
VeriGOOD-ML: An Open-Source Flow
for Automated ML Hardware Synthesis

Hadi Esmaeilzadeh1, Soroush Ghodrati1, Jie Gu2, Shiyu Guo2, Andrew B. Kahng1, Joon Kyung Kim1,
Sean Kinzer1, Rohan Mahapatra1, Susmita Dey Manasi3, Edwin Mascarenhas1, Sachin S. Sapatnekar3,

Ravi Varadarajan1, Zhiang Wang1, Hanyang Xu1, Brahmendra Reddy Yatham1, Ziqing Zeng3
1 UC San Diego 2 Northwestern University 3 University of Minnesota

Abstract—This paper introduces VeriGOOD-ML, an automated method-
ology for generating Verilog with no human in the loop, starting from
a high-level description of a machine learning (ML) algorithm in a
standard format such as ONNX. The Verilog RTL is then translated
through a back-end design flow to GDSII, driven by a design planning
approach that is well tailored to the macro-intensive nature of ML
platforms. VeriGOOD-ML uses three approaches to build ML hardware:
the TABLA platform uses a dataflow architecture that is well suited
to non-DNN ML algorithms; the GeneSys platform, with a systolic
array and a SIMD array, is optimized for implementing DNNs; and
the Axiline approach synthesizes small ML algorithms by hardcoding
the structure of the algorithm into hardware, thus trading off flexibility
for performance and power. The overall approach explores the design
space of platform configurations and Pareto-optimal-PPA back-end
implementations to yield designs that represent different tradeoffs at
the algorithmic level between area, power, performance, and execution
time. The overall methodology, from architecture to back-end design to
hardware implementation, is described in this paper, and the results of
VeriGOOD-ML are demonstrated on a set of ML benchmarks.

I. INTRODUCTION

Recent advances in machine learning (ML) algorithms have seen
a proliferation of new ML algorithms and architectures, as well
as new work on ML accelerators. However, the design of these
accelerators requires intense manual designer effort and is time-
consuming. There is considerable recent interest in real-time machine
learning (RTML), where data is sent to an ML accelerator chiplet
through fast interfaces [1] and processed on the chiplet in real time,
with applications ranging from ML tasks in autonomous vehicles
(e.g., obstacle detection, collision avoidance, path planning) to next-
generation wireless networks (e.g., resource sharing in virtualized
radio access networks, channel estimation, channel decoding, RF
fingerprinting). These applications are best supported by building an
ability for rapid translation from an ML algorithm to a hardware
implementation.

VeriGOOD-ML is an open-source project [2] that automatically
compiles a high-level description of an ML algorithm (in a standard
ML format such as ONNX) to a register-transfer level (RTL) Verilog
implementation with no human in the loop. The RTL is then taken
through synthesis/place-and-route, resulting in a silicon implemen-
tation. The entire design flow, from architecture design to physical
implementation, is guided by models for performance, power, and
area (PPA), working in conjunction with architectural simulation.
This enables the designer to perform cross-layer optimizations to
build high-performance design implementations that can be optimized
for various objectives: size, power, performance, or solution quality
(using bitwidth quantization).

The ML algorithm is specified using the Open Neural Network
Exchange (ONNX) format, which is widely supported, thus max-
imizing interoperability across various programming environments.
ONNX represents ML algorithms as a standardized graph to facilitate
interoperability across various development environments, including

Google Tensorflow, Microsoft CNTK, and Facebook PyTorch. The
starting point for VeriGOOD-ML is the PolyMath compiler [3], which
translates a high-level ML algorithm description (e.g., ONNX) into
our intermediate representation (IR). The IR is a representation that
we refer to as a simultaneous recursive dataflow graph (sr-DFG) that
allows a hierarchical view into the structure of a design.

