
DATC RDF-2021: Design Flow and Beyond
ICCAD Special Session Paper

Jianli Chen∗, Iris Hui-Ru Jiang†, Jinwook Jung‡, Andrew B. Kahng§, Seungwon Kim§, Victor N. Kravets‡,
Yih-Lang Li¶, Ravi Varadarajan§, and Mingyu Woo§

∗Fudan University, Shanghai, China
†National Taiwan University, Taipei, Taiwan

‡IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
§UC San Diego, La Jolla, CA, USA

¶National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Abstract—This paper describes the latest release of the DATC
Robust Design Flow (RDF), RDF-2021, which has several key
additions to expand its horizons. The Chisel/FIRRTL compiler
is now part of DATC RDF, enabling support of recent hardware
generator designs written in Chisel. Logic locking through RTL
obfuscation, an updated ABC synthesis flow, and DFT support
are other notable updates to the RDF. A Bookshelf-LEF/DEF
converter powered by OpenDB is also added into DATC RDF’s
inventory as an enabler of robust benchmark conversion. We
also describe efforts toward open metrics standards and datasets
for machine learning (ML) applications and smart tuning of the
design flow, as well as expansion of public analysis calibration
data. Our paper closes with future research directions related to
DATC’s efforts.

I. INTRODUCTION

IEEE CEDA Design Automation Technical Committee
(DATC) [1] has developed a public reference design flow,
named DATC Robust Design Flow (RDF), over the past
six years [2]–[7]. Its first release, named OpenDesign Flow
Database, appeared in 2016 [2] and was built upon CAD
contest-winning tools. The RDF subsequently evolved both
vertically and horizontally to achieve a complete RTL-to-GDS
flow with multiple tool options available [3]–[6]. In the 2020
release [7], RDF brought the integrated OpenROAD app [8]
into its inventory, solidifying the RTL-to-GDS implementation
flow. The RDF scope and mission were also updated, bringing
attention to analysis and verification research.

In the past year, we have made several key updates that
expand the horizons of the DATC RDF. We have included
the Chisel/FIRRTL compiler [9] to support recent hardware
generator designs written in Chisel. RTL obfuscation and
DFT insertion are also added this year. Another noteworthy
addition is an open-source Bookshelf-LEF/DEF conversion
flow, RosettaStone, which brings past academic benchmarks
and point tools to life with respect to usability in modern
LEF/DEF-based full RTL-to-GDS flows. These additions im-
prove the benefits brought by RDF as a research platform for a
wide scope of hardware- and EDA flow-related research. New
DATC initiatives this year also include definition of MET-
RICS2.1, a common metrics system and exemplary datasets
to support machine learning research, and development of
a design flow autotuning framework. Calibration datasets to
support research on analysis tools have also been expanded
this year.

Chisel/FIRRTL

RTL Obfuscation

Logic Synthesis

DFT Insertion

P&R Flow

ScalaVerilog

RDF Point Tool 
Based Flow

OpenROAD
Integrated App

Routed design

Netlist, SDC, parms

SDC

Key

Fig. 1. RDF-2021 overview. The input design is Chisel-generated or pure
Verilog RTL. The RTL can be locked using RTL obfuscation techniques. It
is then synthesized and DFT-inserted, followed by P&R flow execution using
the OpenROAD integrated app or the point tool-based RDF flow.

The rest of this paper is organized as follows. Section II
gives an overview of the RDF-2021 flow, providing details
of several key updates. Section III describes DATC’s efforts
toward a common metrics system, smart flow autotuning
framework, and calibration dataset expansion. Future research
directions and potential extensions are discussed in Section IV,
and we provide some concluding remarks in Section V.

II. RDF-2021 UPDATES

Fig. 1 shows the RDF-2021 flow [10]. It starts from a
pure Verilog RTL design or Chisel-generated Verilog. RTL
can be optionally obfuscated using a recently-released RTL
obfuscation tool [11]. Logic synthesis is then performed using
Yosys with ABC, followed by DFT insertion with the Fault
toolchain [12]. For P&R, RDF-2021 includes the OpenROAD
integrated app [8] as well as the CAD contest point tool-
based RDF flow [13]. Table I summarizes the supported
components of DATC RDF-2021, where newly added and
updated components are highlighted in boldface. In the rest
of this section, we summarize the key updates of RDF-2021.

