
RTL-MP: Toward Practical, Human-Quality Chip Planning and
Macro Placement

Andrew B. Kahng
University of California San Diego

La Jolla, CA, USA
abk@ucsd.edu

Ravi Varadarajan
University of California San Diego

La Jolla, CA, USA
rvaradarajan@ucsd.edu

Zhiang Wang
University of California San Diego

La Jolla, CA, USA
zhw033@ucsd.edu

ABSTRACT
In a typical RTL­to­GDSII flow, floorplanning plays an essential
role in achieving decent quality of results (QoR). A good floorplan
typically requires interaction between the frontend designer, who is
responsible for the functionality of the RTL, and the backend physi­
cal design engineer. The increasing complexity of macro­dominated
designs (especially machine learning accelerators with autogener­
ated RTL) has made the floorplanning task even more challenging
and time­consuming. In this paper, we propose RTL­MP, a novel
macro placer which utilizes RTL information and tries to “mimic”
the interaction between the frontend RTL designer and the back­
end physical design engineer to produce human­quality floorplans.
By exploiting the logical hierarchy and processing logical modules
based on connection signatures, RTL­MP can capture the dataflow
inherent in the RTL and use the dataflow information to guidemacro
placement. We also apply autotuning [37] to optimize hyperparam­
eter settings based on input designs. We have built RTL­MP based
on OpenROAD infrastructure [25, 49] and applied RTL­MP to a set
of industrial designs. RTL­MP outperforms state­of­the­art commer­
cial macro placers and achieves QoR similar to that of handcrafted
floorplans.

CCS CONCEPTS
• Hardware → Electronic design automation; Physical design
(EDA); Partitioning and floorplanning.

KEYWORDS
Macro placement, RTL­driven, dataflow
ACM Reference Format:
Andrew B. Kahng, Ravi Varadarajan, and ZhiangWang. 2022. RTL­MP: To­
ward Practical, Human­Quality Chip Planning andMacro Placement. In Pro­
ceedings of the 2022 International Symposium on Physical Design (ISPD
’22), March 27–30, 2022, Virtual Event, Canada. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3505170.3506731

1 INTRODUCTION
Modern SoCs can have blocks that are very complex and arduous to
comprehend by humans, withmultiple millions of standard cells and
hundreds or even thousands of macros. This has made fast prototyp­
ing of blocks a necessity for efficient design space exploration of the
SoC. Prototyping of a block entails taking a footprint from the top

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISPD ’22, March 27–30, 2022, Virtual Event, Canada.
© 2022 Association for Computing Machinery.
ACM ISBN 978­1­4503­9210­5/22/03…$15.00
https://doi.org/10.1145/3505170.3506731

level which includes the fixed outline, pin locations and constraints
for the block, and then determining the feasibility of implementation.
A key task in this process is floorplan generation, i.e., determining
the placement of the macros in the block. Once the macro placement
is fixed, it is rarely changed during the subsequent stages of the stan­
dard cell place and route (P&R) flow. Therefore, the macro place­
ment can have a significant impact on final design QoR, and a “bad”
floorplan may leave performance on the table or lead to design con­
vergence issues. In today’s flows floorplanning is done manually by
a backend designer who must capture the structure of the design and
dataflow through frequent interactions with the frontend designer.
This becomes particularly challenging with RTL designs produced
by automatic RTL generators: such designs can have complex RTL
structures with very long autogenerated module names, with no hu­
man frontend designer available.
In this work, we propose a novel macro placer, RTL­MP, which

utilizes RTL information and tries to “mimic” the behavior of hu­
man experts. By exploiting logical hierarchy and processing logical
modules based on connection signatures, RTL­MP can fully capture
the dataflow defined by RTL designers and use the dataflow infor­
mation to guide macro placement. Our main contributions are:

• We propose a novel macro placer called RTL­MP which converts
the structural netlist representation of the design into a “clustered
netlist”, by analyzing logical hierarchy, dataflow, connectivity be­
tweenmacros and input­output (IO) pins, and critical timing paths.
Then, RTL­MP operates on the clustered netlist model and gen­
erates a legal macro placement. This is very similar to the way
human experts create manual floorplans.
• We present a powerful clustering method, which enables the ab­
straction of the block into a clustered netlist representation. Our
clustering method fully exploits the logical hierarchy of the orig­
inal RTL structure and the regularity and connectivity of macros.
In contrast to all existing works, we merge “small” clusters based
on “connection signature” to further reduce the complexity of the
clustered netlist without sacrificing the functional interactions be­
tween the logical components. Macros are also grouped into ar­
ray structures based on regularity and the connection signatures.
Buffer “transparency” is used to effectively capture the dataflow
of the RTL structure in the clustered netlist. Implicit timing in­
formation such as the number of flop stages (or hops) between
clusters is also captured in the clustered netlist model.
• Our macro placer takes care of pin access, notch region avoidance
and the common practice of pushing macros to peripheries, which
are key factors that backend experts usually consider when they
place macros manually.
• We experimently confirm that RTL­MP can generate stable and
predictablemacro placements based on users’ specifications. This
matches how backend designers rely on previous revisions of the
design to do prototyping, and how macro locations are left un­
changed when RTL changes are small. RTL­MP allows users to

https://doi.org/10.1145/3505170.3506731
https://doi.org/10.1145/3505170.3506731

specify preferred locations for macros, and/or macro placement
blockages, thus enabling stable and predictable macro placements
for small changes in the RTL or constraints.
• We apply autotuning to optimize the weights of different objec­
tives for a given input design. A macro placer usually must con­
sider many objectives, such as wirelength, timing, overlap and
so on. Since each design can have different utilization, macro
types, critical timing paths and logical hierarchy, a set of “per­
fectly” tuned weights for one design may fail to achieve a decent
macro placement for another design. Backend design engineers
usually launch multiple runs to sweep these weights and pick the
best candidate as the starting point. Such a “grid” sweep is usu­
ally inefficient and quite time­consuming. In this work, we com­
bine our macro placer and a scalable hyperparameter tuning tool –
Tune [37] – to tune weights for different objectives automatically.
Our experiment results confirm the effectiveness of autotuning.

The remaining sections are organized as follows. Section 2 re­
views related works. Sections 3­6 discuss our approach. Section 7
shows experiment results, and Section 8 concludes the paper.

2 RELATEDWORK
There are many published works on macro placement. We classify
these into three categories: analytical methods, packing­based meth­
ods and ML­based methods. Analytical methods model the objec­
tives to be optimized (wirelength, routability, etc.) as terms in the ob­
jective function or constraints, then solve the constrained optimiza­
tion problem mathematically. For example, [18] models the nonuni­
formity of the module distribution as a penalty term and solves the
constrained optimization problem to realize soft­module floorplan­
ning. Packing­based methods typically combine floorplan represen­
tations with heuristics such as Simulated Annealing (SA) or Particle
Swarm Optimization (PSO) to solve the floorplanning problem. Re­
searchers have proposed a number of efficient representations, such
as Sequence Pair [15], Corner Stitching [31], B*­tree [4, 7], MP­
tree [40], CP­tree [42] and MDP­tree [41]. ML­based methods ap­
ply machine learning techniques such as expert systems [3, 16] or
Reinforcement Learning [12, 22, 23] to perform macro placement.
Most existing macro placers focus on legalizing the placement

of macros and optimizing wirelength and/or routability without con­
sidering design features such as design hierarchy, macro regularity,
dataflow, macro guidance, pin access and notch area avoidance. On
the other hand, chip experts do pay attention to these design features
to produce high­quality macro placements. To automatically gener­
ate a competitive, closer to human­quality macro placement, some
recent works have begun to consider these features.
[27]­[30] and [34, 35, 39, 40, 46, 47] utilize design hierarchy to

guide macro placement. [20]­[24] and [30, 34, 35] exploit dataflow
and/or timing information to improve the quality of macro place­
ment. [28]­[30], [34, 35] and [41]­[44] reduce macro displacement
to honor themacro guidance given by placement prototyping, and [32,
36, 40] as geometrical constraints directly. [28]­[30] and [40]­[44]
can handle macro blockages and/or preplaced macros. [44, 46, 47]
try to avoid notches during macro placement to improve routability
and low­density regions during standard­cell placement. [29, 44]
pay special attention to the effect of regular placement of macros.
However, none of these previous works provides all of the above
features. Table 1 summarizes the main differences between our RTL­
MP method and previous works.

