
METRICS2.1 and Flow Tuning in the IEEE CEDA
Robust Design Flow and OpenROAD

ICCAD Special Session Paper

Jinwook Jung∗, Andrew B. Kahng, Seungwon Kim and Ravi Varadarajan
UC San Diego, La Jolla, CA, USA

∗IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Abstract—In today’s RTL-to-GDS flow domain, there is a lack
of standards for reporting of design and tool metrics. Moreover,
each tool or engine has its own set of parameters that can change
outcomes and trade off PPA and other metrics. Thus, the study
and optimization of impacts of parameter settings across the
entire RTL-to-GDS tool chain has been largely ad hoc. In this
paper, we first describe METRICS2.1, a proposed standard for
RTL-to-GDS design tool and flow metrics. We then describe
how data collected using a METRICS2.1 realization can be
analyzed to give insight into flow tuning and fields of use for PPA
optimization. Last, we discuss hyperparameter autotuning in the
RTL-to-GDS flow. We present AutoTuner, which uses derivative-
free optimization to handle challenges of non-differentiability and
many local minima. An open repository based on METRICS2.1
has been established for sharing of reproducible, standardized
metrics data, along with example implemented applications, to
support academic and industrial research on machine learning
for tool/flow tuning.

I. INTRODUCTION

In the RTL-to-GDS domain, EDA tools have rapidly evolved
to meet the complex optimization needs of advanced IC
design in leading-edge manufacturing technologies. Recent
years have seen EDA researchers actively apply machine
learning (ML) techniques to enhance quality of results (QoR)
and automation in numerous flow stages. However, the lack
of an open, standardized metrics format hampers progress
by necessitating ad hoc approaches to design, tool and flow
data collection. Moreover, fragmented metrics formats block
sharing of generated models for machine learning, and make
it difficult to reproduce results.

A METRICS 1.0 infrastructure for the EDA and IC indus-
tries was proposed in the late 1990s [11], [16] to measure
all design activity, mine all design process data, predict tool
outcomes, find sweet spots or field of use for tools, and
perform design-specific tuning of tool parameters. Nearly 20
years later, METRICS 2.0 revisited metrics and proposed
an updated architecture for collection and sharing of data
for machine learning applications [13]. During this period,
commercial EDA vendors also developed proprietary ways of
reporting metrics in tool logfiles and custom reports. Major
platforms offer a unified reporting mechanism to capture both
tool metrics and tool runtime parameters. However, commer-
cial platforms are closed, and there is a lack of consistency
across the different tools and companies.

To improve QoR outcomes for complex tools and flows,
blackbox hyperparameter tuning, or autotuning, has been
actively studied in recent years. Autotuning studies in the

RTL-to-GDS flow domain have leveraged a variety of search
algorithms [1], [21], [25], [26], [27]. However, lack of unified
naming and format for metrics incorporated into reward func-
tions limits the potential to apply a single framework across
multiple EDA tools. The fact that many frameworks are not
open, or have search algorithms strongly tied to the framework,
hinders progress by tool users and academic researchers.

In this paper, we first propose METRICS2.1 as a new
standard for metrics collection and design process recording.
The goals of METRICS2.1 are (i) to provide a standardized
format of metrics data, and (ii) to define a robust structure
for large metrics archives.1 The METRICS2.1 data format is
generic and flexible, so that it can evolve continuously and
support user customization. We also present an archive of
large-scale designs of experiments executed using the open-
source OpenROAD toolchain [5], [35], [18], together with flow
configuration information that enables reproducibility, as a
basis for future ML applications. Leveraging the METRICS2.1
infrastructure, we further propose an open-source framework
for RTL-to-GDS flow parameter tuning. The proposed tuning
framework can support various EDA tool flows thanks to
METRICS2.1, while allowing users to easily choose param-
eter search algorithms. We describe an exemplary objective
function that allows weighting of power, performance and
area QoR elements according to user requirements. The main
contributions of our work are summarized as follows.

• We propose a new METRICS2.1 infrastructure that en-
ables standardized metrics collection and design process
recording for tool improvement and machine learning ap-
plications. We provide archives obtained from thousands
of RTL-to-GDS flow executions. We also share analyses
and ML applications in the form of Jupyter notebooks as
a starting point for new researchers in the area of ML for
CAD/EDA.

• We describe a fully open hyperparameter auto-
tuning framework, AutoTuner, for the RTL-to-GDS
tool chain. The proposed framework supports syn-
chronous/asynchronous parallelization, flexible switching
between search algorithms, and metrics collection using
METRICS2.1 for reward function evaluation.

• We present two case studies of autotuning on open
designs implemented in SkyWater 130nm (SKY130HD)

1METRICS2.1 is supported by a new initiative of the IEEE CEDA Design
Automation Technical Committee (DATC), and is now incorporated in the
DATC’s Robust Design Flow (RDF).

and ASAP 7nm (ASAP7) technologies. Significant QoR
improvements are achieved using objective functions that
target elements of PPA quality measures. We also show
tradeoffs between exploration and exploitation seen in
walltime and autotuning results, when asynchronous par-
allelization is applied.

The rest of this paper is organized as follows. Section II in-
troduces the METRICS2.1 standard and infrastructure, includ-
ing a proposed hierarchical JSON format. Section III describes
METRICS2.1 data sharing infrastructure and example ML
analyses, demonstrated with Jupyter notebooks. Section IV
describes our open-source EDA flow autotuning framework
leveraging METRICS2.1. Section V presents case studies and
experimental results using AutoTuner. Section VI summarizes
and concludes the paper.