A. Chisel/FIRRTL and Hardware Generators

Chisel [9] is an open-source, domain-specific hardware
design language embedded in Scala, consisting of a set of
special classes, predefined objects, and language conventions
for hardware design. Chisel aims to provide a modern platform
for hardware design, whereby designers can utilize functional
programming and object-oriented features of Scala. In Chisel,
a hardware design is written in Scala and turned into Verilog
via compilation and elaboration using the FIRRTL compiler.



TABLE I
RDF-2021 COMPONENTS

Component Tools

RTL generator Chisel/FIRRTL
RTL obfuscation ASSURE
Logic synthesis Yosys, ABC
DFT insertion Fault
Floorplanning TritonFP
Global placement RePlAce, FZUplace, NTUPlace3, ComPLx, Eh?Placer,

FastPlace3-GP, mPL5/6, Capo
Detailed placement OpenDP, MCHL, FastPlace3-DP
Flip-flop clustering Mean-shift, FlopTray
Clock tree synthesis TritonCTS
Global routing FastRoute4-lefdef, NCTUgr, CUGR
Detailed routing TritonRoute, NCTUdr, DrCU
Layout finishing KLayout, Magic
Gate sizing Resizer, TritonSizer
Parasitic extraction OpenRCX
STA OpenSTA, iTimerC
Database OpenDB
Libraries/PDK NanGate45, SKY130, ASAP7, NCTUcell
Integrated app OpenROAD
Benchmark conversion RosettaStone

The intended usage of Chisel is to write “hardware gen-
erators” in an efficient and effective manner. This is the
key differentiator of Chisel compared to traditional hardware
description languages (HDLs) such as Verilog and VHDL.
Using Chisel, it is possible to write highly-parameterized,
abstract hardware generators using sophisticated programming
techniques supported by Scala. The hardware generators can
then be used to generate multiple implementations of differ-
ent architectures. This allows hardware designers to explore
various architectural design choices and best customize the
resulting hardware implementations.

Chisel has garnered substantial interest from computer ar-
chitecture and hardware design researchers, with open-sourced
Chisel designs including Rocket Chip Generator [15], Gem-
mini deep-learning accelerator [16], and RISC-V Boom [17].
Enablement of Chisel in RDF-2021 opens the door to use
of recent open-source processor and accelerator designs for
design flow research. We also envision that RDF-2021 will
benefit hardware design research by providing a readily usable,
public design flow to evaluate multiple architectural and design
choices.

B. RTL Obfuscation

Logic locking has emerged as an appealing technique
to prevent piracy of hardware intellectual property (IP),
and there have been rapidly evolving research efforts in
this arena. In RDF-2021, we have included a recently-
released RTL obfuscation-based logic locking technique,
called ASSURE [11]. It is an RTL obfuscation framework
assuming a netlist-only threat model where adversaries do not
have access to activated chips. In ASSURE, an RTL design is
obfuscated via three provably secure obfuscation techniques:

• Constant obfuscation eliminates selected constant values
in RTL, and substitutes them with the secret locking key.
The original RTL function is reproduced only when the
correct key is provided.

• Operation obfuscation adds a redundant operator along-
side an original operator, sharing the same inputs. A

abc 01> &cec -x cnn.170.aig cnn.187.aig
Networks are equivalent. Time = 1238.07 sec
abc 02> &cec cnn.170.aig cnn.187.aig
Networks are equivalent. Time = 12058.28 sec

Fig. 2. ABC &cec command runtime comparison with and without the new
SAT solver. With the new solver, CEC runtime is greatly reduced.

MUX is instantiated, which selects an output from the
operators based on the provided locking key.

• Branch obfuscation obfuscates branch conditions in the
original RTL so that the correct conditions are only
activated when the correct locking key is provided.

With the RTL-based logic locking approach, ASSURE can
hide essential design semantics effectively against hardware IP
thefts. Usual gate-level locking techniques cannot protect such
semantic information (e.g., constant values embedded in the
original designs). Besides, as it directly obfuscates RTL, the
ASSURE techniques are compatible with virtually any RTL-
to-GDS flows.