Methods Design
Hier

Shape
Reg

Dataflow
Timing

Macro
Guide

Pin
Access

Macro
Blockage

Notch
Align

[2]­[18]
[27, 39] ✓
[20]­[24] ✓
[32, 36] ✓
[41]­[43] ✓
[28] ✓ ✓

[46, 47] ✓ ✓
[34, 35] ✓ ✓ ✓
[40] ✓ ✓ ✓
[44] ✓ ✓ ✓
[29] ✓ ✓ ✓ ✓
[30] ✓ ✓ ✓ ✓

RTL­MP ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with previous methods. Columns 2­8 respectively
indicate use of design hierarchy; use of regular placement of macros;
use of dataflow and/or timing; handling of macro guidance (preferred
location or regions); handling of pin access; handling of macro block­
ages and/or preplaced macros; and handling of notches.

3 OUR APPROACH
A central aspect of RTL­MP is its conversion of the structural netlist
representation of the design into a clustered netlist abstractionmodel.
The clustered netlist not only reduces the problem size, but also
helps to break down the overall design closure problem into (i) a
global design closure problem that operates on the clustered netlist,
and (ii) a detailed design closure problem that operates on the de­
tailed gate­level netlist. The clustered netlist is generated based on
analyzing logical hierarchy, dataflow, the connection betweenmacros
and IO pins, and timing constraints. RTL­MP is built on open­source
OpenROAD infrastructure [25, 49]. As shown in Figure 1, it con­
sists of four major components.
• The Autoclustering Engine converts the structural netlist repre­
sentation of the RTL design into a clustered netlist. In the clus­
tered netlist abstraction model, nodes are clusters and nets are
bundled connections between clusters.
• The Shape Engine determines possible shapes and aspect ratio
constraints for all the clusters. This considers the contents of the
clusters, as clusters containingmacros can only have discrete shape
choices based on the tiling of the macros in the cluster.
• The Macro Placement Engine places all the clusters and final­
izes the shape of each cluster.
• The Pin Alignment Engine finalizes the location and orientation
for each macro.

Figure 1: RTL­MP flow.

4 AUTOCLUSTERING ENGINE
Clustering is an essential preprocessing step for macro placement.
In this step the structural netlist representation of the design is con­
verted to a clustered netlist in which the nodes are clusters and nets
are bundled connections between clusters. A cluster [45] refers to
a group of densely­connected instances such that the number of the
interconnections among elements inside the group is much larger
than the number of connections spanning different groups. Based
on types of instances within a cluster, we classify a cluster into one
of the following three types:
• Standard­Cell Cluster containing only standard cells;
• Macro Cluster containing only macros;
• Mixed Cluster containing both macros and standard cells.
The clustering step is typically done by users interactively and in
a top­down manner, by analyzing logical hierarchy, dataflow, con­
nections between macros and IO pins, and critical timing paths [48].
Such analysis helps the user to understand the structure of the design
and the dataflow, which provides insights into the “ideal” locations
of the various clusters and macros.
While it is useful for users to perform clustering manually and

understand physical implications of the design, it is also important
to have an autoclustering engine that can fully and automatically
generate meaningful clusters. This is especially true for designs pro­
duced by automatic RTL generators for ML applications; these can
have complex RTL structure with long, inscrutable autogenerated
module names. We therefore propose autoclustering based on log­
ical hierarchy of the design, connection signature of clusters, and
timing hops or indirect connections between macros and IO pins.
The detailed algorithm is shown in Algorithm 1. The entire auto­

clustering algorithm can be divided into the following steps.
• Step 1: [Lines 3­4]We create bundled pins by dividing each bound­
ary edge evenly into segments, and assigning each bundled pin to
the center of its corresponding segment. (In the experiments be­
low, we set the number of bundled pins on each boundary edge
to 3). Each bundled pin is treated as a cluster without physical
area. A design may have hundreds of IO pins. The bundled pins
can reduce connection complexity significantly and improve the
robustness of our macro placer.
• Step 2: [Lines 5­34]We traverse the logical hierarchy of the netlist
in a top­downmanner. During this step, we break down each large
(number of instances > 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡) hierarchical logical mod­
ule into submodules according to the logical hierarchy, and merge
the small submodules based on connection signatures, i.e., con­
nection topology or adjacency between clusters. Only small (num­
ber of instances < 𝑚𝑖𝑛_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡) clusters with the same connec­
tion signature will bemerged. Salient details include: (i) sameness
of connection signature is based on connection topology (i.e., ad­
jacency) between clusters, rather than the exact number of connec­
tions between clusters; (ii) all multiple­pin nets are decomposed
using a directed star model; (iii) to remove the “fake” difference
caused by common global nets such as scan or reset signals, a pa­
rameter ­𝑛𝑒𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is used to determine whether two clusters
are connected; and (iv) because the existence of buffers in a hi­
erarchical netlist can make connection topology between logical
modules ambiguous, we make related connections “transparent”
and ignore the area of buffers.
• Step 3: [Line 35] We break large clusters (number of instances >
𝑚𝑎𝑥_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡) that have no child modules into smaller clusters,
using the open­sourceMLPart hypergraph bipartitioner [38].

Algorithm 1: Autoclustering Engine
Input : 𝐺 ← synthesized hierarchical netlist
Output : 𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← clustered representation of𝐺

1 initialize an empty queue 𝑏𝑟𝑒𝑎𝑘_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑞𝑢𝑒𝑢𝑒
2 initialize empty lists 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 ,𝑚𝑒𝑟𝑔𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡
3 create bundled pins by dividing each boundary into bundled

segments
4 model each bundled pin as a cluster and add it to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡
5 create cluster 𝑡𝑜𝑝_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 for top module
6 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑡𝑜𝑝_𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
7 if 𝑡𝑜𝑝_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝐺𝑒𝑡𝑁𝑢𝑚𝐼𝑛𝑠𝑡 () >𝑚𝑎𝑥_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 or

𝑡𝑜𝑝_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝐺𝑒𝑡𝑁𝑢𝑚𝑀𝑎𝑐𝑟𝑜 () >𝑚𝑎𝑥_𝑛𝑢𝑚_𝑚𝑎𝑐𝑟𝑜 then
8 𝑏𝑟𝑒𝑎𝑘_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑡𝑜𝑝_𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
9 end
10 while !𝑏𝑟𝑒𝑎𝑘_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑞𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦 () do
11 𝑐 ← 𝑏𝑟𝑒𝑎𝑘_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑞𝑢𝑒𝑢𝑒.𝑓 𝑟𝑜𝑛𝑡 ()
12 𝑏𝑟𝑒𝑎𝑘_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
13 if 𝑐 has child modules then
14 for each child module 𝑐ℎ𝑖𝑙𝑑_𝑚𝑜𝑑𝑢𝑙𝑒 in 𝑐 do
15 create a cluster 𝑐ℎ𝑖𝑙𝑑 for 𝑐ℎ𝑖𝑙𝑑_𝑚𝑜𝑑𝑢𝑙𝑒
16 if 𝑐ℎ𝑖𝑙𝑑.𝐺𝑒𝑡𝑁𝑢𝑚𝑀𝑎𝑐𝑟𝑜 () >𝑚𝑎𝑥_𝑛𝑢𝑚_𝑚𝑎𝑐𝑟𝑜 or