II. METRICS2.1
METRICS2.1 aims for simplicity and extensibility, with

clearly-defined syntax and semantics to enable future addition
of new metrics. A guiding precept is that (i) any desired
measurement must map to a unique METRICS2.1 metric;
and (ii) any METRICS2.1 metric must map to a unique
interpretation as a measurement that should be intuitively
obvious to mainstream users. This two-way mapping is crucial
to avoid a “Tower of Babel” situation. Moreover, in a typical
EDA design flow, the value of a specific metric changes
throughout the flow. For example, the number of instances in
the design changes as the design goes through various stages
such as synthesis, placement, optimization, CTS, etc. Hence,
it is important to capture the same metric at different stages
of the design flow. This is essential to monitor the design
PPA across flow stages, and to perform trend analysis of
specific metrics over the course of the design flow. With this
in mind, we establish key decisions and the following naming
conventions for METRICS2.1.

• Metrics are organized hierarchically into stages or snap-
shots.

• METRICS2.1 has predefined stages for a typical design
flow, but a user can also add custom snapshots that
essentially correspond to user-defined stages.

• Each metric belongs to a predefined metrics category.
• Each metric has a predefined metric name and an optional

predefined metrics name modifier.
• A metric name and the optional metric name mod-

ifier implicitly define the units of the metric, and
can be used as is to represent a valid metric. Exam-
ple: “design instance count”, “timing setup wns”,
“power internal”.

• A metric can also have optional classification modifiers
to further classify the metric. The classification modifiers
are either by type or structure.

• When we have both a type classification modifier and
a structure classification modifier, the type classification
modifier appears first, followed by the structure classifi-
cation modifier. METRICS2.1 documentation establishes
a precedence order for classification modifiers such that,
e.g., we cannot have both “double-height regular-VT” and
“regular-VT double-height” modifiers.

Fig. 1. METRICS2.1 organization.

The following paragraphs give additional details of these
aspects of METRICS2.1.
Stages and snapshots. METRICS2.1 is organized as a
hierarchical JSON object as shown in Figure 1. The top
level of the JSON object is the stage or snapshot. A stage
is a predefined stage of the design flow. The current stages
in METRICS2.1 are run, init, synth, floorplan,
globalplace, placeopt, detailedplace, cts,
globalroute, detailedroute and finish.2 A
snapshot can be any user-defined stage with a unique name to
capture the metrics at any point during the flow. For example,
a user experimenting with two different optimization recipes
can create two snapshots (say, opt_strategy1 and
opt_strategy2) to capture the same metrics after each
recipe for comparison purposes.3

Categories. Inside each stage or snapshot are individual met-
rics organized by metrics category. Current metrics categories
are flow to represent all the flow related metrics; design to
represent all the metrics related to the design data, including
the physical PPA metrics; timing to represent all the timing
PPA metrics; clock to represent all the primary and derived
clocks and their values; route to represent all routing-related
metrics; and power to represent all the power PPA metrics.
These metric categories are predefined in METRICS2.1; new
categories will be added based on future needs and user
inputs.4

Names. Within each category are predefined metrics organized
by metric name, along with optional metric name modifier and
metric classification modifiers. A set of existing metric names
is predefined in the METRICS2.1 documentation, and new
names will be added in future revisions based on user inputs.
Name Modifiers. A metric name can have an optional pre-
defined name modifier to uniquely define the metric and its

2We use specific fonts in the context of the hierarchical naming convention.
METRICS2.1 stages, categories, metric names, name modifiers and classifi-
cation modifiers are shown in Courier. Fully-expanded metric names are
shown as Roman font in double quotes.

3We note that METRICS2.1 allows all metrics to be present at any stage or
snapshot, but certain metrics will only make sense at certain flow junctures.
For example, route metrics will be sensible post-placement. It is the user’s
responsibility to configure which metrics are extracted and reported at which
stage, based on the application.

4A user-specified delimiter string can be optionally used between the stage
or snapshot name and the metrics category, to “flatten” the metrics for the
design flow. This can be convenient for particular analysis applications or for
ease of mapping to existing metrics data collections.

TABLE I
SAMPLE TIMING AND POWER METRICS

Metric Description
timing setup wns Setup WNS in the design across all clocks.
timing setup wns clock
:clk a Setup WNS for clock “clk a”.

timing setup wns clock
:clk a path group:in reg

Setup WNS for clock “clk a” for all input to
register paths.

timing setup wns analysis view
:slow

Setup WNS across all clocks for the analysis
view “slow”.

power total Total Power consumption.
power leakage Total leakage power.
power leakage clock Total leakage power on the clock network.

unit. For example, in the design category we have a metric
name instance and a name modifier count to specify the
instance count; here, the implied unit would be an integer. Sim-
ilarly, in the timing category we have a metric name setup
and a name modifier wns, to specify the setup worst negative
slack in the design. Many metric names will not require a
name modifier: an example is the metric name switching
in the power category, which specifies the switching power
consumption of the design.
Classification Modifiers. Optional metric name classification
modifiers provide more specific information about a given
metric. These can be either type classification modifiers or
structure classification modifiers. Type classification modi-
fiers further subdivide the metric into specific subtypes to
show a distribution of the metric across the subtypes. An
example would be to show the breakdown of the number of
instances in the design by stdcells and macros and further
break down the number of stdcells into sequential or combi-
national. Structure classification modifiers, on the other hand,
provide information about a specific view of the design. An
example would be to provide the information for a specific
analysis view or a specific clock domain for a timing metric
such as “timing setup wns” or a power metric such as or
“power internal”.

Table I shows example usage of metric names, metric name
modifiers, and metric classification modifiers for timing and
power. “timing setup wns” is in the timing category
and the metric name is setup. wns is the name modifier
that specifies setup worst negative slack. As there are no
other modifiers, this metric is across all clocks in the design.
“timing setup wns clock:clk a” specifies the setup WNS
for clock “clk a”. Similarly, we can add more modifiers to
specify path groups and analysis views.