C. ABC Synthesis Script Updates

The logic synthesis engine within RDF-2021 comes with
improved scalability and new options to improve the quality
of technology mapping. The scalability improvements are pri-
marily due to the tight integration of a satisfiability solver with
the internal design representation [18]. This eliminates creation
of the auxiliary CNF representation of problem instances and
instead performs reasoning directly in the underlying design
model of a design. Such a tight coupling enables dramatic
performance improvement of repetitive tasks as design size
increases. For example, a verification task that checks com-
binational equivalence of two large neural networks exhibits
10× runtime improvement as demonstrated in Fig. 2.

The performance improvement in the &cec command is
due primarily to the new implementation of SAT sweeping
capability that systematically examines the functional equiv-
alence of signals. This is also used within the core logic
optimizer dch, which combines choice computation [19] and
SAT sweeping. The new implementation is packaged as &dch
-x in the latest release and is the current default.

The released synthesis scripts in RDF are also updated to
achieve better area and timing tradeoffs through a powerful
optimization technique, dubbed LazyMan synthesis [20], that
consults a database of logic rewriting choices empirically dis-
covered in earlier runs. Such reuse of learnt data significantly
reduces optimization runtime while enabling more accurate
assessment of logic transformations. The recorded choices
offer valuable know-how to the if -y algorithm [21] that
explores sum-of-products logic realizations to improve timing.

D. DFT Support with Fault

In the open-source EDA ecosystem, there has not been a
usable DFT solution, and the DATC RDF did not previously
include DFT support, leaving it as a future direction [7].
Thanks to the recent release of the Fault tool chain [12],
RDF-2021 now includes DFT support in its inventory. Fault



fills the previous gap by providing a complete DFT infras-
tructure including automatic test pattern generation (ATPG),
scan chain connection, and JTAG interface insertion. The
toolchain consists of five tools that enable ATPG and scan
chain insertion, as follows.

• ATPG. A given netlist is first converted into a combina-
tional network using Cut. Test vectors are then generated
by PGen, subsequently compressed by Compact.

• Scan insertion. Given a netlist, test and shift enable
signals are added by Chain, which also instantiates a
scan MUX at each flip-flop input and creates scan chains.
Tap creates a JTAG interface in the netlist.

In RDF-2021, the scan insertion toolchain of Fault is invoked
after logic synthesis, as shown in Fig. 1.

E. Robust Conversion between Bookshelf and LEF/DEF

DATC RDF was initially built upon contest-winning aca-
demic tools. The flow was stitched with ad hoc format
conversion scripts, as older academic tools are tightly cou-
pled with specific contest input formats and do not have a
shared/standard data model or format (e.g., LEF/DEF [22]).
RDF-2019 [6] addressed this “interoperability” issue by in-
tegrating the OpenROAD tool chain that runs fully with
industrial LEF/DEF format; RDF-2020 [7] further included
the integrated OpenROAD app, which adopts an open-source
physical design database, OpenDB [23], eradicating redundan-
cies and inconsistencies between flow steps due to multiple
separately-developed LEF/DEF parsers, as well as file- or
name-based communication between the steps. Nevertheless,
RDF’s original flow based on academic point tools still de-
pends on file-based LEF/DEF to Bookshelf conversions.

A previous effort toward horizontal extension of academic
benchmarks for improved assessment of physical design re-
search [24] proposes a horizontal benchmark extension infras-
tructure that allows commercial tools to accommodate existing
CAD contest benchmarks, while realizing “apples-to-apples”
assessment of commercial and academic physical design tools.
However, the infrastructure shares the same limitation earlier
versions of RDF, in that it depends on a script-based, ad hoc
format conversion flow.

RDF-2021 includes an open-source robust benchmark con-
version tool, RosettaStone, powered by OpenDB [23]. Roset-
taStone uses OpenDB as the central data model. It reads aca-
demic benchmarks written in Bookshelf, and creates OpenDB
databases based on existing PDK information; missing infor-
mation in the benchmarks, such as cell names and master
cell types, are populated based on the given target PDK. The
created OpenDB can be accessed directly via OpenDB APIs,
or can be dumped into a DEF file. Fig. 3 shows Bookshelf-
to-LEF/DEF conversion results of two ISPD-2005 placement
contest benchmarks, obtained by using RosettaStone with the
NanGate45 PDK. All the macro block sizes are properly scaled
based on placement site definitions, and cell placement is per-
formed using a commercial tool. RosettaStone is also capable
of converting LEF/DEF into Bookshelf through OpenDB, en-

(a) (b)

Fig. 3. Bookshelf to LEF/DEF conversion of the ISPD-2005 contest bench-
marks using RosettaStone: (a) adaptec1 and (b) bigblue1. NanGate45 was
used for this example. Standard cells were placed using a commercial tool.