VeriGOOD-ML targets ML engines for both training and inference.
It uses three core engines to synthesize hardware from the IR.
Two of these are platform-based: TABLA [4], for general non-
DNN ML algorithms (e.g., linear regression, logistic regression,
SVM), and GeneSys for general DNN algorithms. TABLA uses a
dataflow architecture; the core computation engines in GeneSys are
a systolic array (for operations such as convolution) and a SIMD
array (for operations such as ReLU and pooling). The platforms
are parameterizable, and it is possible to automatically generate
hardware with different numbers of processing elements, bitwidths,
and on-chip memory configurations. A third approach, Axiline, is
a hard-coded engine tailored to specific small ML algorithms: it
trades off the flexibility of a platform, which can run multiple
ML algorithms, for a power-efficient implementation that is tailored
to a single algorithm. For TABLA and GeneSys, the platform-
based architectures, PolyMath translates the sr-DFG into “Codelet”
templates that implement the ML algorithm on an instruction set that
is specific to the platform. The Axiline implementation is synthesized
by translating the sr-DFG into dedicated hardware. Our silicon
implementation efforts characterize the PPA of core building blocks
and develop methodologies that provide PPA tradeoffs that generate
Verilog with physical implementation considerations.

Throughout the flow, VeriGOOD-ML optimizes the design for
performance, producing a set of designs with Pareto-optimal perfor-
mance/power/area (PPA) tradeoffs, and connecting these with system-
level performance metrics that optimize the power and execution
time for implementing an ML algorithm. In particular, a design
planner, which performs floorplanning and power grid generation
for the macro-intensive layout, is vital in ensuring that the back-
end implementation delivers high performance. The flow includes
cycle-accurate simulators for each engine, and is coupled with silicon
PPA predictors that can be used to perform design-space exploration,
yielding optimized ML hardware engines.

II. COMPILING ONNX TO PLATFORM-SPECIFIC INSTRUCTIONS

In this section, we describe how the ONNX description of an ML
algorithm is converted to an intermediate representation (IR), and
together with information about the hardware, is used to perform end-
to-end compilation using the PolyMath framework [3] for execution
on TABLA, GeneSys, and Axiline.
Intermediate representation using an sr-DFG: To encapsulate
operations at multiple levels of hierarchy, we devise a simultaneous
recursive dataflow graph (sr-DFG), an IR that is recursively defined



with the sr-DFG nodes. The representation facilitates optimization
in several ways: (1) utilizing optimizations that are predeveloped
for certain complex operations (e.g., building a binary tree for
the L2 norm or optimizing the flow of data for convolution) and
(2) simultaneously preserving the capability to perform fine-grained
scheduling and mapping optimization.

To translate an ONNX description into an sr-DFG, we traverse the
ONNX graph, whose nodes represent coarse-grained ML operations
on multi-dimensional arrays of input data. During traversal, sr-DFG
nodes and edges are generated using the attributes of each ONNX
operation and its inputs/outputs. The operations that comprise each
coarse-grained operation (e.g., multiply-adds that constitute a norm
operation, as shown in Fig. 1) are added to each sr-DFG node using
instantiations of predefined templates. We have successfully created
sr-DFG representations for a variety of benchmarks that cover a
variety of machine learning algorithms – both non-DNN (linear re-
gression, logistic regression, support vector machines, recommender
systems, backpropagation) and DNN ML algorithms.

Modeling hardware using a HAG: We model the structure of
specific accelerator platforms by introducing a reusable hardware
abstraction called a hierarchical architecture graph (HAG), with a
corresponding architecture description language embedded in Python
for targeting different types of accelerators with a unified interface.
A series of compilation passes use the HAG for a specific target
accelerator for mapping, scheduling, and optimizing programs on the
accelerator. Each HAG is comprised of three types of nodes: for
computations, for on- and off-chip communication, and for storage. In
interaction with the sr-DFG, the HAG enables end-to-end compilation
by the introduction of hardware-specific attributes to the compilation
pipeline.

An architecture description language (ADL) is used to represent
the HAG. Such an abstraction enables the compiler to expand its
capability from optimizing for single piece of hardware to a hetero-
geneous computing environment where there are multiple disparate
processors and accelerators. This ADL is built on top of Python
to improve usability and versatility, easily working in tandem with
various machine learning frameworks. To represent diverse types
of accelerators, there are several primary attributes that must be
included in the abstraction: the ability to (a) model hierarchy (as fine-
grained as a single ALU, or as coarse-grained as an entire systolic
array); (b) specify compute, storage, and communication components;
and (c) annotate each node with attributes/metadata including, but
not limited to, storage node capacity, communication bandwidth,
input and output ports, latency, and computation node capabilities
that describe operations supported by the architecture. Note that
the architecture description is primarily intended for compilation
purposes, and captures design information at a high level, eschewing
a more detailed gate-level description.

