Gao,

Andrew Kahng, Farinaz Koushanfar, David Pan and Tajana Rosing.

At a high level, Chips research is organized into four thrusts.

• Layout has a long-range goal of creating manufacturable chip lay-

outs directly from a circuit netlist description. This thrust includes

topics such as optimal embedding of hypergraphs; development of

a modern partitioning toolkit; and studying the nexus of sampling,

sequential decision-making, L2O (learning to optimize) and cloud

compute fabrics.

• Verification broadly seeks scaling of verification and validation

methods. This thrust includes the topic of interior search methods

to scale SMT solving and verification methods.

• Quantifying the cost of “X” (in particular, X = Security) studies

the intrinsic cost of robustness in optimization and learning, with

respect to aspects such as data anonymity, data integrity, and

privacy in federated and distributed settings.

• Data, Benchmarking and Roadmapping supports (i) relevance

and translation of research into real-world contexts, (ii) availabil-

ity of abundant and relevant data for machine learning, and (iii)

development of consensus benchmarks and roadmaps to support

research on practical optimization. Aspects of this thrust range

from generation of “artificial but realistic” benchmarks to princi-

ples and frameworks for ethical and fair benchmarking.

3.3 Challenges of Translation

Recall from Figure 4 that translation at the interface between industry

and academia is the third virtuous cycle of TILOS. Figure 5 shows an

idealized life cycle of translation, in which real-world practitioners

supply problems and data, researchers bridge foundations and use

domains to discover new methods, and these results go back into the

real world.

Figure 5: Life cycle of research and translation.

Unfortunately, today this picture is spoiled by fundamental tech-

nical and cultural obstacles. For example: (i) relevant datasets are

unavailable to researchers; (ii) access to research data is a world of

haves (e.g., TSMC7 + Arm Cortex) vs. have-nots (e.g., FreePDK45

+ ISCAS89); and (iii) a culture of reproducibility and benchmarking

is still work in progress. Obstacles such as these cause inefficiencies

that waste or, worse yet, drive away precious human resources. Thus,

TILOS aims to scale people in addition to optimization in practice,

by pioneering new democratizations, new cultural and scientific or

technical norms, and principled bases for looking forward and in-

vesting resources. This is only fitting for an AI Institute for advances

in optimization that has chip design as a key use domain. Examples

of associated research challenges include the following.

• Real data is rare and proprietary, and is shared only with elite re-

searchers. An example research challenge is to democratize: Can

we develop a science of “data virtual reality”, enabling generation

of artificial circuit designs that are indistinguishable from real

circuit designs from the perspective of optimizers? Can artificial-

but-realistic instances help quantify suboptimality gaps and distri-

butions? A related challenge is to learn with less real data (e.g.,

via data augmentation and transfer learning).

• Not all researchers have the same access to the strongest opti-

mizers. An example research challenge is to model outcomes of

a strong optimizer based on instance attributes and outcomes of

weak optimizers.

• Data sources, designs and tools often must be kept anonymous.

An example research challenge is to develop trusted methods for

privacy-preserving anonymization and obfuscation of design and

related data. A complementary challenge is to develop trusted tests

for identity leakage.6

• Companies forbid benchmarking in large part because benchmarks

can be misused. An example challenge for both research and cul-

ture is to develop the principles and mechanisms that provide a

foundation for fair benchmarking. More broadly, consensus on

reporting and comparison methodology is needed at the nexus of

applied ML and optimization [3] [31].

• Researchers hope to work on relevant, high-impact problems. How-

ever, it is difficult to discern the most crucial research targets for

learning and optimization. An example challenge is to foster a

practice of roadmapping needs and potential solutions for learning

and optimization technology, according to projections of what

drives (i.e., demands) such technology.

3.4 Trajectory Impacts of TILOS

It will be some time before outcomes and impacts from TILOS are

visible. However, if TILOS achieves its goals, there will be “leveling

up” in additional dimensions such as the following.

• Cracking the code of translation. TILOS aims to broadly ad-

dress the challenge of translation via methodologies and tools,

infrastructures and culture change. Efforts to unblock data and

benchmarking will promote transparency and reproducibility, as

well as more efficient use of researchers’ time. Similarly, efforts

toward roadmapping of core optimization problems will support

6Sometimes, private data cannot be exposed but research tools can be brought in and
applied to the data. OpenROAD’s secure CI infrastructure provides a turnkey framework

for this.



the steering of time and effort to problems for which progress

matters the most.