(a) (b)

Fig. 4. P&R result for riscv-mini [25] obtained with the RDF-2021 flow.
(a) Placement of obfuscation gates inserted by ASSURE (highlighted in red),
and the locking key input ports (blue). (b) Test-enable (blue) and shift-enable
(red) signals introduced by the Fault DFT toolchain.

abling past academic tools to work within a modern industrial
RTL-to-GDS flow for physical design research.

F. Demonstration

We took a RISC-V 3-stage pipeline written in Chisel,
riscv-mini [25], and ran through the RDF-2021 flow shown
in Fig. 1. The Scala source files of riscv-mini were compiled
into Verilog, which was then obfuscated using ASSURE with
a 512-bit secret locking key and all the obfuscation techniques
enabled. The obfuscated RTL was synthesized into a gate-level
netlist targeting SKY130HD using Yosys with the updated
ABC script. Fault was used to create scan chains in the netlist.
Finally, we used the OpenROAD integrated app for P&R,
obtaining a zero-DRC result from the TritonRoute detailed
router. Fig. 4 shows the final routed design. A total of 1502
cells were introduced from ASSURE RTL obfuscation (total
cell count is 25052). We also observe that the test and shift
enable signals of scan chain, introduced by Fault, are properly
connected and routed (see Fig. 4(b)).

III. METRICS, SMART FLOW, AND CALIBRATION

Over the past year, the DATC has put new efforts toward
establishing a common, standardized metrics system (MET-
RICS2.1) and a smart EDA flow autotuning framework, as
detailed in [26]. We have also expanded the calibration dataset,
which was initiated in last year’s DATC RDF updates [7].

A. Metrics

Research using academic and commercial tools has been
actively conducted for decades throughout the RTL-to-GDS



METRICS2.1

JSON 

Dictionary

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Floorplan

Placement

Routing

Synthesis

Verification

CTS

Data Collection

ML Applications

Flow autotuning

Fig. 5. Overview of METRICS2.1 infrastructure. METRICS2.1 captures de-
sign and tool parameter metrics from RDF-to-GDS flow execution, and stores
the metrics data into a generalized/hierarchical JSON format. METRICS2.1
and collected metrics data can provide a common, standard foundation for
ML CAD research.

domain, but has always suffered from a lack of standard
reporting formats and tool metrics. Each tool or engine has
its own, unique set of parameters that allow users to change
optimization behaviors and thus trade off PPA and runtime
metrics. The fragmentation of names and formats across the
entire tool flow chain hampers sharing of machine learning
models and know-how, as well as reproduction of results.

A METRICS1.0 infrastructure for the EDA and IC indus-
tries was proposed [27], [28] in the late 1990s to measure
all design activity, mine all data, predict tool outcomes, find
sweet spots or field of use for tools, and perform design-
specific tuning of tools. In 2018, METRICS2.0 revisited
the original goal of METRICS1.0, and proposed an updated
architecture for collection and sharing of data for machine
learning applications [29].

In this RDF update, we propose METRICS2.1 as a new
standard for metrics collection and design process record-
ing [26]. The goals of METRICS2.1 are (i) to provide a
standardized naming and format for design tool and flow
metrics data, and (ii) to define a robust structure for large-scale
metrics archives. As shown in Fig. 5, METRICS2.1 provides
integrated metrics extracted from the complete RTL-to-GDS
flow, from synthesis to detailed routing to verification. We also
provide thousands of RTL-to-GDS metrics datasets along with
all configuration files needed for complete reproducibility, in
the DATC’s GitHub [30]. Example data analyses and ML
applications in the form of Jupyter notebooks are also shared
as a guide for future research with large metrics datasets.