Figure 1: Translation of a “norm” ONNX node to the equivalent sr-
DFG node that contains all the fine-grained operations that constitute
a “norm” operation.

Compilation to target accelerators: Having devised an abstract
representation of different types of accelerator architectures, a multi-
stage compilation process can be reused across different HAGs. The
stages of compilation, illustrated in Fig. 2 consist of:
Operation mapping/scheduling: An sr-DFG is ordered to a sequence
of operations, and each operation will be mapped to a particular
component in the HAG according to the sr-DFG node operation and
the sequence of capabilities that produce the equivalent operation. In
addition, sequences of operations can be fused together according to
user-supplied parameters.
Compilation optimization: A search for optimal compilation param-
eters is performed using specifications of the HAG, such as tiling
sizes, loop unrolling factors, dataflow, etc. During this process, data
communication instructions/operations, including off-chip communi-
cations for both read/store operations, are added according to these
parameters.
Code generation for the target HAG: This step is based on the
instantiated capabilities from the two previous steps. The compiler
combines code templates called Codelets with the sr-DFG node at-
tributes and HAG attributes. Codelets represent instruction templates
for target accelerators. The sr-DFG is converted to this abstraction
for every type of accelerator, with the only difference being the
underlying instruction template used for binary generation. There are
four primary types of Codelets: (i) Compute Codelets that repre-
sent instructions for performing computations on data; (ii) Memory
Codelets for instructions that move data from one memory location
to another (e.g., load from/store to off-chip or on-chip memory);
(iii) Loop Codelets that repeat operations over a number of loop
levels; and (iv) Control Codelets for instructions that determine
program flow. These Codelets are combined to form operations that
match the semantics of execution for a given sr-DFG node.

The overall compilation flow is depicted in Fig. 3, which demon-
strates the different stages as well as the ability to apply architectural
attributes to the compiler passes. In combination with the code
templates associated with Codelets, additional compiler passes were
implemented to optimize and transform the program, e.g., datatype
transformations, layout transformations, and padding tensors for
GeneSys to map data onto the systolic array and SIMD array.

III. TARGET HARDWARE SUBSTRATES

In this section, we overview three target substrates for VeriGOOD-
ML: TABLA for non-DNN ML algorithms, GeneSys for DNNs, and
Axiline for ultraefficient hardcoded implementations of small ML
algorithms.

A. The TABLA Platform for Non-DNN ML Algorithms

Overview of the TABLA architecture: The overall TABLA archi-
tecture [4] for training and inference for non-DNN ML algorithms is
shown in Figure 4 and consists of multiple levels of hierarchy. An
array of processing units (PUs) constitutes the first level. The PUs are
connected through two different busing mechanisms – the “neighbor
bus” and the “global bus.” All PUs are connected to the global bus,
and the communication between all the PUs imposes a high pressure
on the global bus. The neighbor bus aims to minimize this pressure
by enabling the adjacent PUs to send their data through it. Moreover,
connecting all PUs to the global bus can result in a race between the
PUs. To ensure proper data transfer between PUs, a bus arbitration
module is implemented.

At the next level of hierarchy, each PU comprises of a set of
processing engines (PEs). Similar to buses for inter-PU communi-
cation, there are two buses for inter-PE communication. The bus

2



Figure 2: ONNX-to-hardware mapping flow through the sr-DFG and HAG representations.

Figure 3: Compilation flow combining the HAG and Codelets to
apply multiple stages of transformation and optimization.

Figure 4: An overview of the TABLA template-based architecture.

arbiter consists of a single leader controller per PU and one follower
controller for each PE. The leader controller determines which PE has
control of the bus in a given cycle, and the follower controller has a
write buffer and a set of read buffers (one for each PE/PU), organized
as FIFOs. In each cycle, data is popped from the write buffer of the
source PE and written to the read buffer of the destination PE.