𝑐ℎ𝑖𝑙𝑑.𝐺𝑒𝑡𝑁𝑢𝑚𝐼𝑛𝑠𝑡 () >𝑚𝑎𝑥_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 then
17 𝑏𝑟𝑒𝑎𝑘_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑐ℎ𝑖𝑙𝑑)
18 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑐ℎ𝑖𝑙𝑑)
19 else if 𝑐ℎ𝑖𝑙𝑑.𝐺𝑒𝑡𝑁𝑢𝑚𝑀𝑎𝑐𝑟𝑜 () >𝑚𝑖𝑛_𝑛𝑢𝑚_𝑚𝑎𝑐𝑟𝑜

or 𝑐ℎ𝑖𝑙𝑑.𝐺𝑒𝑡𝑁𝑢𝑚𝐼𝑛𝑠𝑡 () >𝑚𝑖𝑛_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 then
20 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑐ℎ𝑖𝑙𝑑)
21 else
22 𝑚𝑒𝑟𝑔𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑐ℎ𝑖𝑙𝑑)
23 end
24 end
25 create a cluster 𝑔𝑙𝑢𝑒_𝑙𝑜𝑔𝑖𝑐 for child leaf instances of 𝑐
26 if 𝑔𝑙𝑢𝑒_𝑙𝑜𝑔𝑖𝑐.𝐺𝑒𝑡𝑁𝑢𝑚𝐼𝑛𝑠𝑡 () <𝑚𝑖𝑛_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 or

𝑔𝑙𝑢𝑒_𝑙𝑜𝑔𝑖𝑐.𝐺𝑒𝑡𝑁𝑢𝑚𝑀𝑎𝑐𝑟𝑜 () <𝑚𝑖𝑛_𝑛𝑢𝑚_𝑚𝑎𝑐𝑟𝑜 then
27 𝑚𝑒𝑟𝑔𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑔𝑙𝑢𝑒_𝑙𝑜𝑔𝑖𝑐)
28 else
29 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑔𝑙𝑢𝑒_𝑙𝑜𝑔𝑖𝑐)
30 end
31 end
32 merge clusters in𝑚𝑒𝑟𝑔𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 based on connection

signature
33 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑙𝑖𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐)
34 end
35 callMLPart to break down clusters with number of instances larger

than𝑚𝑎𝑥_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡
36 partition mixed clusters into standard­cell clusters and macro clusters
37 For each macro cluster, mark its macros as single­macro macro

clusters and group them based on connection signature. Then, for
each newly formed macro cluster with macros of different sizes,
break it down and group its macros based on their sizes

38 add virtual connections between macro clusters and its
corresponding standard­cell clusters

39 add virtual connections between clusters based on information flow
and number of hops

40 return clustered netlist𝐺𝑐𝑙𝑢𝑠𝑡𝑒𝑟

• Step 4: [Lines 36, 38] We partition mixed clusters into standard­
cell clusters and macro clusters. Separating macro clusters and
standard­cell clusters makes it easier to determine possible foot­
prints for all the clusters. We add a virtual weighted connection

between each macro cluster and its corresponding standard­cell
cluster to induce the macro placer to place them together.
• Step 5: [Line 37] For each macro cluster, we mark each of its
macros as a single­macro macro cluster (that is, a macro clus­
ter consisting of only one macro) and group these single­macro
macro clusters based on connection signature. If a newly­formed
macro cluster has macros of different sizes, we break it down and
group macros within it based on the footprint of macros. Group­
ing macros based on identical footprint enables decent tilings of
macros in a given macro cluster, thereby achieving regular place­
ment of macros.
• Step 6: [Line 39] We add virtual connections between clusters to
take care of critical timing paths. The physical distances between
components on critical timing paths should be minimized to im­
prove performance. One approach is to determine all the critical
timing paths (e.g., having negative slack) and overlay them on
clusters. This is time­consuming and unnecessary since slack cal­
culation is not accurate at the floorplan stage. In this work, we
adopt a similar idea as [34, 35] and define virtual connections as

𝑉𝑖𝑟𝑡𝑢𝑎𝑙_𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (𝐴, 𝐵) = 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛_𝐹𝑙𝑜𝑤 (𝐴,𝐵)
2𝑁𝑢𝑚_𝐻𝑜𝑝𝑠 (1)

as shown in Figure 2. Here, Information_Flow corresponds to con­
nection bitwidth and Num_Hops is the length of a shortest path of
registers between clusters. However, unlike theDataflow_Affinity
defined in [34, 35], we use a more aggressive decaying factor as
in [22, 23] to capture the most important “indirect” connections.
If the register distance (𝑁𝑢𝑚_𝐻𝑜𝑝𝑠) between clusters is greater
than 4, then no virtual connection is added. Since the positions
of standard cells will be optimized later by the placement engine,
we consider only macro clusters so as to reduce runtime without
compromising final QoR. Further, we treat each bundled pin as a
macro cluster without physical area, so that indirect connections
between macro clusters and IO pins can also be accounted for.
• We use six hyperparameters: max_num_inst and min_num_inst,
the maximum and minimum number of standard cell instances in
a cluster; max_num_macro and min_num_macro, the maximum
and minimum number of macros in a cluster; virtual_weight, the
virtual weight between each macro cluster and its corresponding
standard­cell cluster; and net_threshold, the minimum number of
connections between two clusters needed for the clusters to be
considered as connected. These hyperparameters are determined
empirically.

Figure 2: Virtual connections between macro clusters. Black arrows
represent real connections and yellow arrows represent virtual connec­
tions. The virtual connections represented by yellow arrows can help
capture critical timing paths between Clusters A, B and C.

5 TOP LEVEL MACRO PLACER
After autoclustering, we have a clustered netlist in which the nodes
are clusters and the nets are bundled connections between clusters.
Since we have partitioned all mixed clusters into standard­cell clus­
ters and macro clusters, we will not have mixed clusters in the clus­
tered netlist. In this step, we model each standard­cell cluster as a
soft block, i.e., having fixed area, with upper­ and lower­bounded
continuously variable aspect ratios [19]. We also model each macro
cluster as a semi­soft block, i.e., having fixed area, with discrete al­
lowable aspect ratio choices, usually corresponding to alternative
tiling realizations of the group of macros in the cluster [19]. We
then call the shape engine to calculate possible aspect ratios for each
block. After that, we call the macro placement engine to place all the
blocks in the clustered netlist.

5.1 Shape Engine
The shape engine is used to determine possible aspect ratios for all
the blocks (in our work, all the blocks are rectangles). For a soft
block, the aspect ratio is specified by the upper bound (max_ar)
and the lower bound (min_ar) given by users. For a semi­soft block,
since we have grouped macros based on size in the autoclustering
step, all the macros in the same macro cluster have the same size.
We thus simply enumerate all the possible macro tilings and keep
the macro tilings with minimum area. An allowed macro tiling must
fit into the fixed floorplan.

5.2 Macro Placement Engine
After calling the shape engine, we have aspect ratio choices for all
the clusters. The function of the macro placement engine is then to
determine position and shape for each of the clusters. In this phase,
we assume that the bundled pin of each block is in the center of the
block. We use Sequence Pair [15] to represent blocks in the netlist
and Simulated Annealing [26] to optimize the cost function. Fur­
ther, we adopt a “go­with­the­winners” [1] scheme to further im­
prove the performance of Simulated Annealing and we set the num­
ber of threads to 10 in our experiments.1 As applied in this phase,
the Sequence Pair­based annealing supports four solution perturba­
tion (move) operators with respective probabilities 0.3, 0.3, 0.3 and
0.1:
• Op1: Swap two blocks in first sequence;
• Op2: Swap two blocks in second sequence;
• Op3: Swap two blocks in both sequences; and
• Op4: Resize a block. For soft blocks (standard­cell clusters), we
use the same soft­block resizing algorithm as in [7]; for semi­soft
blocks (macro clusters), we change the aspect ratio randomly.