The OpenROAD tool [35], an open-source RTL-to-GDS
EDA system that integrates a variety of academic tools,
supports the METRICS2.1 metric naming standard. The Open-
ROAD project uses these metrics for internal continuous
integration processes, QoR tracking, and management of pull
requests in its GitHub repositories. As shown in Figure 2,
METRICS2.1 integrates metrics from logs and reports ob-
tained from OpenROAD flow runs. We also use METRICS2.1
to openly share multiple designs of experiments, each con-
taining thousands of RTL-to-GDS metrics datasets along with
config files that enable reproducibility, via the IEEE CEDA
DATC’s RDF repository on GitHub [36]. We also share

METRICS2.1

JSON

Dictionary

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Floorplan

Placement

Routing

Synthesis

Verification

CTS

Data Collection

ML Applications

Flow Autotuning

Fig. 2. Overview of METRICS2.1 infrastructure.

sample data analyses and ML applications in the form of
Jupyter notebooks as a guide to working with large-scale
metrics data.

III. USING METRICS2.1 DATA FOR VISUALIZATION AND
ML APPLICATIONS

METRICS2.1 supports analysis of how flow parameter set-
tings affect QoR outcomes, as well as the building of machine
learning applications to predict tool and flow outcomes. A
typical EDA design flow invokes multiple engines, with each
engine (e.g., global placement) having multiple parameters
to guide the heuristic optimization that it performs. The
parameter settings for a given engine will affect not only
the results produced by that engine, but also the results of
the entire flow. METRICS2.1 provides consistent reporting of
metrics across flow stages, enabling collection of OpenROAD
run metrics from large-scale designs of experiments that vary
tool and flow parameters in a controlled manner. Moreover,
because METRICS2.1 captures all parameter settings and
commit versions used in a given run, collected data is inher-
ently reproducible. The collected data serves many purposes,
e.g., (i) showing evolution of PPA metrics throughout the
flow; (ii) enabling recovery of parameter settings that led
to particular outcomes; and (iii) giving insights into trends
and interrelationships between values of multiple parameters.
Typical experiment types and purposes include (i) running
one design on one platform to study the impact of parameter
settings for that design on that platform; (ii) running multiple
designs on the same platform to model and predict outcomes
for unseen designs on that platform; and (iii) running multiple
designs on multiple platforms to build predictive models.

We regularly publish complete METRICS2.1 data from
multiple full experiments in the IEEE CEDA DATC’s “Met-
rics4ML” GitHub repository [36]. Examples of experiments to
date include studies of how layer resource reductions in global
routing interact with core utilization and/or placement density
settings. The repository contains all information needed to
reproduce the results (e.g., commit hashes for the OpenROAD
app and flow-scripts, and config file settings for running
the OpenROAD flow), collected metrics data, and sample
Jupyter notebooks that operate on the data. We next outline a
sample application that is available in the Metrics4ML GitHub
repository.

set_global_routing_layer_adjustment met5 0.5
set_global_routing_layer_adjustment met4 0.4
set_global_routing_layer_adjustment met3 0.5
set_global_routing_layer_adjustment met2 0.4
set_global_routing_layer_adjustment met1 0.4

set_routing_layers -signal MIN_LAYER-MAX_LAYER

Fig. 3. OpenROAD Tcl script to set layer adjust values.

Layer Resource Adjustment with Core Utilization Sweep.
The OpenROAD flow provides parameters to artificially adjust
the track resource for individual routing layers during global
routing. These layer resource adjustments strongly affect
the viability of detailed routing “route guides” that are pro-
duced by the global router. While the global router accurately
comprehends blockages and track resources on each routing
layer, the layer adjust parameter provides further derating of
the per-layer track resource. Conceptually, too large a layer
resource reduction makes the global router overly pessimistic,
and causes inability to resolve global routing congestion (i.e.,
the global router will fail, giving a “false negative” for the
quality of the upstream placement solution). On the other
hand, too small a layer resource reduction makes the global
router overly optimistic, and its route guides may not be viable
in detailed routing. Figure 3 shows an example of setting
layer adjust values in the OpenROAD flow scripts.

Another important flow parameter is core utilization. Since
core utilization is determined by the design core area and de-
sign size, it can be varied by changing the design core area for
a given design. Lower core utilization implies higher routing
capacity for a given design. However, the total wirelength can
increase.

We now study the open-source RISC-V ibex core (IBEX)
[34] on the SKY130HD platform. This platform has five
routing layers, met1 through met5. We vary the layer adjust
value of met2, met3 and met4 from 0.1 to 0.2 in steps of
0.02 while keeping the layer adjust value of met5 at 0.5.
We also vary the core utilization of the design from 0.2 to
0.4 in steps of 0.02. This results in a total of 6710 runs, of
which 6076 are successful and 634 fail with one or more DRC
errors in detailed routing. The Jupyter notebook that reads
and visualizes the entire dataset can be downloaded from the
“Metrics4ML” GitHub repository [36].

As shown in Figure 4, the wirelength generally decreases
with increased core utilization until it reaches a sweet spot,
beyond which the wirelength starts to increase as the detailed
router makes more detours to avoid DRC errors. The sweet
spot for this design and technology platform is at around
37% core utilization. We observe in Figure 5 that the detailed
router’s runtime is fairly constant up to the sweet spot of
core utilization; there is very little runtime variance across
all combinations of layer adjust values. However, beyond the
sweet spot we see a wider variance of the runtime across
layer adjust settings, and an overall increase in runtimes.
Almost all of the runtime increase is in the detailed router,
which performs significantly more ripup and reroute iterations
to achieve DRC-correct routing.

Fig. 4. Wirelength vs. core utilization.

Fig. 5. Detailed router runtime vs. core utilization.

Not surprisingly, the number of DRC errors is 0 until we
approach the sweet spot of core utilization, and DRC errors
then increase with larger layer adjust values. The Jupyter
notebook in GitHub contains implementations of logistic re-
gression modeling to predict runtime, wirelength and doomed
runs for new layer adjust and core utilization settings. The
models achieve close to 100% accuracy.