Cycle-accurate software simulator: To facilitate testing and ver-
ification of the architecture, we have designed and developed a
cycle-accurate simulator in software that emulates the architectural
behaviors of the proposed system. The simulator allows the user to

provide the input program as an sr-DFG file and a configuration
file that sets the parameters of the template architecture described
in the above sections such as number of PEs per PU. Taking the
configuration file as an input allows users to further test the behavior
of the architecture with varying degrees of parameterization, e.g., to
analyze the performance impact of changing the number of PEs per
PU. Based on cycle-by-cycle analysis, the simulator can emulate the
execution of a given program and output performance metrics such
as total number of cycles, PE and PU utilization, and scratchpad
utilization.

B. The GeneSys Platform for DNN Algorithms

Overview of the GeneSys architecture: The overall system view
of the GeneSys DNN accelerator is shown in Fig. 5. The accelerator
consists of two core components: a systolic array and a SIMD array.
Data is supplied to the engine through the input buffer (IBUFF),
output buffer (OBUFF), instruction memory (IMEM), weight buffer
(WBUFF), and bias buffer (BBUFF). These interfaces harbor pro-
grammable address generator modules and controller FSMs that
together generate the addresses and requests to load or store a tile
of data from/to off-chip memory. The address generators perform
strided address pattern generation and generate addresses in the off-
chip memory and read/write the corresponding data from/to on-
chip buffers and populate the on-chip memory. These interfaces also
include tag logic that is in charge of handling double-buffered data
transfer to hide the latencies of Load/Store operations and also facil-
itate prefetching. Among these interfaces, the interface for OBUFF
and SIMD array handles both load and store operations, while the
other interfaces handle only load operations. These interfaces are fully
programmable through the instruction set architecture (ISA) of the
GeneSys accelerator.
The systolic array, which performs convolution and matrix multi-
plication operations for the convolution and fully-connected layers,
is a 2D array of M × N processing engines (PEs), equipped with
dedicated on-chip weight buffers, as in [5], [6]. To boost the operating
frequency, we pipeline the inputs and weights across the columns of
the array and the partial sums across the rows of the array. In systolic
execution, the inputs (activations) flow horizontally, are multiplied by
the weights in each PE and are then accumulated vertically along the
columns of the systolic array. This systolic execution also facilitates
mapping the matrix-multiplications and convolutions to the array and
simplifies the control logic. The IBUFF is multibanked and each
bank feeds a row of the systolic array. The output buffers are also

3



Figure 5: A block diagram of the overall system view of GeneSys,
the VeriGOOD-ML DNN accelerator.

Figure 6: Execution flow of the GeneSys systolic array accelerator.

multibanked, each bank for each column of the systolic array, storing
the partial sums and output activations.

Figure 6 depicts a more detailed diagram of the implementation
of the systolic array. Each processing engine consists of (1) a weight
scratchpad that stores the weight values on-chip and (2) a multiply-
accumulate unit that performs a multiplication between the inputs
and weights and an accumulation of the partial results to perform
the matrix-multiplication or convolution operation with the systolic
array. Each PE is equipped with four registers that aim to support
the pipelined execution: a register for the output results, a register for
the received input that will be forwarded to the adjacent PE in the
systolic array, and two registers for handling the read accesses from
the weight scratchpad (one register for the read request and one for
the read address; the read request and read addresses for the weight
scratchpads are shared across the 2-D array of PEs). Each PE is a
template design and the size of the weight scratchpad, precision of
the input, weight, partial sum and also the bitwidth of the multiply-
accumulate logic in addition to the registers are parameterizable
during architectural synthesis, according to the demands of the
application.

For address generation, we design a memory walker mod-
ule that can automatically generate the addresses for executing
convolution/matrix-multiplication operations on the systolic array,
leveraging the insight that the data layout and memory patterns of
DNNs are generally regular, without branch/jump instructions. This
module is configured with a set of parameters such as the number
of loop iterations and the base address in the memory, and can then

generate addresses automatically as:

address = base address + loop iterator × stride

The SIMD Vector Unit is a 1×N array that performs computations
for DNN layers other than convolution and fully-connected layers,
such as pooling, activation, and other element-wise operations. The
pipeline stages of this SIMD processor are generally similar to
a MIPS processor with a major difference: since memory access
patterns in DNNs are regular, the register file is eliminated to save
Load/Store instructions. With this design, we directly read from the
on-chip scratchpads that store the data, execute the operations, and
then write it back to the destination scratchpad. We have designed
a custom ISA to program this architecture. There are two classes
of instructions in this ISA: execution instructions (ALU, CALCU-
LUS, COMPARISON, DATATYPE CAST), and setup instructions
(DATATYPE CONFIG, ITERATOR CONFIG, LOOP).