To generate a decent, human­quality floorplan, we have enhanced
the macro placement engine to handle the following constraints:
• fixed outline:All blocks should be placedwithin the fixed outline
specified by users.
• macro peripheral bias: All macros should be pushed to periph­
eries as much as possible.
• pin access: All macros should be kept from blocking access of
IO pins.
• macro blockage:Allmacros should not overlapwithmacro (place­
ment) blockages. Preplacedmacros can be treated as macro block­
ages, hence our macro placer can also handle preplaced macros.

1This number of threads is easy to accommodate on any standard server.

• macro guidance: All blocks should be placed near specified re­
gions if users provide such constraints.
• notch avoidance: A decent floorplan should avoid “dead space”
which cannot be used effectively by P&R tools.

We refer to the example of Figure 3 when describing these enhance­
ments, in the following.

Figure 3: Example to illustrate macro placer enhancements. outline_w
and outline_h denote the width and height of the fixed outline. A is a
semi­soft block (macro cluster) with width 𝑤𝐴, height ℎ𝐴 and center
(𝑥𝐴, 𝑦𝐴) . (𝑙𝑥𝐴, 𝑙𝑦𝐴) and (𝑢𝑥𝐴,𝑢𝑦𝐴) are the lower­left and upper­right
coordinates of A. R is the preferred region for A. B is a special blockage
for IO pins. P1, P2, ..., P9 are IO pins.

5.2.1 Fixed Outline. In reality, the use of floorplanning during the
chip design process almost always comes after the die size and pack­
age have been chosen. Moreover, when the top­level SoC is split
into implementation blocks, the top­level constraints for the blocks
usually include the DEF file that defines the fixed outline of the
block along with IO pin positions, as well as timing constraints.
Thus, floorplanning is properly cast as a fixed­die problem [19].
Floorplans with rectilinear outlines can be modeled as a rectangu­
lar outline with “keep­out” blockages. We accomodate the fixed­die
constraint by adding an outline violation penalty 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 into the
macro placement cost function:

𝑓 𝑙𝑜𝑜𝑟𝑝𝑙𝑎𝑛_𝑎𝑟𝑒𝑎 =𝑚𝑎𝑥 (𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤,𝑤) ×𝑚𝑎𝑥 (𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ,ℎ)
𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑎𝑟𝑒𝑎 = 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤 × 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ

𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 = 𝑓 𝑙𝑜𝑜𝑟𝑝𝑙𝑎𝑛_𝑎𝑟𝑒𝑎 − 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑎𝑟𝑒𝑎
(2)

where 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤 and 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ are the width and height of the fixed
outline; 𝑤 and ℎ are the width and height of the current floorplan;
and 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 is the penalty for the fixed­outline violation.

5.2.2 Macro Peripheral Bias. When expert engineers create a floor­
plan manually, they prefer to place macros at the peripheries, to
avoid creating a standard­cell region that is difficult for the P&R
tool to handle. We mimic this behavior by adding a peripheral bias
term into the cost function. For the semi­soft block (macro cluster)
A shown in Figure 3, we define a bias penalty 𝑝𝑏𝑖𝑎𝑠_𝐴 for A as

𝑙𝐴 = 𝑙𝑥𝐴
𝑏𝐴 = 𝑙𝑦𝐴

𝑟𝐴 = ∥𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤 − 𝑙𝑥𝐴 −𝑤𝐴∥
𝑡𝐴 = ∥𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ − 𝑙𝑦𝐴 − ℎ𝐴∥

𝑝𝑏𝑖𝑎𝑠_𝐴 =𝑚𝑖𝑛(𝑙𝐴, 𝑏𝐴, 𝑟𝐴, 𝑡𝐴)2 ×𝐴.𝐺𝑒𝑡𝑁𝑢𝑚𝑀𝑎𝑐𝑟𝑜 ()

(3)

5.2.3 Pin Access andMacro Blockage. When engineers create floor­
plans manually, they will leave some empty space between macros
and IO pins to improve pin accessibility. We mimic this behavior
by creating special blockages around IO pins. This kind of special
blockages only affects semi­soft blocks (macro clusters); it will not
influence a soft block consisting of only standard cells. In the exam­
ple of Figure 3, for a semi­soft block (macro cluster) A and a special
blockage B, we define a pin access penalty 𝑝𝑝𝑖𝑛_𝐴_𝐵 for A and B:

𝑤𝑖𝑑𝑡ℎ =𝑚𝑎𝑥 (0.0,𝑚𝑖𝑛(𝑢𝑥𝐴, 𝑢𝑥𝐵) −𝑚𝑎𝑥 (𝑙𝑥𝐴, 𝑙𝑥𝐵))
ℎ𝑒𝑖𝑔ℎ𝑡 =𝑚𝑎𝑥 (0.0,𝑚𝑖𝑛(𝑢𝑦𝐴, 𝑢𝑦𝐵) −𝑚𝑎𝑥 (𝑙𝑦𝐴, 𝑙𝑦𝐵))
𝑝𝑝𝑖𝑛_𝐴_𝐵 = 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 ×𝐴.𝐺𝑒𝑡𝑁𝑢𝑚𝑀𝑎𝑐𝑟𝑜 ()

(4)

Aside from these special blockages around IO pins, which are gener­
ated by RTL­MP automatically, our macro placer also allows users
to specify other macro blockages. We handle these additional macro
blockages in the same manner as special blockages for IO pins.

5.2.4 Macro Guidance and Incremental Use Support. During pro­
totyping and floorplan design exploration, backend engineers often
draw from experience with previous revisions of the design. RTL­
MP allows users to specify preferred locations for some or all the
macros by adding a macro guidance penalty term into the cost func­
tion. In contrast to the classical fence constraint, RTL­MP tries to
place macros around the preferred locations instead of forcing the
macros into fences. Figure 3 shows how a semi­soft block A may
have a specified preferred region R (which will not influence other
blocks). In this example, a macro guidance penalty term 𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒_𝐴
is applied for A:

𝑤𝑖𝑑𝑡ℎ = 𝑤𝑅 +𝑤𝐴
ℎ𝑒𝑖𝑔ℎ𝑡 = ℎ𝑅 + ℎ𝐴

𝑥_𝑑𝑖𝑠𝑡 = ∥𝑥𝑅 − 𝑥𝐴∥ −𝑤𝑖𝑑𝑡ℎ
𝑦_𝑑𝑖𝑠𝑡 = ∥𝑦𝑅 − 𝑦𝐴∥ − ℎ𝑒𝑖𝑔ℎ𝑡

𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒_𝐴 =𝑚𝑎𝑥 (0.0, 𝑥_𝑑𝑖𝑠𝑡) +𝑚𝑎𝑥 (0.0, 𝑦_𝑑𝑖𝑠𝑡)

(5)

5.2.5 Notch avoidance. Notches are small P&R regions in the floor­
plan that cannot be effectively used for standard­cell placement dur­
ing ensuing optimization stages of physical implementation. These
usually appear between macro edges and the design boundary, or
between adjacent macro clusters. As final standard­cell utilizations
in notch regions are typically very low, the presence of notches in­
creases effective core utilization and hence can cause routability is­
sues.With this inmind, ourmacro placer adds a notch region penalty
term into the cost function. The method of notch penalty calculation
is shown in Algorithm 2.
In summary, the final cost function of our macro placer is

𝑐𝑜𝑠𝑡 = 𝛼 ×𝐴𝑟𝑒𝑎 + 𝛽 ×𝑊𝐿 + 𝛾 × 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 + 𝜁 × 𝑝𝑏𝑖𝑎𝑠
+ 𝜂 × 𝑝𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 + 𝜃 × 𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 + 𝜆 × 𝑝𝑛𝑜𝑡𝑐ℎ