IV. AUTOMATIC RTL-TO-GDS FLOW TUNING

In this section, we describe AutoTuner, an automatic RTL-
to-GDS flow tuner that leverages the METRICS2.1 infrastruc-
ture. As is well-known, the RTL-to-GDS flow is comprised
of a series of NP-hard problem formulations, each of which
is addressed by complex heuristics (i.e., tools at each flow
stage) that have unknown suboptimality gaps. In practice,
obtaining good QoR depends on tool parameter settings that
are based on an expert designer’s experience and knowledge,
as well as many sequential iterations. This motivates the use
of autotuning, which considers the entire RTL-to-GDS flow as
a black-box optimization whose outcome depends on flow/tool
parameters.

A. Related Work
Hyperparameter optimization is the core of any autotuning

framework. We review several popular search algorithms for
hyperparameter optimizations, as well as their application to
EDA flow tuning.

1) Hyperparameter Search Algorithms: In hyperparameter
optimization, search algorithms look for the best hyperparam-
eter set that minimizes a predefined loss function over a given
dataset. Representative search algorithms are as follows.

Random/grid search. Random search iteratively picks a
parameter configuration randomly from a given parameter
space and creates a new trial to evaluate the configuration.
Grid search sweeps the entire hyperparameter space. Random
search and grid search are model-free approaches that allow
fully parallel computation for exploration, but cannot perform
exploitation.
Gradient-based optimization. Gradient-based algorithms
such as gradient descent are used to find optimal values
for differentiable functions. In particular, libraries such as
XGBoost [10] and LightGBM [20] have hyperparameter tuning
capabilities. However, gradient-based optimization requires
more evaluations as the dimension of the objective function
increases; a derivative-free approach is more appropriate when
the evaluation of the objective function is computationally
expensive [3].
Evolutionary optimization. Evolutionary optimization is a
type of derivative-free optimization inspired by analogies to
biological evolution. Well-known examples include genetic
algorithms (GA) and particle swarm optimization (PSO). A
variety of techniques (e.g., mutation and crossover in GA;
inertia and acceleration in PSO) are used to escape from local
optima and to improve convergence rates. Nevergrad [37] from
Facebook provides several algorithms specialized to the tuning
of mixed discrete and continuous parameters. Google’s popu-
lation based training (PBT) [15] performs mutation at regular
intervals, while evaluating multiple steps for a single trial. In
addition, PBT promotes efficient exploitation by periodically
sharing parameters from a high-performance worker to a low-
performance worker in a parallel system.
Bayesian optimization. Bayesian optimization is a derivative-
free optimization that enables fast convergence for noisy and
expensive-to-evaluate objective functions. Assuming initially
a random function, the Bayesian algorithm creates a prior
distribution based on its current belief regarding functional
behavior of the objective function. With each successive trial,
the prior distribution is updated to a posterior distribution
based on an updated behavior belief. The Bayesian algorithm
iterates the above process to approximate the objective func-
tion to find the best hyperparameter set. The model used to
approximate the objective function is called a surrogate model;
Gaussian processes and Tree Parzen Estimator (TPE) [6]
are widely used. Representative Bayesian optimizers include
HyperOpt [7], Optuna [4], BoTorch [8], and Ax [31].
Bandit optimization. Bandit optimization for finite selection
sets is not strictly Bayesian optimization. However, aside
from targeting discrete (Bandit) as opposed to continuous
(Bayesian) parameters and sampling methods, its exploration-
exploitation tradeoff tendency is very similar to that of
Bayesian optimization. The Bandit approach is optimized for
the multi-armed bandit (MAB) problem [19] through, e.g.,
Thompson sampling [24].

2) RTL-to-GDS Flow Autotuning: Over the past several
years, a number of researchers have developed autotuning
methods in the RTL-to-GDS flow domain. Xu et al. [27]
propose an MAB-based autotuner for QoR improvement in
academic and commercial FPGA compilation flows, using

the open-source OpenTuner [2] autotuning framework. Yu et
al. [28] propose a convolutional neural network (CNN) model
to solve a design-specific logic synthesis tuning problem as a
multi-class classification problem. Hosny et al. [14] present an
open-source deep reinforcement learning framework for logic
synthesis by iteratively choosing primitive transformations
with the highest expected reward. Kwon et al. [21] propose a
learning-based parameter recommendation system that trains a
post-placement QoR prediction model using archived design
data obtained via iterative tuning, along with online recom-
mendation. Ustun et al. [25] propose an FPGA autotuning
system with multi-stage QoR information and online learning.
Agnesina et al. [1] propose a deep reinforcement learning
framework to optimize placement parameters. Xie et al. [26]
use feature importance sampling and tree-based parameter
tuning to find a best flow parameter configuration. Recently,
Ziegler et al. [29] have provided an overview of industrial
flow tuning using online and offline autotuning approaches in
the RTL-to-GDS domain. In general, previous frameworks are
closed-source, requiring substantial pre-archived data [21], fo-
cusing on one particular flow stage [1], [14], [28], or having a
limited search space with fragmented discrete parameters [26].
This motivates development of an open-source autotuning
framework for academic and commercial RTL-to-GDS flows,
based on the open METRICS2.1 names and format. Such
infrastructure can strengthen connections between academic
research works on various flow stages, while also saving
redundant implementation efforts.

B. AutoTuner Framework

We now describe AutoTuner, which is shown in Figure 6.
Given a set of parameters, AutoTuner iteratively tunes the
parameters to find a parameter combination that best optimizes
a prescribed objective, or score, function. Users can define
the objective function in terms of metrics available in MET-
RICS2.1. AutoTuner supports multiple search algorithms, and
users can specify a particular algorithm to be used. The frame-
work is built upon Ray/Tune [22], [23] to enable parallelized
flow parameter tuning. AutoTuner for OpenROAD is open-
sourced and shared in the IEEE CEDA DATC’s organization
GitHub [30].