A training-capable GeneSys implementation consists of additional
layers and operations beyond the inference engine for performing
gradient computations and parameter updates. Training operations
must support computations of loss gradient with respect to input and
weight: for a convolution layer, these are mapped to a convolution
operation, and for a fully connected layer, they are implemented as
a GEMM operation. For training, GeneSys supports a softmax layer,
a common generic model for multiple operations (e.g., parameter
updates for 1D, 2D, and 4D tensors; loss gradient computation for the
ReLU layer and for element-wise addition of two tensors; reduction
of a tensor along its dimensions), and estimated models for the
batch normalization layer, including operations during the forward
and backward pass.
GeneSys performance simulator: Our simulator for DNN execution
on GeneSys takes the following two files as inputs: (1) a specification
of the hardware configuration, in the form of a .json file, and (2) the
compiler output, as a .json file containing a high-level description
of each DNN layer, e.g., the dimensions of the input/output tensors,
order of execution of the loops, tile sizes for the tensors and datatypes.

The simulation framework is attuned to the fully parameterizable
nature of GeneSys by accepting the specific hardware attributes:

• the dimensions of the 2D PE array, the sizes of each of the on-
chip buffers, namely, WBUFF, IBUFF, OBUFF, and BBUFF for
the systolic array, and vectory memory, immediate memory, and
instruction memory buffers for the SIMD array.

• bit-widths of all types of data (filter, input, bias, psum, output
for the systolic array; input, psum, output for the SIMD array).

• the number of cycles required by various arithmetic operations.
• off-chip bandwidth of each memory interface.

For each layer of a DNN, either executed on the systolic array
or SIMD array, the simulator outputs the following performance
statistics: the number of accesses for each of the on-chip buffers
for each datatype, the number of accesses for the off-chip DRAM
for each datatype, the number of accesses for the pipeline registers,
the number of various arithmetic operations, the number of on-chip
compute cycles, the number of stall cycles while the Systolic array
or SIMD array remain idle waiting for data to be fetched from the
off-chip DRAM, and the total number of execution cycles.

C. The Axiline Approach for Hard-Coded ML Hardware

The Axiline generator develops dedicated, hard-coded implementa-
tions of small algorithms, for both ML training and inference, to
achieve high performance and low power. For TABLA and GeneSys,
the parameters for the platform can be selected according to target

4



Figure 7: Pipeline implementation for Axiline benchmarks.

applications, but may be used to run other applications. In contrast,
Axiline is intended to be very specific to the ML algorithm that
it implements, and it trades off adaptability for performance. By
building a hardcoded implementation, we can achieve maximum
performance and efficiency, at the expense of flexibility.

The Axiline generator outputs RTL by creating a mapping from an
sr-DFG input to unit constructs such as inner products, adders, and
multipliers. The simplest version of Axiline begins with an sr-DFG
without loops and translates it to a combinational implementation.
However, the cost of implementing a larger sr-DFG, or one with
loops, may become prohibitive due to the large volume of data to be
processed. For such scenarios, we develop an iterative architecture
that serially processes parts of the input data over multiple cycles.

The generator works in three steps: first, it generates the lowered
data flow graph for an Axiline ML algorithm; next, it calculates the
bitwidth for each node, based on the given bitwidth of activation,
weight and bias, and finally, it generates Verilog code for each
node/block and combines them with the template. A representative
multicycle pipelined architecture that can be used for several non-
DNN benchmarks (e.g., SVM, logistical regression, and linear re-
gression) is shown in Fig. 7. The architecture maps the sr-DFG into
three pipeline stages: Stage 1 performs an inner product computation,
and is followed by Stage 2, which implements a combinational
function, where the precise function depends on the benchmark.
For example, for linear regression, the combinational logic in block
2 would be a multiplier, and for logistic regression benchmark,
it should be a sigmoid function and a multiplier. Block 3 is for
stochastic gradient descent, consisting of two multipliers and one
adder. The inner product size in Stage 1 is parameterized. Therefore,
the input bandwidth can be parameterized for different FPGAs. The
computation proceeds iteratively by processing data through this
pipeline.