(6)

where 𝐴𝑟𝑒𝑎 is the area of the current floorplan, 𝑊𝐿 is the wire­
length (HPWL), 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 is the penalty for violating the fixed out­
line constraint, 𝑝𝑏𝑖𝑎𝑠 is the penalty to promote macro peripheral
bias, 𝑝𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 is the penalty for pin access and macro blockage,
𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 is the penalty for macro guidance, 𝑝𝑛𝑜𝑡𝑐ℎ is the penalty for
notch regions, and 𝛼 , 𝛽, 𝛾 , 𝜁 , 𝜂, 𝜃 , 𝜆 are the corresponding weights.
𝐴𝑟𝑒𝑎,𝑊𝐿, 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 , 𝑝𝑏𝑖𝑎𝑠 , 𝑝𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 , 𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 and 𝑝𝑛𝑜𝑡𝑐ℎ are each
normalized to the corresponding initial value.
The reader will note that determining “optimal” weights can be

nontrivial. On the one hand, results for a given input design can
change significantly with different weight values. On the other hand,
a set of “perfectly” tuned weights for one design may fail to achieve

Algorithm 2: Notch Penalty Calculation

1 𝑝𝑛𝑜𝑡𝑐ℎ ← 0.0

2 𝑛𝑜𝑡𝑐ℎ𝑤 ← 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤
10.0

3 𝑛𝑜𝑡𝑐ℎℎ ← 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ
10.0

4 𝑤 ← width of current floorplan
5 ℎ ← height of current floorplan
6 if 𝑤 > 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤 || ℎ > 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ then
7 𝑎𝑟𝑒𝑎 ←𝑚𝑎𝑥 (𝑤,𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤) ×𝑚𝑎𝑥 (ℎ,𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ)
8 𝑝𝑛𝑜𝑡𝑐ℎ ← 𝑠𝑞𝑟𝑡 (𝑎𝑟𝑒𝑎

𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤 × 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ)
9 return 𝑝𝑛𝑜𝑡𝑐ℎ

10 end
11 move macro clusters near to boundaries to corresponding boundary
12 use macro clusters along the boundaries as seeds to align other

macro clusters
13 divide the entire floorplan into grids using the coordinates of macro

clusters
14 for each grid 𝑔 do
15 if 𝑔 is surrounded by boundaries or macro clusters on at least

three sides then
16 𝑤𝑔 ← width of 𝑔
17 ℎ𝑔 ← height of 𝑔
18 if (𝑤𝑔 <= 𝑛𝑜𝑡𝑐ℎ𝑤) || (ℎ𝑔 <= 𝑛𝑜𝑡𝑐ℎℎ) then
19 𝑝𝑛𝑜𝑡𝑐ℎ ← 𝑝𝑛𝑜𝑡𝑐ℎ + 𝑠𝑞𝑟𝑡 (

𝑤𝑔 × ℎ𝑔
𝑜𝑢𝑡𝑙𝑖𝑛𝑒_𝑤 × 𝑜𝑢𝑡𝑙𝑖𝑛𝑒_ℎ)

20 end
21 end
22 end
23 return 𝑝𝑛𝑜𝑡𝑐ℎ

a decent macro placement for another design due to different utiliza­
tion, macro types, critical timing paths and logical hierarchy of in­
put designs. Previous works (e.g., [34, 35]) usually launch multiple
runs to sweep these weights, and pick the best result over all weight
combinations. However, such a “grid” sweep can be inefficient and
time­consuming. In our work, we use a scalable hyperparameter
tuning tool – Tune [37] – to tune these weights automatically. We
have found that when given a user­specified loss function, Tune can
search the weight parameter space efficiently and find high­quality
combinations of weight values. Details of our autotuning approach
are presented in Section 7.

6 PIN ALIGNMENT ENGINE
After calling the top­level macro placer, we know the position and
shape for each cluster. We next determine the location and orienta­
tion of macros in each macro cluster, one macro cluster at a time.
For a given macro cluster A, we first create a bundled pin for each
macro in A. The bundled pin of a macro is located at the geomet­
ric center of the bounding box of the macro’s pin locations. Second,
we extract the connections between macros in A and other clusters.
Here, other clusters behave like fixed terminals. Any connections
between macros in A are also considered. As in Step 2 of Algo­
rithm 1, we “remove” all the buffers when we calculate connections.
As with the Macro Placement Engine (Subsection 5.2), we use Se­
quence Pair [15] to represent macro placement in A and Simulated
Annealing [26] to optimize the cost function, again with “go­with­
the­winners” [1] to further improve the performance of Simulated
Annealing, and 10 threads in all of our experiments. We use four so­
lution perturbation (move) operators in the annealing, with respec­
tive probabilities 0.3, 0.3, 0.3 and 0.1:

• Op1: Swap two blocks in first sequence;
• Op2: Swap two blocks in second sequence;
• Op3: Swap two blocks in both sequences; and
• Op4: Flip all the macros.
The cost function used in this step is

𝑐𝑜𝑠𝑡 = 𝛼 ×𝐴𝑟𝑒𝑎 + 𝛽 ×𝑊𝐿 + 𝛾 × 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 (7)
where 𝐴𝑟𝑒𝑎 is the area of the current macro packing, 𝑊𝐿 is the
wirelength (HPWL), 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 is the penalty for violating the fixed­
outline constraint, and 𝛼, 𝛽 and 𝛾 are corresponding weights.

7 EXPERIMENT RESULTS
Our macro placer (RTL­MP) is implemented with approximately 6K
lines of C++ on top of OpenROAD [25, 49] infrastructure. We have
validated our macro placer using five industrial designs and one ma­
chine learning accelerator generated by an automatic RTL generator.
All studies use a commercial foundry 12nm technology (13 metal
layers) with cell library and memory generators from a leading IP
provider. Table 2 shows information about the designs. To show the
effectiveness of our macro placer, the following five scenarios are
evaluated and compared.2

• Comm: Macro placement is done by a 2020 release of a state­of­
the­art commercial P&R tool using high­effort settings.
• Manual: All macros are manually placed by expert backend engi­
neers.
• TMP: Macro placement is generated by TritonMP, which is the
default macro placer in the OpenROAD project [25].
• HiDaP: Macros are placed by a recent state­of­the­art academic
tool, HiDaP [34].
• RTL­MP: Results are obtained using our macro placer.3

Designs Std
Cells Macros IOs Nets Macro

Blockage
Macro

Guidance
swerv_wrapper [50] 78K 28 1416 94K

ariane [52] 114K 37 495 131K
simd 207K 46 4210 236K ✓

coyote [51] 208K 15 784 327K
bp_single [53] 323K 49 135 508K

ca53 445K 25 1352 483K ✓

Table 2: Benchmarks. simd is the machine learning accelerator gener­
ated by an automatic RTL generator. User­specified macro blockages
or macro guidance can be present.