Fig. 6. Overview of the AutoTuner framework.

Fig. 7. Sample input config file. In the JSON dictionary format, each key
is the name of the parameter and contains data type, min to max range, and
step size.

1) Parameter Configurations: AutoTuner takes as input
a JSON configuration file that defines a space of tool/flow
parameters. Figure 7 shows an example. Each parameter is
defined by its name, type, range (min, max), and step size
within the range. If the step size is 0, an integer parameter is
considered to be a fixed constant: the min and max bounds of
the range take the same value. For a float parameter, a step
size of 0 defines a continuous range.

2) Objective Function with Tool Noise Consideration: In
general, final metrics of a VLSI design reflect multiple PPA
goals, namely, power, performance, and area. In our work,
we formulate a single score evaluation function to capture
design solution quality with respect to the three PPA metrics.
While some search algorithms available via the Ray/Tune
API support multi-objective score functions, we integrate the
three PPA metrics into a single objective function to allow
application of a wider variety of search algorithms in our
studies.

Our score evaluation function is defined as

Score =
(
PPAUB

imp − PPAimp

)
· (1 + α ·NDRV) (1)

where PPAUB
imp is the upper bound of PPA improvement,

PPAimp is the PPA improvement of the current trial, α is
a user-specified factor, and NDRV is the number of DRC
violations. The term αNDRV is used to penalize trials with
DRC violations. With this score evaluation function, the best
parameter setting is obtained when the score function is
minimized.

We use total power, effective clock period, and total cell area
as the PPA metrics. (As noted above, the PPA metrics used
for flow parameter tuning can be easily changed thanks to
the underlying METRICS2.1 framework.) PPA improvement
is measured against a reference place-and-route result obtained
with manually-tuned parameters; power, effective clock period,
and cell area of the reference result are respectively denoted
by Pref , effCPref , and Aref . Given a trial result with a new pa-
rameter configuration, the improvements of power (Powerimp),
performance (Perf imp), and area (Areaimp) are respectively
given by

Powerimp =
Pref − p

Pref
, Perf imp =

effCPref − effCP

effCPref
,

Areaimp =
Aref − a

Aref

(2)

where p, effCP, and a are total power, effective clock period,
and cell area of the current trial. The PPA improvement
PPAimp is then defined as a weighted sum of the improve-
ments:

PPAimp = CP ·Powerimp+CD ·Perf imp+CA ·Areaimp (3)

where CP , CD and CA are weights for power, performance
and area, respectively. While the suboptimality gap for RTL-
to-GDS optimization is unknown, an abstract upper bound
on PPA improvement corresponds to power, effective clock
period, and area all becoming zero. I.e., PPAUB

imp is CP +
CD + CA.

Inherent EDA tool noise can introduce significant variation
of final QoR, even with isomorphic inputs (e.g., identical gate-
level netlists that differ only in instance, net, and cell master
names [17]). Chan et al. [9] report that with modern EDA
tools, noise effects can still cause more than 10% variation
in routed wirelength. In our work, we consider tool noise
effects on the exploitation process in AutoTuner. Specifically,
we modify Equation (1) to mimic an ML training epoch:

Score =
(
PPAUB

imp − PPAimp

)
·
(smax

s
+ α ·NDRV

)
(4)

where smax is a user-defined maximum step number, and s
is the current step. At each step, we add random Gaussian
noise to obtained power and performance metrics (p and
effCP in Equation (2) in the objective function evaluation.
The noise perturbations are sampled from a distribution with
zero mean and 3-sigma set to a target percentage of the metric
value. (Because area is determined and fixed in the floorplan
according to target core utilization, we do not consider noise
effects of floorplan area.) In this way, metric noise becomes a
proxy for tool noise.

C. Supported Search Algorithms
The AutoTuner framework can support various search algo-

rithms. In our current implementation, we select competitive
search algorithms listed in Table II. Each algorithm has its
own pros and cons depending on (i) difficulty of the target
black box problem, (ii) number of target hyperparameters,
(iii) type of hyperparameters (continuous, discrete, mixed), (iv)
level of parallelism (#concurrent jobs), and (v) scheduling of
parallelization (synchronous / asynchronous).

TABLE II
SEARCH ALGORITHMS SUPPORTED IN AUTOTUNER

Types Name
Random / grid search Random / grid search
Population Based Training PBT [15]
Tree Parzen Estimator (TPE) HyperOpt [7]
Bayesian + Multi-Armed Bandit AxSearch [8], [31]
TPE+CMA-ES Optuna [4]
Evolutionary Algorithm Nevergrad [37]

To select appropriate search algorithms, we consider rel-
evant aspects of the RTL-to-GDS flow domain. Running
the RTL-to-GDS flow is expensive, and each trial consumes
substantial runtime. Furthermore, the hyperparameter space
contains many combinations that lead to failed runs; for

example, run failure can be common when parameters such
as utilization or target clock period take on extreme values in
their given ranges. On the other hand, restricting the parameter
space to avoid infeasibility or failure will miss high-quality
parameter combinations, as seen with the example autotuning
run shown in Figure 8. Moreover, the RTL-to-GDS flow has
a mix of continuous and discrete hyperparameters. This is
an important practical consideration because some Bayesian
optimization algorithms do not support discrete parameters.

5A. B. Kahng, DAC-2021

Parameters Human AutoTuner

Flatten 1 0

Global placement

padding

4 2

Detailed placement

padding

2 0

IO pin distance (um) 2 2

CTS clustering size (um) 30 37

CTS clustering diameter

(um)

100 95

Layer resource

adjustment

0.5 0.42

Target GP density 0.6 0.99

Score

high risk, high return
Parallel coordinate view

Hyperparameter scatter plot matrix view

Score

Fig. 8. Autotuning results for the IBEX design in SKY130HD. Despite many
failed trials (red dots) at high target local placement density, the best result is
achieved with placement density = 0.99, where the maximum possible value
is 1.00.