Figure 8: An overview of the SPR flow from RTL to GDSII.

IV. SYNTHESIZING HARDWARE

The VeriGOOD-ML compiler takes an ML algorithm from an
ONNX-level description to Verilog RTL. The next step in synthesis
is to go from Verilog to GDSII. A critical first step in back-end
implementation of machine learning algorithms to advanced-node
silicon, particularly with automatically generated RTL, is design
planning. ML accelerators are inherently very structured, and op-
timal silicon implementation requires a design flow to leverage that
structure to create a high-quality floorplan. This is a critical first step
that is essential both for physical synthesis and place-and-route. A
suboptimal floorplan can result in poor PPA and increased turnaround
time for design closure.

Historically, design planning has initially been performed by the
front-end designer who understands the RTL design hierarchy and
connectivity and further refined by the back-end engineer, who
understands the floorplan effects and utilizes constraints from the
SoC regarding block outline and pin positions. As design complexity
increases, this becomes practically impossible; moreover, for auto-
generated RTL, there is no front-end designer who understands
the design. Hence there is a critical need for an automated design
planning tool that is compatible with commercial EDA tools.

VeriGOOD-ML uses a design planning flow and key engines that
have been implemented in the open-source OpenROAD tools [7],
[8] so as to bridge generated RTL Verilog to successful physical
implementation outcomes. In our flow, we pass the result of design
planning to a place-and-route flow using commercial tools; in future,
a fully OpenROAD-based flow will be targeted. The overall synthesis,
place and route (SPR) flow is shown in Fig. 8.

Our in-house design planner is designed to mimic the way expert
chip designers perform floorplanning. A significant challenge is
related to the fact that these designs are dominated by macros
that correspond to memory modules that implement various on-chip
buffers. This adds complexity to the tasks of floorplanning, which
must leverage design regularity, and power delivery network (PDN)
generation, which must handle PDN blockages in several metal layers
at the macro locations.

The design planner first creates an efficient abstraction model of the
netlist by analyzing attributes such as the logical hierarchy, data flow,
the connection between macros and input-output pins, and timing-
critical paths. The planner then uses the abstraction model to guide the
generation of the floorplan. This model helps back-end engineers to
gain better insights into the design and therefore reduces the number
of iterations required to make the design flow converge. Four engines
that are invoked sequentially:
(1) The auto-clustering engine converts the gate-level netlist represen-
tation of the design into a clustered netlist, in which nodes are clusters
and nets are bundled connections between clusters. To generate this
clustered netlist, we first create clusters based on logical hierarchy and
then group small clusters based on connection signatures. To handle
macro regularity, we group macros with different sizes into different
hard macro clusters. We then add virtual connections between hard
macro clusters and input/output IOs based on dataflow and latency.
(2) The shape engine determines possible aspect ratios and area for
each macro based on core size of floorplan and target utilization. For
each hard macro cluster, we enumerate all possible minimum-area
packings.
(3) The macro placement engine places all the clusters and finalizes
the shape of each cluster. In this phase, we use a sequence-pair
representation of clusters in the netlist, and simulated annealing
to optimize the cost function. The cost function includes area,

5



(a) (b) (c)

Figure 9: Back-end design of a GeneSys engine showing (a) signal flow on primary interconnects, (b) the floorplan, (c) layout after SPR.

wirelength, and several penalty function terms, e.g., for overflowing
the given layout region (fixed-outline constraint), or for notches or
blocked pin accesses in the macro placement.
(4) Finally, the pin alignment engine determines the location and
orientation of each individual macro. In this phase, we pack macros
within each hard macro cluster, again using simulated annealing of
a sequence-pair representation.

(a) (b)

Figure 10: The PDN on (a) layers M1–M7 (b) layers M1–M13.