• Improved understanding of suboptimality. Quantifying the sub-

optimality in practice of EDA optimizations gives insight into

where further QOR or TAT improvements might be found. Re-

search on federated learning and optimization, and on sequential

decision-making and sampling, will help escape today’s preoccu-

pation with the single-server, overnight optimization context [19]

[20]. Theory and methods will be needed to respond to questions

such as, “What QOR benefit is expected from running # more

copies of the optimizer for" more days?”

• A new nexus of learning, optimization and practice. Aspects

of a “new nexus” include directions noted earlier (e.g., data ef-

ficiency, representation and embedding) along with (i) learning

to learn (e.g., appropriate loss functions / optimization objectives

within a multi-stage flow); (ii) learning to optimize [26] and hy-

bridize learning with combinatorial optimization [2] [5]; (iii) ap-

plication of available ML techniques such as transformers or deep

reinforcement learning [29] that previously required prohibitive

computational resources; and more [22].

4 AND BEYOND ...

The past four years of OpenROAD and the coming five years of

TILOS are just one segment in a CAD/EDA trajectory that is already

well into its seventh decade.

• OpenROAD has contributed the following aspects of “leveling

up”: (i) culture changes toward openness, and open-sourcing of

core EDA infrastructure; (ii) democratization of access and inno-

vation, and enablement of education and workforce development;

(iii) improved transparency, replication and reproducibility at the

leading edge of research; (iv) showing how the qualitative goal of

“critical mass and critical quality” informs many facets of project

development as well as a long view; and (v) improved understand-

ing of open-source EDA’s unique challenges and potential paths

to sustainability and transition.

• TILOS aspires to additional aspects of “leveling up”: (i) cracking

the code of translation, via research and infrastructure that un-

blocks data as well as the benchmarking and roadmapping of core

EDA optimizations; (ii) refocusing on quantification of subopti-

mality in practical optimization, as a complement to roadmapping

in guiding research and investment; and (iii) understanding how

to form and nurture integrative, multi-disciplinary collaborations

that bridge learning, EDA optimization and industry practice to

achieve impact in practice.

• Both OpenROAD and TILOS aim to scale and amplify the efforts

of people – students, researchers, a future workforce – through

democratizations and lowered barriers to access. Both lie along a

path to “machine learning-enabled DA” or “EDA2.0”, as shown in

Figure 6. In addition, TILOS research in the Chips use domain is

able to leverage OpenROAD and other open-sourced components

from both UCSD and the University of Texas [28] [6].

What next? Figure 6 suggests that some elements of a future tra-

jectory, such as autotuning, will mature earlier than other elements,

such as an ecosystem-wide consensus on fair EDA benchmarking.

Hopefully, the bulk of Figure 6 will become well-understood over

the next 5-10 years.

What other elements in a trajectory of “leveling up” are important

to solve in the coming decade? (i) How will a new nexus of AI,

optimization and chip design draw in more young people and be more

exciting? Training a future workforce depends on attracting it in the

first place. It is critical to further improve accessibility and openness.

(ii) How will we fully leverage the centuries of past advances in

optimization? It is critical to mind the suboptimality gap and to scale

the reach of optimizers, e.g., by splitting up problems, or making

them smaller or sparser, without losing solution quality. (iii)What are

the most critical optimizations to target with development of future

MLDA or EDA2.0?One candidate is the partition-cluster-shape-pack-

plan co-optimization that is inevitably at the core of system physical

implementation. High-accuracy early design space exploration and

pathfinding depend on this as we enter a beyond-everything (Moore,

CMOS, von Neumann, ...) era. (iv)What advances in representation

are needed, to complement advances in learning and optimization?

Current ML for EDA largely ignores expert designer knowledge, as

well as the stack of models and symbolic representations that underlie

chip design. Thus, a candidate challenge is to unite data-centric and

knowledge-centric approaches along lines of “third-wave AI”.

Figure 6: OpenROAD and TILOS provide several initial steps

along this trajectory of machine learning and EDA (figure

adapted from [19]).
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