V. AUTOTUNER CASE STUDIES

We now describe case studies using our flow autotun-
ing framework. The AutoTuner framework is written in
Python 3.8. Experiments for the case studies are performed
on a Google Cloud Platform m1-ultramem-160 instance
equipped with 160 2.2GHz CPUs and 3.8TB RAM. We use
the OpenROAD RTL-to-GDS tool chain with ASAP7 and
SKY130HD. Three public designs, aes cipher (AES) [32],
jpeg encoder (JPEG) [33], and IBEX, are used as testcases.
We set α and smax in the objective function (Equation (4))
as 0.1 and 100, respectively. In all experiments, asynchronous
parallelization is used to achieve more aggressive explorations.
Except for results shown in Section V-B, all case studies are
parallelized to 40 concurrent OpenROAD jobs, with each job
being assigned to 4 cores. The tunable tool parameters used
for the case studies are listed in Table III.5

A. Comparison of Search Algorithms
We make an initial comparison of the search algorithms

listed in Table II, using our AutoTuner framework. Each
search algorithm has a different tradeoff of exploration versus
exploitation, and a given trial can have highly variable runtime.
For example, early-stage failure with infeasible parameters
will result in small runtime, while tight inputs can lead to long
detailed routing runtime as shown in Figure 5. Therefore, we
compare the algorithms based on a fixed walltime constraint
instead of total number of trials. Since the PBT algorithm gen-
erates mutations at regular step intervals, we set the walltime
constraint as 63966 seconds through 250 workers, 100 steps,

5The lower bound of CLOCK PERIOD, Tmin, is set to 1ns and 100ps
for SKY130HD and ASAP7, respectively; the upper bound, Tmax, is set to
a user-specified value for each design.

TABLE III
TUNABLE TOOL AND DESIGN PARAMETERS

Parameters Description Type Range
CLOCK PERIOD Target clock period (ns) float [Tmin, Tmax]
CORE UTIL Target core utilization (%) int [20, 99]
ASPECT RATIO Floorplan aspect ratio float [0.1, 2.0]
GP PAD Cell padding for global placement (site) int [0, 4]
DP PAD Cell padding for detailed placement (site) int [0, 4]
LAYER ADJUST Layer resource adjustment for global

routing (%)
float [0.1, 0.7]

PLACE DENSITY
LB ADDON

Additional lower bound increase of the
target local global placement density (%)

float [0.00, 0.99]

FLATTEN Design hierarchy flattening int [0, 1]
PINS DISTANCE Minimum IO pin distance (#tracks) int [1, 3]
CTS CLUSTER
SIZE Target CTS sink cluster size int [10, 40]

CTS CLUSTER
DIAMETER Target CTS sink cluster diameter (um) int [80, 120]

and 25-step interval for mutation in the PBT algorithm; with
this walltime, PBT executes 1000 RTL-to-GDS flow trials.

Table IV shows the comparison between search algorithms.
The PPA weights CP , CD, and CA in Equation (4) are 100,
10000 and 100, respectively. The columns labeled “Imp.”
give improvement over the reference runs; the third column
lists the best effective clock period obtained via tuning. For
Nevergrad, we use the PortfolioDiscreteOnePlusOne engine,
following the authors’ guidance for better performance with
mixed continuous and discrete parameters. Ax does not main-
tain the set number of current jobs despite asynchronous
parallelization settings, so the total number of trials is rela-
tively small. Nevergrad spends numerous trials on exploration
of loose hyperparameters or infeasible sets. HyperOpt and
Optuna show better (i.e., smaller) final scores, but we note
that the appropriate search algorithm may vary depending on
the design difficulty. Based on this initial study, we conduct
subsequent case studies using HyperOpt.

TABLE IV
AUTOTUNING ALGORITHM COMPARISON WITH TIMEOUT CONSTRAINTS

Algorithm #Trials effCP (ns) Imp. Util (%) Imp. Power (W) Imp. Score
Reference 17.78 0% 20 0% 0.0523 0% 1020000
PBT 1000 15.16 15% 37 46% 0.0143 73% 863611
HyperOpt 742 14.94 16% 40 50% 0.0286 45% 853503
Ax 478 16.04 10% 26 23% 0.0172 67% 914902
Optuna 1493 14.87 16% 42 52% 0.0278 47% 849094
Nevergrad 2925 15.23 14% 18 -11% 0.0194 63% 870843

B. Exploration versus Exploitation

Hyperparameter optimization algorithms can apply asyn-
chronous parallelization. However, for a given total number
of trials, high parallelization can result in performance degra-
dation by reducing the number of iterations for exploitation.
For example, using N concurrent jobs for N trials devolves to
random multistart search. We study walltime reduction versus
score improvement from autotuning, as the number of concur-
rent jobs is changed. In this study, we use the SKY130HD
IBEX testcase; we also use post-route wirelength with DRC
penalty as the evaluation (i.e., score) function to reduce the in-
cidence of infeasible parameter combinations. Autotuning uses
eight parameters corresponding to those shown in Table III,

except for the footprint and timing constraints parameters
(CLOCK PERIOD, CORE UTIL and ASPECT RATIO).

As shown in Figure 9, as the degree of parallelization
(#Concurrent runs) increases, the total walltime (left y-axis)
decreases by up to 79%. However, the wirelength objective
(right y-axis) degrades somewhat with increased paralleliza-
tion, even though all autotuning results show substantial im-
provement over the human-tuned reference. We observe that
asynchronous parallelization yields walltime that scales with

1
#concurrent jobs , while the performance degradation of the
search algorithm scales with #concurrent jobs

#trials . Therefore, if
the number of trials is large enough, active parallelization
significantly reduces the latency of autotuning without com-
promising quality of results.