We implement our designs based on the GF12LP technology using
13 metal layers. An Arm memory compiler is used to build dual-port
register files. For each logical memory size (address and bit width),
the configuration that yields the smallest area is chosen. Fig. 9 shows
the data flow, the floorplan from our design planner, and the final
place-and-route on a commercial back-end for the GeneSys SIMD
example. The automatically generated PDN is illustrated in Fig. 10.

Using this back-end implementation flow, we are currently in the
process of taping out a chip that implements a GeneSys engine.
Aside from core GeneSys components, the design includes an on-
chip global buffer that interacts with the external off-chip memory,
as well as mixed-signal circuits such as VCOs, synthesized using
ALIGN [9].

V. RESULTS

We have applied the VeriGOOD-ML flow to perform training
and inference on a variety of ML algorithms, exploring the space
of design configurations to optimize application-level performance
metrics. For a variety of design configurations of a specific plat-
form (TABLA or GeneSys), we generate the Pareto-optimal PPA
curves for the hardware engine using our back-end implementation
methodology. This yields the power and frequency characteristics
of the platform. Using the cycle-accurate simulator, we track the
performance of the ML algorithm on the platform, e.g., the number
of cycles required to perform the computation and the memory access
patterns that dictate stalls and power dissipation. Based on this, we

#PUs #PEs/PU Frequency Area Power Training Runtime Inference Runtime

8 8 1GHz 2.96mm2 1.28W 30.6min 0.21ms
8 8 0.25GHz 2.96mm2 0.29W 122.3min 0.85ms
8 16 1GHz 5.65mm2 1.90W 26.3min 0.17ms
8 16 0.25GHz 5.65mm2 0.56W 105.1min 0.68ms

Table I: Training and inference results for the SVM on various
TABLA configurations.

determine the power and execution time of the ML algorithm on
the platform. For example, for DNN execution on GeneSys, we
combine the performance statistics provided by the simulator with
the power-performance characteristics (i.e., energy per operation,
clock frequency, dynamic and leakage power of various hardware
components) of Pareto-optimal PPA design points provided by our
backend Synthesis Place-and-Route flow to compute the energy
consumption, power (both on-chip and off-chip), and runtime. For
Axiline, the mapping is performed directly to report the power and
execution time. In this section, we provide a snapshot of a set of
results obtained from exercising VeriGOOD-ML. A variety of design
implementations have been built, up to post-SPR; a sample set is
shown in Fig. 11. These implementations create a Pareto-optimal set
of designs that form the basis for the results shown below.
Classification and localization problem using SVM on TABLA:
We exercise an SVM on the WLAN Indoor Localization bench-
mark [10] dataset. Data preparation consists of the following steps.
We first import the WiFi RSSI dataset, the smartphone geomagnetic
dataset, the timestamp datafile, and the PointsMapping dataset that
contains the placeID-to-XY coordinate mapping. Next, we merge the
RSSI dataset with PointsMapping dataset by PlaceID, so that we have
XY coordinate and placeID data for RSSI measurements. Finally,
we merge the RSSI dataset and Smartphone Geomagnetic dataset
together according to the timestamp datafile. The final preprocessed
dataset after these operations consists of a table with 11,498 rows
and 143 columns that contains all the relevant feature data.

Next, we implement both training and inference for the SVM
algorithm in the PolyMath domain-specific language and compile it to
the sr-DFG representation, followed by a TABLA-backend translation
pass, which produces the binary executable as well as necessary
configuration and RTL files for TABLA. We consider multiple design
implementations of the TABLA platform, and report a set of Pareto-
optimal points in Table I.
ResNet50 on GeneSys: We implement ResNet50 on multiple in-
stantiations of GeneSys, each with a different configuration, cor-
responding to a different size for the PE and SIMD arrays, and
different bitwidths. The results for these configurations for single-

6



(a)

Figure 11: Configurations at multiple PPA points for TABLA, GeneSys, and Axiline with post-SPR layout (on-chip power only reported).