Our experiments use the following flow. (1) We first synthesize a
design using a state­of­the­art commercial synthesis tool. (2) Next,
we determine the core size of the testcase and place all the IO pins
using a manually­developed script. (3) Then, the macros are placed
using different methods (Comm, Manual, TMP, HiDaP and RTL­
MP).4 (4) Finally, the placement of standard cells and routing are
completed by the state­of­the­art commercial P&R tool. All metrics
are collected after post­routing optimization.
As noted in Subsection 5.2, hyperparameter settings can signifi­

cantly impact solution quality. We therefore apply the hyperparam­
eter tuning tool Tune [37] to automatically tune weights in the cost
2 [30] has recently reported an excellent dataflow­driven macro placer. Unfortunately,
no testcases or executables can be released by their group. We also tried to compare
against the mixed­size placer in OpenROAD, but were not able to generate legal floor­
plans for many of our designs.
3RTL­MP𝐵 denotes RTL­MP with user­specified macro blockages. RTL­MP𝐿 denotes
RTL­MPwith user­specified “loose” macro guidance. RTL­MP𝑇 denotes RTL­MPwith
user­specified “tight” macro guidance. These modes of operation are explored in the
experiments below.
4All steps or methods referred to as “manual” are performed by an expert layout engi­
neer who has over 30 years of industry experience in SoC and physical floorplanning.

function (Eq. 6) for different designs. An appropriate loss function
is needed to guide the search process [54]. In our use of Tune, we
define the loss function as

𝑙𝑜𝑠𝑠 = 0.1 ×𝑊𝐿 + 1.0 × 𝑝𝑜𝑢𝑡𝑙𝑖𝑛𝑒 + 1.0 × 𝑝𝑏𝑖𝑎𝑠
+ 1.0 × 𝑝𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 + 1.0 × 𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 + 1.0 × 𝑝𝑛𝑜𝑡𝑐ℎ

(8)

Compared with Eq. 6, we remove the area term (𝐴𝑟𝑒𝑎) because the
area is not important as long as the macro placement is valid.
The number of trials allowed to Tune affects QoR: more trials

achieve better QoR at the cost of longer tuning time. In our experi­
ments, we set the number of trials for each design to 20 and use 5
threads to obtain an acceptable tuning walltime equal to 4 times that
of a single RTL­MP run, without any undue CPU needs. Besides the
weights in the cost function (Eq. 6), we also add the hyperparameter
­min_armentioned in Subsection 5.1 to the list of tuning parameters.
We define values for remaining hyperparameters based on empirical
experience: (i) we setmax_num_macro = 12 andmin_num_macro =
4; (ii) we set virtual_weight= 500 and net_threshold= 5. And, (iii) to
accommodate designs of different sizes, we calculatemin_num_inst
and max_num_inst as

𝑚𝑖𝑛_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 =𝑚𝑎𝑥 (1𝐾, 𝑓 𝑙𝑜𝑜𝑟 (𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡
50×5𝐾) × 5𝐾)

𝑚𝑎𝑥_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 =𝑚𝑖𝑛(50𝐾, 5 ×𝑚𝑖𝑛_𝑛𝑢𝑚_𝑖𝑛𝑠𝑡)
(9)

where total_num_inst is the total number of instances of the design.5
The HiDaP tool also has hyperparameters that require tuning. We
launch 20 runs6 for each design to sweep hyperparameters and ex­
tract the best result in terms of minimum number of DRCs and better
wirelength, because we cannot extract corresponding metrics (for
purposes of loss function evaluation) from the executable we were
provided. We report the metrics of TMP in the same manner.
Table 3 shows the experiment results after completion of post­

routing optimization. Rows represent circuits and macro placement
flows, and columns give information on number of standard cells,
wirelength (in meters), number of DRCs, timing information (worst
negative slack and total negative slack, in ns), power (in mW) and
turnaround time (in minutes) for a single run.7 Figure 4 gives ex­
ample post­routing layouts. We see clearly that RTL­MP achieves
the smallest routed wirelength for all testcases. The degradation in
wirelength for other approaches is because the standard cell P&R
tool has to insert more buffers/inverters and use more complicated
routing patterns to achieve similar timing closure. To validate the ef­
fectiveness of the autotuning method, we compare the results of au­
totuning and grid sweep (denoted as RTL­MP𝐺) using design ca53.
We can observe that the autotuning outperforms grid sweep in terms
of all metrics. ForHiDaP, we show the post­routing layout of design
swerv_wrapper in Figure 4(a).Wewere unable to find parameter set­
tings forHiDaP that yield competitive results for other designs, and
therefore do not show any other comparison to HiDaP here.
Predictability of results under user­specified constraints such as

macro blockages and macro guidance is one of the key features for
a stable prototyping tool. In stark contrast to the chaotic behavior

5min_num_inst andmax_num_inst are tunable hyperparameters. Here, we simply show
how we calculate these based on our testcases.
6Based on our experiment results, 20 runs can already generate decent results. More
runs (and larger walltime) can be applied if desired.
7A single run means running the corresponding macro placer once, without any param­
eter sweeping or autotuning.

of commercial P&R tools [33], RTL­MP can handle these informa­
tive constraints quite well. As an example, we provide macro block­
ages for simd and macro guidance for ca53 (see Table 2). The post­
routing layouts are presented in Figure 4 and the corresponding met­
rics are shown in Table 3. For simd, the user­specified macro block­
age (purple rectangle in Figure 4(d)) is created based on the macro
placement given by chip experts (see Figure 4(c)). In this case, the
commercial P&R tool cannot generate a valid macro placement and
we useNaN to indicate this in Table 3; TMP is unable to comprehend
any user­specified macro blockage, so we do not show a result for
TMP. Similarly, we specify macro guidance for ca53 based on the
manual floorplan in Figure 4(f). In Figure 4(i), we provide “loose”
macro guidance by specifying the bounding box of each macro clus­
ter in the manual floorplan as the macro cluster’s preferred region.
And, in Figure 4(j), we provide “tight” macro guidance by specify­
ing the center region (10 um × 10 um) of each macro cluster in the
manual floorplan as the cluster’s preferred region. Our experiment
results suggest very strong stability and predictability of our macro
placer.

Design Flow Std
Cells

WL
(m) DRC WNS

(ns)
TNS
(ns)

Power
(mW)

TAT
(min)

swerv_wrapper

Comm
Manual
TMP
HiDaP
RTL­MP

101K
101K
102K
111K
100K

1.48
1.38
1.46
1.39
1.37

0
0
1
0
0

­0.010
­0.020
­0.013
­0.009
­0.018

­0.352
­0.497
­0.200
­0.511
­0.319

116.75
115.75
118.66
115.55
115.99

1.00
weeks
1.53
1.68
59.18

ariane

Comm
Manual
TMP

RTL­MP

134K
132K
132K
132K

2.27
1.89
1.86
1.83

0
0
0
0

­0.065
­0.012
­0.006
­0.012

­12.269
­0.678
­0.314
­0.108

174.52
168.98
169.44
169.11

1.50
weeks
2.18
49.68

simd
Comm
Manual
RTL­MP𝐵

NaN
256K
255K

NaN
4.14
3.99

NaN
0
0

NaN
­0.026
­0.032

NaN
­1.195
­3.003

NaN
288.70
299.26

NaN
weeks
87.07

coyote

Comm
Manual
TMP

RTL­MP

325K
322K
323K
322K

3.22
3.17
3.27
3.16

0
0
0
0

­0.025
­0.017
­0.023
­0.035

­0.094
­0.129
­0.222
­0.090

110.14
109.84
110.17
109.77

2.00
weeks
2.92
38.83

bp_single

Comm
Manual
TMP

RTL­MP

523K
512K
507K
507K

5.53
5.05
5.61
4.95

136
35
0
0

­0.105
­0.086
­0.086
­0.116

­111.976
­3.148
­2.905
­3.202

424.86
414.83
423.04
414.09

3.00
weeks
5.87
22.08

ca53

Comm
Manual
TMP

RTL­MP𝐺
RTL­MP
RTL­MP𝐿
RTL­MP𝑇

508K
505K
507K
504K
503K
505K
504K

7.95
7.66
7.73
7.47
7.41
7.50
7.50

1
0
0
1
0
0
0

­0.047
­0.014
­0.021
­0.017
­0.015
­0.018
­0.021

­3.177
­1.894
­2.842
­2.887
­2.639
­2.985
­1.645

651.30
636.55
640.01
630.35
627.26
636.06
631.80

4.50
weeks
8.80
71.55
58.00
57.15
55.28

Table 3: Summary of experiment results.