Fig. 9. Walltime (left y-axis bar) versus objective metric (wirelength, right
y-axis line) with different numbers of concurrent jobs (parallelization).

C. Validation of Target Objective Tuning
In IC implementation, the three component metrics of

PPA quality typically exhibit a Pareto tradeoff across high-
quality solutions. We study how AutoTuner can be steered
to emphasize particular PPA component metrics by adjusting
the three coefficients in our score function, using multiple
platforms and designs. Table V describes the results for AES,
JPEG, IBEX designs in the ASAP7, SKY130HD platforms
with four coefficient settings: {power, performance, area,
uniform}. As shown in Table V, our score evaluation function
can effectively steer the result according to which metric
is emphasized. In the SKY130HD and ASAP7 platforms,
respectively, we achieve an average of (41%, 29%) total power
consumption reduction with the power setting, (21%, 18%)
effective clock period improvement with the performance
setting, and (68%, 50%) area reduction with the area setting.

VI. CONCLUSION

In this paper, we have proposed METRICS2.1, a stan-
dardized format for design tool and flow metrics data that
provides a robust structure for large-scale metrics archives.
METRICS2.1 is supported by a new initiative of the IEEE
CEDA DATC, and is now a part of the DATC RDF. Together,
METRICS2.1, RDF and the OpenROAD flow fill a long-
standing gap in the enablement of EDA point tool research.
Notably, developers of an improved engine (that has well-
defined inputs and outputs) can immediately assess impacts

TABLE V
PPA OBJECTIVE TUNING WITH FOUR DIFFERENT SETTINGS. EACH

SETTING USES 1000 TRIALS. ALL POST-ROUTING RESULTS ARE
DRC-CLEAN.

Platform Design Setting effCP (ns) Imp. Util (%) Imp. Power (W) Imp.

SKY130HD

AES

ref. 4.554 0% 19 0% 0.0838 0%
power 4.373 4% 23 17% 0.0569 32%
perf. 3.491 23% 22 14% 0.0942 -12%
area 3.763 17% 42 55% 0.0558 33%
uniform 3.380 26% 35 46% 0.0612 27%

JPEG

ref. 9.277 0% 20 0% 0.0905 0%
power 7.781 16% 37 46% 0.0711 21%
perf. 7.259 22% 31 35% 0.1350 -49%
area 12.186 -31% 89 78% 0.1010 -12%
uniform 7.880 15% 84 76% 0.0800 12%

IBEX

ref. 17.775 0% 19 0% 0.0461 0%
power 16.138 9% 39 51% 0.0133 71%
perf. 14.656 18% 33 42% 0.0162 65%
area 18.552 -4% 64 70% 0.0408 11%
uniform 15.502 13% 54 65% 0.0135 71%

Platform Design Setting effCP (ps) Imp. Util (%) Imp. Power (W) Imp.

ASAP7

AES

ref. 497.630 0% 29 0% 0.0170 0%
power 466.449 6% 36 19% 0.0089 48%
perf. 415.522 16% 41 29% 0.0241 -42%
area 452.110 9% 70 59% 0.0172 -1%
uniform 458.444 8% 70 59% 0.0164 4%

JPEG

ref. 1039.200 0% 30 0% 0.0348 0%
power 1023.650 1% 59 49% 0.0343 1%
perf. 823.654 21% 56 46% 0.0645 -85%
area 925.933 11% 68 56% 0.0448 -29%
uniform 998.296 4% 68 56% 0.0395 -14%

IBEX

ref. 1715.330 0% 24 0% 0.0109 0%
power 1766.009 -3% 28 14% 0.0066 39%
perf. 1409.050 18% 31 23% 0.0113 -4%
area 1433.542 16% 37 35% 0.0160 -47%
uniform 1485.705 13% 33 27% 0.0086 21%

on PPA and other metrics not only for the engine (e.g., by
substitution into a given flow step), but for the entire RTL-
to-GDS flow as well. Our infrastructure also provides support
for academic contests that advance point optimizations (e.g.,
CTSOpt, useful skew, routability- and IR-driven PDN, macro
placement, etc.) with industry-standard data and formats, and
an overall flow context.

We have also described AutoTuner, an open-source de-
sign flow autotuning framework. AutoTuner implements “no-
human-in-loop” parameter tuning for commercial and aca-
demic RTL-to-GDS flows, and is available at the the DATC’s
organization GitHub [30]. Using the AutoTuner framework,
we have presented assessments of various search algorithms,
steering of PPA enhancements in ASAP7 and SKY130HD
technologies, and tradeoffs between exploration and exploita-
tion seen with parallelization. Our ongoing work seeks to
optimize computing resource usage as well as PPA outcomes
within prescribed schedule and compute constraints, using re-
mote distributed computing resources and additional strategies
such as early-stage termination of unpromising trials.

ACKNOWLEDGMENTS

We thank Colin Holehouse, Tuck-Boon Chan, Jiajia Li,
Roger Carpenter, Siddhartha Nath, Mohamed Shalan and the
Efabless.com team for inputs toward METRICS2.1 scope and
naming. Abdelrahman Hosny, Vitor Bandeira, Matt Liberty,
Mehdi Saligane, Wenbo Duan, Indira Iyer, and engine develop-
ers have contributed to metrics naming, reporting/messaging,
and extraction in OpenROAD. This work is partially supported
by DARPA HR0011-18-2-0032 and NSF CCF-2112665.

REFERENCES

[1] A. Agnesina, K. Chang and S. K. Lim, “VLSI Placement Parameter
Optimization using Deep Reinforcement Learning,” Proc. ICCAD, 2020,
pp. 1–9.