PE array size Bitwidth Frequency Area Power Execution Time*

16×16 4 1.09GHz 2.0mm2 0.44W 25.6s
16×16 4 0.27GHz 3.0mm2 0.10W 89.1s
32×32 8 1.04GHz 8.5mm2 1.04W 10.0s
64×64 4 0.97GHz 18.9mm2 1.31W 6.9s

(*reported for 1024 single-stream inference)

Table II: Inference results for ResNet50 on GeneSys.

Benchmark # Features Frequency Area Execution On-chip Total
time power power

Logistic 54 495MHz 0.024mm2 4.70ms 24mW 0.47W
regression 500MHz 0.014mm2 6.98ms 13mW 0.31W

SVM 200 500MHz 0.042mm2 6.01ms 46mW 3.42W
497MHz 0.030mm2 10.05ms 27mW 2.04W

Linear 784 492MHz 0.091mm2 0.37ms 84mW 4.45W
regression

Table III: Training results for non-DNN benchmarks on Axiline.

stream inference, where a query is sent after a previous query is
complete, are summarized in Table II. The designs correspond to
different Pareto-optimal points, e.g., a design that is optimized for
area; a slower design at a low power point; a higher-bitwidth design
optimized for classification accuracy; and the largest design that is
optimized for speed. The memory interface is assumed to connect to
an external HBM2 memory.
Axiline results: Table III shows the result of implementing Axiline
for a training on a set of non-DNN benchmarks. For the logistic
regression and SVM benchmarks, two different design points are
shown. In all cases, the execution times (which exclude memory fetch
times) for Axiline, area, and on-chip power are smaller than those
for a platform-based method due to the custom-optimized nature of
the engine. The total power is dominated by the off-chip power:in
this case, we also assume an HBM2 external memory interface.

VI. CONCLUSION

In this paper, we have presented the VeriGOOD-ML flow for auto-
mated ML hardware synthesis. The ONNX representation of an ML
algorithm is represented as an IR in the form of a sr-DFG, which

is then translated to one of the three VeriGOOD-ML engines. Based
on the HAG that represents the architecture configuration, the flow
translates the IR to an implementation on TABLA (for non-DNN
algorithms) or GeneSys (for DNNs), including code generation for
the ISA for the corresponding platform. The translation to Axiline is
performed directly from the sr-DFG. The design then goes through
back-end synthesis. Results on a variety of ML algorithms illustrate
the efficacy of the flow at multiple Pareto points.

ACKNOWLEDGMENTS

This work was supported in part by AFRL under the DARPA
RTML program under award FA8650-20-2-7009. The authors would
like to acknowledge the contributions of Pichet (Louii) Chaiyakul,
Sayak Kundu, and Nikhil Dakwala.

REFERENCES

[1] D. Kehlet, “Accelerating innovation through a standard
chiplet interface: The advanced interface bus (aib).”
https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/accelerating-innovation-through-aib-whitepaper.pdf.

[2] “VeriGOOD-ML: Verilog generator, optimized for designs for machine
learning.” https://github.com/VeriGOOD-ML/public.

[3] S. Kinzer, et al., “A Computational Stack for Cross-Domain Accelera-
tion,” in Proc. HPCA, 2021.

[4] D. Mahajan, et al., “TABLA: A unified template-based framework for
accelerating statistical machine learning,” in Proc. HPCA, pp. 14–26,
March 2016.

[5] H. Sharma, et al., “From high-level deep neural models to FPGAs,” in
Proc. MICRO, Oct. 2016.

[6] H. Sharma, et al., “DnnWeaver v2.0: From tensors to FPGAs,” in Proc.
Hot Chips, Oct. 2016.

[7] T. Ajayi, et al., “Toward an open-source digital flow: First learnings
from the openroad project,” in Proc. DAC, 2019.

[8] “The OpenROAD project.” github.com/The-OpenROAD-Project.
[9] K. Kunal, et al., “ALIGN: Open-source analog layout automation from

the ground up,” in Proc. DAC, pp. 77–80, 2019.
[10] “Geo-magnetic field and WLAN dataset for indoor localisation

from wristband and smartphone data set.” http://archive.ics.uci.edu/
ml/datasets/Geo-Magnetic+field+and+WLAN+dataset+for+indoor+
localisation+from+wristband+and+smartphone.

7