B. Design Flow Autotuning

The complete RTL-to-GDS flow generally includes a variety
of tool options and “recipes” at each flow stage. In practice,
choosing such tool options and recipes to obtain the best
possible PPA from EDA tools requires expert intuition and ex-
perience of designers. With this backdrop, we posed a “smart
RDF flow” challenge in [7], and have added to RDF-2021
a design flow autotuning framework, named AutoTuner [26].
The AutoTuner framework provides “no-human-in-loop” pa-
rameter tuning for commercial and academic RTL-to-GDS
flows; it is available as open source under the DATC GitHub
organization [31].

Fig. 6 shows an overview of the proposed AutoTuner
framework. Inputs include parameter configuration and reward

AutoTuner
(Ray/Tune)

RTL-to-GDS 
flows are
automatically 
executed 
in parallel 
using Ray’s API

Search algorithm
(switchable)

Parameter config
input parameter 
name, range, 
step, type

Reward function

Ray/Tune options
#trials, #cores, etc.

Select parameter set
based on config / results

Create RTL-to-GDS flow 
with selected parameter set

Execute RTL-to-GDS flow

Collect METRICS2.1 json

Evaluate reward function

Parallel execution
Best known
parameter set

Option 1 Option 2 No prior
knowledge

Fig. 6. Flow autotuning framework with inputs that include parameter
configuration, search algorithm, reward function definition, and job execution
option. The tuning can start from best-known parameters, or with no prior
knowledge.

TABLE II
FLOW AUTOTUNING RESULT WITH VARIOUS SEARCH ALGORITHMS

Algorithm Eff. clock period (ns) Utilization (%) Power (mW)

Baseline 17.78 20 52.3
PBT [33] 15.16 (−15%) 37 (46%) 14.3 (−73%)
HyperOpt [34] 14.94 (−16%) 40 (50%) 28.6 (−45%)
Ax [35] 16.04 (−10%) 26 (23%) 17.2 (−67%)
Optuna [36] 14.87 (−16%) 42 (52%) 27.8 (−47%)
Nevergrad [37] 15.23 (−14%) 18 (−11%) 19.4 (−63%)

function, as well as a reference EDA flow script. A parameter
configuration is defined as a generic JSON object, enabling
the AutoTuner to easily support various tools and flows. The
AutoTuner framework uses METRICS2.1 to capture PPA of
individual search trials. Users can explore various reward
functions that steer the flow autotuning to different PPA goals.
The proposed framework further supports various parameter
search algorithms, e.g., [33]–[37]. Users can select a search
algorithm based on their preference, or try multiple search
algorithms at the same time and pick the best result.

To illustrate use of the AutoTuner framework, we show pa-
rameter tuning of the OpenROAD tool flow with SKY130HD
using various search algorithms. The testcase is a public RISC-
V based design, ibex core [32], with baseline design result
obtained using a manually-tuned parameter set. We pick 11
design and tool parameters, and define the reward function
as a weighted sum of total power, effective clock period
(i.e., target clock period minus worst setup timing slack), and
total cell area. For fair comparison, all parameter tuning jobs
are given the same wall-time constraint (17 hours), rather
than the same total number of trials budget; this is because
each search algorithm has a different tradeoff of exploration
and exploitation. Table II shows the parameter tuning results
obtained with various search algorithms [33]–[37]. We observe
that most of the search algorithms are able to improve PPA
of the design outcome; for timing and area, Optuna gives the
best result, while PBT achieves the lowest power.

We note that the superiority of search algorithms may vary
by design, parameter sets, reward function, etc. Hence, it is
important to support multiple search algorithms, with a flexible
interface to easily define parameter sets and reward functions.
The benefit of this capability in AutoTuner has been confirmed



in multiple contexts such as that described above. We thus
envision that AutoTuner can serve as a general parameter
tuning framework for various RTL-to-GDS flows.

C. Calibration

As described in [7], RDF includes a calibrations reposi-
tory to support academic research in electrical analysis and
other design verification tasks. This repository provides a
collection of reference analysis and verification results in
open-source enablements. Over the past year, the collec-
tion of calibrations has expanded through contributions by
POSTECH, the University of Minnesota, IBM Research, and
UC San Diego. The new calibrations data are derived from
runs of the latest OpenROAD flow with three PDKs (Nan-
Gate45, SKY130HD, SKY130HS) and four designs (gcd,
aes cipher top, jpeg encoder, ibex core), using three different
floorplan utilization and placement density configurations. Fur-
thermore, we have introduced new scripts to introduce noise in
the open-sourced calibration data, to enable obfuscations. New
calibration data includes SPEF, 5-worst and endpoint slack,
and IR drop JSON files with anonymization through this noise
addition. The underlying anonymization scripts are available
in the repository [39].