[2] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly and S. Amarasinghe, “OpenTuner: An Extensible Frame-
work for Program Autotuning,” Proc. PACT, 2014, pp. 303–316.

[3] G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini and H. Samulowitz,
“An Effective Algorithm for Hyperparameter Optimization of Neural
Networks,” IBM Journal of Research and Development 61(4/5) (2018),
pp. 9:1–9.11.

[4] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, “Optuna: A
Next-generation Hyperparameter Optimization Framework,” Proc. KDD,
2019, pp. 2623–2631.

[5] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz, L.
Wang, Z. Wang, M. Woo and B. Xu, “Toward an Open-Source Digital
Flow: First Learnings from the OpenROAD Project,” Proc. DAC, 2019,
pp. 76:1–76:4.

[6] J, Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-
Parameter Optimization,” Advances in Neural Information Processing
Systems 24 (2011), pp. 1–9.

[7] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins and D. D. Cox,
“Hyperopt: A Python Library for Model Selection and Hyperparameter
Optimization,” Computational Science & Discovery 8(1) (2015), pp. 1–
24.

[8] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wilson
and E. Bakshy, “BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization,” Proc. NeurIPS, 2020, pp. 1–34.

[9] T. B. Chan, A. B. Kahng and M. Woo, “Revisiting Inherent Noise Floors
for Interconnect Prediction,” Proc. SLIP, 2020, pp. 1–7.

[10] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
Proc. KDD, 2016, pp. 785–794.

[11] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik and B. Thielges,
“METRICS: A System Architecture for Design Process Optimization,”
Proc. DAC, 2000, pp. 705–710.

[12] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro and D. Sculley,
“Google Vizier: A Service for Black-Box Optimization,” Proc. KDD,
2017, pp. 1487–1495.

[13] S. Hashemi, C. T. Ho, A. B. Kahng, H. Y. Liu and S. Reda, “MET-
RICS 2.0: A Machine-Learning Based Optimization System for IC
Design,” Workshop on Open-Source EDA Technology, 2018, pp. 1–4.
https://woset-workshop.github.io/PDFs/2018/a21.pdf

[14] A. Hosny, S. Hashemi, M. Shalan and S. Reda, “Drills: Deep Rein-
forcement Learning for Logic Synthesis,” Proc. ASP-DAC, 2020, pp.
581–586.

[15] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando
and K. Kavukcuoglu, “Population Based Training of Neural Networks,”
arXiv preprint 1711.09846, 2017.

[16] A. B. Kahng and S. Mantik, “A System for Automatic Recording and
Prediction of Design Quality Metrics,” Proc. ISQED, 2001, pp. 81–86.

[17] A. B. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA
Tools,” Proc. ISQED, 2002, pp. 206–211.

[18] A. B. Kahng and T. Spyrou, “The OpenROAD Project: Unleashing
Hardware Innovation,” Proc. Government Microcircuit Applications and
Critical Technology Conference, 2021, pp. 1-6.

[19] M. N. Katehakis and A. F. Veinott, Jr., “The Multi-Armed Bandit
Problem: Decomposition and Computation,” Mathematics of Operations
Research 12(2) (1987), pp. 262–268.

[20] G. Ke, et al., “LightGBM: A Highly Efficient Gradient Boosting
Decision Tree,” Advances in Neural Information Processing Systems 30
(2017), pp. 3146–3154.

[21] J. Kwon, M. M. Ziegler and L. P. Carloni, “A Learning-based Rec-
ommender System for Autotuning Design Flows of Industrial High-
performance Processors,” Proc. DAC, 2018, pp. 1–6.

[22] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez and I.
Stoica, “Tune: A Research Platform for Distributed Model Selection
and Training,” arXiv preprint 1807.05118, 2018.

[23] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M.
Elibol, Z. Yang, W. Paul, M. I. Jordan and I. Stoica, “Ray: A Distributed

Framework for Emerging AI Applications,” Proc. OSDI, 2018, pp. 561–
577.

[24] W. R. Thompson, “On the Likelihood that One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples,” Biometrika
25(3/4) (1933), pp. 285–294.

[25] E. Ustun, S. Xiang, J. Gui, C. Yu and Z. Zhang, “LAMDA: Learning-
Assisted Multi-stage Autotuning for FPGA Design Closure,” Proc.
FCCM, 2019, pp. 74–77.

[26] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y.
Fang, J. Hu, Y. Chen and E. C. Barboza, “FIST: A Feature-Importance
Sampling and Tree-based Method for Automatic Design Flow Parameter
Tuning,” Proc. ASP-DAC, 2020, pp. 19–25.

[27] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo and Z. Zhang, “A Paral-
lel Bandit-based Approach for Autotuning FPGA Compilation,” Proc.
FPGA, 2017, pp. 157–166.

[28] C. Yu, H. Xiao and G. De Micheli, “Developing Synthesis Flows without
Human Knowledge,” Proc. DAC, 2018, pp. 1–6.

[29] M. M. Ziegler, J. Kwon, H.-Y. Liu and L. P. Carloni, “Online and Offline
Machine Learning for Industrial Design Flow Tuning,” Proc. ICCAD,
2021, pp. 1–8.

[30] DATC RDF AutoTuner. https://github.com/ieee-ceda-datc/
datc-rdf-flow-tuner.

[31] Ax. https://ax.dev/
[32] AES (Rijndael) IP Core. https://opencores.org/projects/aes core.
[33] JPEG encoder https://opencores.org/projects/video systems.
[34] Ibex RISC-V Core. https://github.com/lowRISC/ibex.
[35] The OpenROAD Project. https://github.com/The-OpenROAD-Project.
[36] Metrics4ML. https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML.
[37] Nevergrad - A gradient-free optimization platform. https://gitHub.com/

FacebookResearch/Nevergrad.