From Table 3, we can see that the turnaround time of RTL­MP is
relatively long compared to other macro placers. Improving this is
an obvious direction for future work. Profiling results for our macro
placer on the ca53 testcase are shown in Figure 5. Nearly 90% of the
runtime is spent on solution evaluation (𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 (29.2%), 𝑝𝑏𝑖𝑎𝑠
(29.0%) and𝑊𝐿 calculation (28.9%)). This said, across all of our
studies RTL­MP still performs at least 1921 solution evaluations per
second. The autoclustering engine is also a significant consumer of
runtime. The shape engine and pin alignment engine take only small
portions of runtime. From Table 3, we also observe that the turn­
around time of RTL­MP does not necessarily increase linearly with
the size of input designs, indicating that RTL­MP has good scalabil­
ity. This is because the autoclustering engine will adjust the size of
clusters according to the input design, such that the number of clus­
ters will not increase too much as the size of input designs increases.

8 CONCLUSION
We have proposed a novel macro placer called RTL­MP, which uti­
lizes RTL information and tries to “mimic” the behavior of human
experts in creating macro placement. By exploiting logical hierar­
chy and processing logical modules based on connection signatures,

(a) swerv_wrapper (HiDaP) (b) swerv_wrapper (RTL­MP)

(c) simd (Manual) (d) simd (RTL­MP𝐵)

(e) ca53 (Comm) (f) ca53 (Manual)

(g) ca53 (TMP) (h) ca53 (RTL­MP)

(i) ca53 (RTL­MP𝐿) (j) ca53 (RTL­MP𝑇)

Figure 4: Post­route layouts of swerv_wrapper, simd and ca53 de­
signs with different flows under different user­specified constraints. De­
sign/Flow: (a) swerv_wrapper /HiDaP; (b) swerv_wrapper / RTL­MP; (c)
simd /Manual; (d) simd / RTL­MP with user­specified macro blockages
(purple rectangle); (e) ca53 / Comm; (f) ca53 /Manual; (g) ca53 / TMP;
(h) ca53 / RTL­MP; (i) ca53 / RTL­MPwith user­specified “loose” macro
guidance (orange rectangles); (j) ca53 / RTL­MP with user­specified
“tight” macro guidance (orange rectangles).

Figure 5: Runtime profiling of RTL­MP on the ca53 testcase. Nearly
90% of the runtime is spent on solution evaluation (𝑝𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 , 𝑝𝑏𝑖𝑎𝑠
and𝑊𝐿 calculation).

RTL­MP can fully capture the dataflow defined by RTL designers
and use the dataflow information to guide macro placement. To fur­
ther improve macro placement QoR, RTL­MP takes care of pin ac­
cess, notch area avoidance and the common practice of pushing
macros to peripheries. Furthermore, RTL­MP generates stable and
predictablemacro placementswhen given typical forms of user guid­
ance and constraints. We also apply autotuning to optimize weights
of objective function terms, on a per­design basis. Compared to a
state­of­the­art commercial macro placer and floorplans generated
by a human expert engineer, RTL­MP outperforms the commercial
tool and achieves similar QoR as handcrafted floorplans (evaluated
after standard­cell P&R in the commercial tool). This suggests that
RTL­MP is already a very promising tool for quick prototyping.
A key area of future work is to extend the autoclustering engine to

support hierarchical clusters. This is essential for very large blocks
with hundreds or thousands of macros where a single level of macro
clusters would lead to suboptimal floorplans, as noted in [8]. In the
hierarchical clustering approach, we would generate a top­level par­
ent cluster corresponding to a logical module in the hierarchy and
also create child clusters underneath it. At the top level of the floor­
plan, the parent clusters are first placed and shaped, and for each
parent cluster its child clusters – which could be a mix of standard­
cell and macro clusters – would be placed inside the outline of the
parent cluster. For this approach to produce high­quality floorplans,
“global” route planning would be introduced after the top­level par­
ent clusters are placed; this would determine pin access regions for
the parent clusters that prevent the macro placement inside the par­
ent clusters from blocking routes and causing congestion.

ACKNOWLEDGMENTS
We thank Dr. Alex Vidal­Obiols for sharing the HiDaP [34] exe­
cutable and providing support on how to run HiDaP. We also thank
Dr. Jiajia Li for helpful discussions. Research at UCSD is partially
supported byDARPA IDEAHR0011­18­2­0032 andRTMLFA8650­
20­2­7009.

REFERENCES
[1] D. Aldous and U. Vazirani, “‘Go with the winners’ algorithms”, Proc. IEEE Symp.

on FOCS, 1994, pp. 492­501.
[2] S. N. Adya and I. L. Markov, “Fixed­outline floorplanning: enabling hierarchical

design”, IEEE Trans. VLSI 11(6) (2003), pp. 1120­1135.
[3] R. Bruck, K.­H. Temme and H. Wronn, “FLAIR­a knowledge­based approach to

integrated circuit floorplanning”, Proc. Intl. Workshop on Artificial Intelligence
for Industrial Applications, 1988, pp. 194­199.

[4] Y.­C. Chang, Y.­W. Chang, G.­M. Wu and S.­W. Wu, “B*­trees: a new represen­
tation for non­slicing floorplans”, Proc. DAC, 2000, pp. 458­463.

[5] W. Choi and K. Bazargan, “Hierarchical global floorplacement using simulated
annealing and network flow area migration”, Proc. DATE, 2003, pp. 1104­1105.

[6] J. Cong, M. Romesis and J. R. Shinnerl, “Fast floorplanning by look­ahead en­
abled recursive bipartitioning”, IEEE Trans. CAD 25(9) (2006), pp. 1719­1732.

[7] T.­C. Chen and Y.­W. Chang, “Modern floorplanning based on 𝐵∗­tree and fast
simulated annealing”, IEEE Trans. CAD 25(4) (2006), pp. 637­650.

[8] T. Chen, Y. Chang and S. Lin, “A new multilevel framework for large­scale
interconnect­driven floorplanning”, IEEE Trans. CAD 27(2) (2008), pp. 286­294.

[9] G. Chen, W. Guo, H. Cheng, X. Fen and X. Fang, “VLSI floorplanning based on
particle swarm optimization”, Proc. Intl. Conf on Intelligent System and Knowl­
edge Engineering, 2008, pp. 1020­1025.

[10] C.­C. Hu, D.­S. Chen and Y.­W. Wang, “Fast multilevel floorplanning for large
scale modules”, Proc. ISCAS, 2004, pp. 205­208.

[11] B. H. Gwee and M. H. Lim, “A GAwith heuristic­based decoder for IC floorplan­
ning”, Integration 28(2) (1999), pp. 157­172.

[12] Z. He, Y. Ma, L. Zhang, P. Liao, N. Wong, B. Yu and M. D.­F. Wong, “Learn to
floorplan through acquisition of effective local search heuristics”, Proc. ICCD,
2020, pp. 324­331.

[13] J. Lu, H. Zhuang, P. Chen, H. Chang, C.­C. Chang, Y.­C.Wong et al., “ePlace­MS:
electrostatics­based placement for mixed­size circuits”, IEEE Trans. CAD 24(5)
(2015), pp. 685­698.

[14] M.­C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov and S. Ramji, “MAPLE:
multilevel adaptive placement for mixed­size designs”, Proc. ISPD, 2012, pp.
193–200.

[15] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “VLSI module place­
ment based on rectangle­packing by the sequence­pair”, IEEE Trans. CAD 15(12)
(1996), pp. 1518­1524.

[16] K. ­H. Temme and R. Bruck, “Chip­architecture planning based on expert knowl­
edge”, Proc. Intl. Workshop on Artificial Intelligence for Industrial Applications,
1998, pp. 188­193.

[17] J. Z. Yan and C. Chu, “DeFer: Deferred decision making enabled fixed­outline
floorplanner”, Proc. DAC, 2008, pp. 161­166.

[18] Y. Zhan, Y. Feng and S. S. Sapatnekar, “A fixed­die floorplanning algorithm using
an analytical approach”, Proc. ASP­DAC, 2006.