Our noise introduction method defines a relative, i.e., mul-
tiplicative, perturbation noise n as a random variable drawn
from a normal distribution N(1, σn), where σn is a pre-
defined target standard deviation of noise. Thus, for exam-
ple, around 95% of the noise perturbations will fall within
[1− 2σn, 1+ 2σn]. A maximum allowed noise nmax prevents
too-large perturbations of original data; if the sampled value of
n exceeds nmax for a given noise perturbation, we regenerate
the perturbation until the constraint is satisfied. The values
of σn and nmax are set differently for PEX, STA, and IR
drop analyses. We summarize our noise introduction method
as follows.

• For PEX, we apply the open-source SPEF parser [38],
then multiply R and C values on each segment by n, and
update the total capacitance of each net accordingly.

• For timing, AAT and RAT are multiplied by n at each
pin in the timing graph. We then update the AAT and
RAT of timing endpoints accordingly.

• For IR drop, voltage values are multiplied by n.
For timing noise, we observe empirically that the accumu-

lated endpoint AATs generally have only a few ps of noise if
we set σn and nmax as 0.01 and 0.02, respectively. Thus, the
noise introduction does not appear to compromise the research
value of the calibration data.

IV. FUTURE DIRECTIONS

In this section, we outline potential research directions that
can take advantage of RDF-2021. We also discuss possible
extensions that are of particular interest for RDF’s future.

A. Intelligent Logic Synthesis

In the currently-released flow, the high-level components
of an input Verilog are converted into the interconnection of

bit-level primitives before the invocation of ABC logic opti-
mization. Such an early expansion leads to losing a design’s
high-level intent, subsequently restricting the domain of logic
optimizations to a bit-blasted netlist. A front-end availability of
a complete RTL capture of the Verilog would enable ABC to
integrate more “intelligence” into its reasoning. For example,
interpreting the arrays and memory components at the logic
reasoning level would open new algorithmic opportunities to
improve routing congestion and area-timing tradeoffs.

B. Logic Synthesis Acceleration Techniques

The logic synthesis methods in the currently-released flow
successfully adopt the SAT engine to repeatedly solve problem
instances cast in the propositional form. However, to further
increase the optimization returns, more expressive logic than
SAT is needed. The formulations that reason over first-order
logic with some additional theoretic constraints (e.g., bit-
vector arithmetic) – known as Satisfiability Modulo Theories
(SMT) – have exhibited significant success in recent years.
Their evolving engines broaden applications within the de-
sign automation flow. The currently deployed front-end driver
SymbiYosys [40] for Yosys-based formal verification hosts a
subset of open-source SMT solvers [41]–[43], and serves a
starting point for exploration in logic synthesis.

Furthermore, the recent release of the ABC logic synthesis
engine enables substantial runtime reductions through the
deep integration of the SAT solver with its core optimization
tasks. However, the popularization of large machine learning
accelerators continues to stress scalability demands on logic
optimization. The broader integration of GPUs into the fine-
grained transformations (e.g., “rewriting” and technology map-
ping) is one exploratory avenue to further shorten turnaround
times. Similarly, multi-core processors can help parallelize
compute-intensive synthesis tasks to analyze large portions of
a design simultaneously.

C. Modern and Complete Benchmarks for Physical Design

Session 4 of ISPD-2021, “Driving Research in Placement:
a Retrospective,” conducted a poll on advancing placement
research [45]. One of the questions was on the topic of
placement benchmarks. All 39 respondents agreed that more
benchmarks are needed to advance placement research; 54%
in particular pointed out that “realistic benchmarks reflecting
advanced technology nodes” are essential, and another 38%
emphasized the necessity of a complete benchmark suite
including timing and power characterization. Kahng [44] also
points out the urgency of more complete and modern bench-
marks to drive research on CAD optimizations toward next-
generation capability.

To this end, it is important to enable future-looking research
with (i) realistic, advanced standard-cell libraries as well as (ii)
modern designs. For (i), PROBE2.0 [46] provides a framework
to generate realistic cell libraries and collaterals (tech/cell
LEFs, Liberty, etc.) with different technology parameters, as
well as a platform for assessing the quality of the generated
libraries. Notably, PROBE2.0 can be used to provide realistic



standard-cell libraries that reflect advanced technology param-
eters. For (ii), Chisel-based, advanced hardware generators can
also help to provide modern designs, e.g., RISC-V cores [15]
and AI accelerators [16], which are readily usable with full
functionality for synthesis and physical design research.

D. Extensive Design and Flow Co-Tuning

The scope of the flow autotuning can be further extended
to cover a more complete design flow and process. As one
example, the ASSURE RTL obfuscation [11] performs various
RTL obfuscations to secure a given design; each obfuscation
technique has different impacts on PPA and security. We may
include the RTL obfuscation stage in the flow tuning to obtain
the best design outcome for PPA as well as security. Hardware
design with Chisel can also benefit from extension of the flow
autotuning to explore both the architectural design and flow
parameter solution spaces, making it possible to co-optimize
the design and implementation flow.

V. CONCLUSION

In this paper, we have described the latest release of the
IEEE CEDA DATC Robust Design Flow. With RDF-2021, we
can now take advantage of recent hardware generator designs
written in Chisel, ranging from RISC-V processors to deep-
learning accelerators, to assess and improve the academic
RTL-to-GDS flow using advanced hardware designs. Logic
locking with RTL obfuscation is another key addition to
the flow, which makes security-related research possible with
RDF-2021. DFT support with the recently-released open-
source Fault tool makes the flow even more complete, and the
RosettaStone framework built on OpenDB enables a robust
Bookshelf-LEF/DEF conversion with well-defined underlying
data model. All of these updates expand DATC RDF’s hori-
zons towards a more complete platform for hardware design
and flow research. We also present new initiatives toward com-
mon metrics standardization to support AI/ML applications,
along with a flow autotuning framework having a generic and
flexible interface to support various design flows and search
algorithms. The calibration dataset has also been expanded,
with an open-sourced noise introduction script. Finally, we
have noted several research challenges that can take advantage
of RDF-2021 and are related to the DATC RDF’s future.

VI. ACKNOWLEDGMENTS

This work was supported by IEEE Council on Electronic
Design Automation (CEDA). We thank Schuyler Eldridge,
Christian Pilato, Alan Mishchenko and Mohamed Shalan for
supporting tool integrations under RDF-2021 and for valuable
discussions.

REFERENCES

[1] IEEE CEDA Design Automation Technical Committee. https://
ieee-ceda.org/node/2591.

[2] J. Jung, I. H.-R. Jiang, G.-J. Nam, V. N. Kravets, L. Behjat, and Y.-L. Li,
“OpenDesign Flow Database: The infrastructure for VLSI design and
design automation research,” Proc. ICCAD, 2016.

[3] J. Jung, P.-Y. Lee, Y. Wu, N. K. Darav, I. H.-R. Jiang, V. N. Kravets,
L. Behjat, Y.-L. Li, and G.-J. Nam, “DATC RDF: Robust design flow
database,” Proc. ICCAD, 2017.

[4] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, V. N. Kravets, and
G.-J. Nam, “DATC RDF: An academic flow from logic synthesis to
detailed routing,” Proc. ICCAD, 2018.

[5] —, “DATC RDF: An open design flow from logic synthesis to detailed
routing,” Proc. Workshop on Open-Source EDA Technology, 2018.

[6] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li,
S.-T. Lin and M. Woo, “DATC RDF-2019: Towards a complete aca-
demic reference design flow,” Proc. ICCAD, 2019.

[7] —, “DATC RDF-2020: Strengthening the foundation for academic
research in IC physical design,” Proc. ICCAD, 2020.