[19] A. B. Kahng, “Classical floorplanning harmful?”, Proc. ISPD, 2000, pp. 207­213.
[20] D. H. Kim and S. K. Lim, “Bus­aware microarchitectural floorplanning”, Proc.

ASP­DAC, 2008, pp. 204­208.
[21] M. Ekpanyapong, J. R. Minz, T. Watewai, H. S. Lee and S. K. Lim, “Profile­

guided microarchitectural floorplanning for deep submicron processor design”,
IEEE Trans. CAD 25(7) (2006), pp. 1289­1300.

[22] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang et al., “Chip
placement with deep reinforcement learning”, arXiv 2004.10746, 2020.

[23] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang et al.,
“A graph placement methodology for fast chip design”, Nature 594 (2021), pp.
207­212. https://github.com/google­research/circuit_training

[24] V. Nookala, Y. Chen, D. J. Lilja and S. S. Sapatnekar, “Microarchitecture­aware
floorplanning using a statistical design of experiments approach”, Proc. DAC,
2005, pp. 579­584.

[25] A. B. Kahng and T. Spyrou, “The OpenROAD project: unleashing hardware in­
novation”, Proc. GOMACTech, 2021.

[26] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated anneal­
ing”, Science 220(4598) (1983), pp. 671­680.

[27] J. Lin, S. Li and Y. Wang, “Routability­driven mixed­size placement prototyp­
ing approach considering design hierarchy and indirect connectivity between
macros”, Proc. DAC, 2019, pp. 1­6.

[28] J.­M. Lin, Y.­L. Deng, Y.­C. Yang, J.­J. Chen and Y.­C. Chen, “A novel macro
placement approach based on simulated evolution algorithm”, Proc. ICCAD,
2019, pp. 1­7.

[29] J. Lin, Y. Deng, S. Li, B. Yu, L. Chang and T. Peng, “Regularity­aware routability­
driven macro placement methodology for mixed­size circuits with obstacles”,
IEEE Trans. VLSI 27(1) (2019), pp. 57­68.

[30] J.­M. Lin, Y.­L. Deng, Y.­C. Yang, J.­J. Chen and P.­C. Lu, “Dataflow­aware
macro placement based on simulated evolution algorithm for mixed­size designs”,
IEEE Trans. VLSI 29(5) (2021), pp. 973­984.

[31] J. K. Ousterhout, “Corner stitching: a data­structuring technique for vlsi layout
tools”, IEEE Trans. CAD 3(1) (1984), pp. 87­100.

[32] X. Tang and D. F. Wong, “FAST­SP: a fast algorithm for block placement based
on sequence pair”, Proc. ASP­DAC, 2001, pp. 521­526.

[33] T.­B. Chan, A. B. Kahng and M. Woo, “Revisiting inherent noise floors for inter­
connect prediction”, Proc. SLIP, 2020, pp. 1­7.

[34] A. Vidal­Obiols, J. Cortadella, J. Petit, M. Galceran­Oms and F. Martorell, “RTL­
aware dataflow­driven macro placement”, Proc. DATE, 2019, pp. 186­191.

[35] A. Vidal­Obiols, J. Cortadella, J. Petit, M. Galceran­Oms and F.Martorell, “Multi­
level dataflow­driven macro placement guided by RTL structure and analytical
methods”, IEEE Trans. CAD 40(12) (2020), pp. 2542­2555.

[36] J. Z. Yan, N. Viswanathan and C. Chu, “An effective floorplan­guided placement
algorithm for large­scale mixed­size design”, ACM TODAES 19(3) (2014), pp.
1­25.

[37] Tune. https://docs.ray.io/en/latest/tune/index.html.
[38] A. Caldwell, A. B. Kahng and I. Markov, “MLPart: high­performance min­

cut bisector”, 2006. https://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/
MLPart/

[39] Y. Chuang, G. Nam, C. J. Alpert, Y. Chang, J. Roy and N. Viswanathan, “Design­
hierarchy aware mixed­size placement for routability optimization”, Proc. IC­
CAD, 2010, pp. 663­668.

[40] T.­C. Chen, P.­H. Yuh, Y.­W. Chang, F.­J. Huang and T.­Y. Liu, “MP­trees: a
packing­basedmacro placement algorithm for modernmixed­size designs”, IEEE
Trans. CAD 27(9) (2008), pp. 1621­1634.

[41] Y.­C. Liu, T.­C. Chen, Y.­W. Chang and S.­Y. Kuo, “MDP­trees: multi­domain
macro placement for ultra large­scale mixed­size designs”, Proc. ASP­DAC, 2019.

[42] Y. Chen, C. Huang, C. Chiou, Y. Chang and C. Wang, “Routability­driven
blockage­aware macro placement”, Proc. DAC, 2014, pp. 1­6.

[43] C.­H. Chiou, C.­H. Chang, S.­T. Chen and Y.­W. Chang, “Circular­contour­based
obstacle­aware macro placement”, Proc. ASP­DAC, 2016, pp. 172­177.

[44] C.­H. Chang, Y.­W. Chang and T.­C. Chen, “A novel damped­wave framework
for macro placement”, Proc. ICCAD, 2017, pp. 504­511.

[45] M. Fogaça, A. B. Kahng, E. Monteiro, R. Reis, L. Wang and M. Woo, “On the su­
periority of modularity­based clustering for determining placement­relevant clus­
ters”, Integration (74) (2020), pp. 32­44.

[46] M. Hsu, Y. Chen, C. Huang, T. Chen andY. Chang, “Routability­driven placement
for hierarchical mixed­size circuit designs”, Proc. DAC, 2013, pp. 1­6.

[47] M.­K. Hsu, Y.­F. Chen, C.­C. Huang, S. Chou, T.­H. Lin, T.­C. Chen and Y.­W.
Chang, “NTUplace4h: A novel routability­driven placement algorithm for hier­
archical mixed­size circuit designs”, IEEE Trans. CAD 33(12) (2014), pp. 1914­
1927.

[48] Team VLSI, “Floorplan strategies for macro dominating blocks”, 2014. https://
www.teamvlsi.com/2021/02/floorplan­strategies­for­macro.html

[49] The OpenROAD Project. https:github.com/The­OpenROAD­Project/
OpenROAD

[50] The SweRV CoreTM version 1.1 design RTL. https://github.com/
westerndigitalcorporation/swerv_eh1

[51] The Coyote RISC­V Rocketcore. http://opencelerity.org/
[52] The CVA6 RISC­V CPU. https://github.com/openhwgroup/cva6
[53] The BlackParrot. https://github.com/black­parrot/black­parrot
[54] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez and I. Stoica,

“Tune: A Research Platform for Distributed Model Selection and Training”,
arXiv:1807.05118, 2018. https://arxiv.org/abs/1807.05118

https://github.com/google-research/circuit_training
https://docs.ray.io/en/latest/tune/index.html
https://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart/
https://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart/
https://www.teamvlsi.com/2021/02/floorplan-strategies-for-macro.html
https://www.teamvlsi.com/2021/02/floorplan-strategies-for-macro.html
https:github.com/The-OpenROAD-Project/OpenROAD
https:github.com/The-OpenROAD-Project/OpenROAD
https://github.com/westerndigitalcorporation/swerv_eh1
https://github.com/westerndigitalcorporation/swerv_eh1
http://opencelerity.org/
https://github.com/openhwgroup/cva6
https://github.com/black-parrot/black-parrot
https://arxiv.org/abs/1807.05118

	Abstract
	1 Introduction
	2 Related Work
	3 our approach
	4 Autoclustering Engine
	5 Top Level Macro Placer
	5.1 Shape Engine
	5.2 Macro Placement Engine

	6 Pin Alignment Engine
	7 experiment Results
	8 Conclusion
	Acknowledgments
	References