[8] The OpenROAD Project. https://github.com/The-OpenROAD-Project
[9] Chisel/FIRRTL. https://www.chisel-lang.org

[10] DATC Robust Design Flow. https://github.com/ieee-ceda-datc/datc-rdf
[11] C. Pilato, A. B. Chowdhury, D. Sciuto, S. Garg and R. Karri, “ASSURE:

RTL locking against an untrusted foundry,” IEEE TVLSI, 2021.
[12] M. Abdelatty, M. Gaber and M. Shalan, “Fault: Open-source EDA’s

missing DFT toolchain,” IEEE Design & Test, 2021.
[13] DATC RDF-2020. https://github.com/ieee-ceda-datc/RDF-2020.git
[14] ABC: System for Sequential Logic Synthesis and Formal Verification.

https://github.com/berkeley-abc/abc
[15] Rocket Chip Generator. https://github.com/hrsatgithub/rocket-chip
[16] H. Genc et al., “Gemmini: Enabling systematic deep-learning architec-

ture evaluation via full-stack integration,” Proc. DAC, 2021.
[17] The Berkeley Out-of-Order RISC-V Processor. https://boom-core.org
[18] H.-T. Zhang, J.-H. R. Jiang, L. Amaru, A. Mishchenko, and R. Brayton,

“Deep integration of circuit simulator and SAT solver,” Proc. DAC, 2021.
[19] A. Mishchenko, R. Brayton, and S. Jang, “Global delay optimization

using structural choices,” Proc. FPGA, 2010.
[20] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,”

Proc. ICCAD, 2012.
[21] A. Mishchenko, R. Brayton, S. Jang, and V. N. Kravets, “Delay

optimization using SOP balancing,” Proc. ICCAD, 2011.
[22] LEF/DEF Reference 5.8. https://si2.org/oa-tools-utils-libs/
[23] T. Spyrou, “OpenDB, OpenROAD’s database,” Proc. Workshop on

Open-Source EDA Technology, 2019.
[24] A. B. Kahng, H. Lee and J. Li, “Horizontal benchmark extension for

improved assessment of physical CAD research,” Proc. GLSVLSI, 2014.
[25] riscv-mini. https://github.com/ucb-bar/riscv-mini
[26] J. Jung, A. B. Kahng, S. Kim, and R. Varadarajan, “METRICS2.1 and

flow tuning in the IEEE CEDA Robust Design Flow and OpenROAD,”
Proc. ICCAD, 2021.

[27] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik, and B. Thielges,
“METRICS: A system architecture for design process optimization,”
Proc. DAC, 2000.

[28] A. B. Kahng and S. Mantik, “A system for automatic recording and
prediction of design quality metrics,” Proc. ISQED, 2001.

[29] S. Hashemi, C. T. Ho, A. B. Kahng, H. Y. Liu and S. Reda, “METRICS
2.0: A machine-learning based optimization system for IC design,” Proc.
Workshop on Open-Source EDA Technology, 2018.

[30] Metrics4ML. https://github.com/ieee-ceda-datc/datc-rdf-Metrics4ML
[31] DATC RDF AutoTuner. https://github.com/ieee-ceda-datc/

datc-rdf-flow-tuner
[32] Ibex RISC-V Core. https://github.com/lowRISC/ibex.
[33] M. Jaderberg et al., “Population based training of neural networks,”

arXiv preprint 1711.09846, 2017.
[34] Hyperopt: Distributed Hyperparameter Optimization. https://github.com/

hyperopt/hyperopt
[35] Ax–Adaptive Experimentation Platform. https://ax.dev/
[36] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, “Optuna: A next-

generation hyperparameter optimization framework,” Proc. KDD, 2019.
[37] Nevergrad. https://gitHub.com/FacebookResearch/Nevergrad
[38] Parser-SPEF. https://github.com/OpenTimer/Parser-SPEF
[39] DATC RDF Calibrations. https://github.com/ieee-ceda-datc/

datc-rdf-calibrations
[40] SymbiYosys. https://github.com/YosysHQ/SymbiYosys
[41] The Yices SMT Solver. http://yices.csl.sri.com
[42] Z3 Theorem Prover. https://github.com/Z3Prover/z3
[43] Boolector. https://github.com/boolector/boolector
[44] A. B. Kahng, “Advancing placement,” Proc. ISPD, 2021.
[45] I. Bustany, J. Jung, P. H. Madden, N. Viswanathan, and S. Yang, “Still

benchmarking after all these years,” Proc. ISPD, 2021.
[46] C.-K. Cheng, A. B. Kahng, H. Kim, M. Kim, D. Lee, D. Park and M.

Woo, “PROBE2.0: A systematic framework for routability assessment
from technology to design in advanced nodes,” IEEE TCAD, 2021.


