
A Novel Framework for DTCO: Fast and Automatic Routability
Assessment with Machine Learning for Sub-3nm Technology Options

Chidi Chidambaram‡, Andrew B. Kahng†, Minsoo Kim†,∗, Giri Nallapati‡, S.C. Song‡ and Mingyu Woo†
†UC San Diego, La Jolla, CA, USA, ‡Qualcomm Technologies Inc., San Diego, CA, USA (*E-mail: mik226@ucsd.edu)

Abstract
We report, for the first time, block-level area scaling that is reversed

from cell-level scaling in cell height <150nm regime, using a machine
learning (ML)-assisted design-technology co-optimization (DTCO)
methodology to optimize block-level area accounting for routability.
>400 unique standard-cell architectures are studied, combining cell
height (CH, 80∼150nm), contacted poly pitch (CPP, 39∼57nm),
metal pitch (MP, 16∼30nm) and use/non-use of buried power rails
(BPR). Cell- and design-level routability assessments are performed
to obtain routability index (a.k.a. Kth) and utilization of designs. CH
<120nm with four available tracks increases block-level area due to
routing difficulty, showing diminishing return from further pushing of
ground rules. BPR improves block-level scaling with CH <120nm,
but benefit slows down with CH <100nm. A 1:2 gear ratio (MP:CPP)
improves block-level area compared to a 2:3 ratio. This DTCO flow
is automated, and the ML-based prediction expedites the process.

Introduction
Design-technology co-optimization (DTCO) is an essential, high-

value element of technology enablement. However, DTCO has proved
to be a very expensive process; large turnaround times and engineering
efforts are needed to develop standard-cell libraries and perform
comprehensive block implementation experiments. Turnaround time
of DTCO at advanced nodes is weeks to months with hundreds of
engineers. Meanwhile, standard cells have been optimized to aim
for minimum cell area (cell height) for decades. However, cell-level
area scaling does not necessarily result in block-level area scaling at
advanced nodes. As standard-cell area is scaled down, local routing
and pin accessibility of standard cells become significantly difficult.
Various scaling boosters, such as buried power rails (BPR) [7],
backside PDN and supervias, are proposed to improve power, per-
formance, area and cost (PPAC). Scaling boosters also have an impact
on routability. Due to significant routability impacts of standard-cell
architectures and scaling boosters, block-level area must be estimated
at an early stage of technology development.

Recently, DTCO methods for technology definition have been
proposed in many aspects. [1] proposes a machine learning (ML)-
based approach to find optimal combinations of design, technology
and other ingredients for high-performance CPU designs. However,
there is no automatic design enablement stage (i.e., standard-cell
library generation), and the methodology requires four to six weeks
of turnaround time. [8] proposes an ML-based modeling framework
for devices. The framework can generate compact models of novel
devices without prior knowledge. On the other hand, the work does
not consider block-level evaluations.

In this work, we apply the PROBE2.0 framework [2] to evaluate
various technology options and configurations for sub-3nm technology
nodes. We generate 448 unique standard-cell architectures, combining
cell height (CH, 80∼150nm), contacted poly pitch (CPP, 39∼57nm),
metal pitch (MP, 16∼30nm) and use/non-use of buried power rails
(BPR). We study achievable block-level area with automatically gen-
erated standard-cell libraries across four main axes: (i) available M2
routing tracks (RT) on standard cells, (ii) use of BPR, (iii) gear ratios
for MP to CPP, and (iv) different available M2 RT with same CH. We
also apply ML-assisted routability prediction to expedite assessment.

DTCO Framework and Configuration for Sub-3nm Nodes
In this section, we summarize PROBE2.0 [2], the framework used

for routability assessment in DTCO, along with the configurations for
sub-3nm standard-cell libraries that we study. As shown in Fig. 1(a),
the PROBE2.0 framework includes automatic standard-cell layout
generation anddesign enablement generation, and (cell- and design-
level) routability assessments. The basic idea of PROBE2.0 is to
measure inherent routability, represented by Kth metric, through
neighbor-swap operations applied to canonical placements. Fig. 2
illustrates the neighbor-swap operation. For a given cell, we randomly
choose a neighboring cell and swap the locations of the cell pair.
Neighbor-swaps progressively increase routing difficulty by “tangling”
the placement. We let K denote the number of neighbor-swap oper-
ations, normalized to the number of instances (standard-cells) in the
design. As K increases, the number of post-routing design rule check
violations (#DRCs) likely increases; we define Kth as the maximum
K for which #DRCs is less than a prescribed threshold. PROBE2.0
advances over the previous PROBE [5] with a satisfiability modulo
theory (SMT)-based “automatic” standard-cell layout generation [3][6]
and an ML-based Kth prediction, as illustrated in Fig. 1(b).

In this work, we generate nine standard-cell libraries to study
routability and achievable block-level cell density at sub-3nm tech-
nology nodes. Table II shows sets of parameters for the nine libraries,
as follows. (i) Lib{1,2,5,6} have 4 RT while Lib{3,4,7,8} have 5
RT. (ii) Lib{1,3,5,7,9} have BPR for power and ground pins while
Lib{2,4,6,8} have M1 pins. (iii) Lib{1,2,3,4} have a 1:2 ratio for MP
to CPP (20nm MP and 40nm CPP) and Lib{5,6,7,8} have a 2:3 ratio
for MP to CPP (26nm MP and 39nm CPP). (iv) Lib{3,9} have 120nm
CH but Lib3 has 5 RT and Lib9 has four tracks according to MP of
Lib{3,9}. Fig. 3 illustrates OAI21 X1 gates in the nine libraries.

Routability Assessment and Block-level Area Case Study
We perform cell- and design-level routability assessments to eval-

uate generated standard cells. Cell-level assessment is used to assess
inherent routability for each cell in a standard-cell library. Design-
level assessment, i.e., at the level of an entire place-and-route block,
is used to evaluate a set of standard cells in the same library. We
also perform case study of cell-level and achievable block-level area.
Cell height of a standard-cell library is linearly related to cell-level
area. However, cell-level area benefit does not always result in block-
level area benefit, due to routability effects. Our case study shows how
we can evaluate technology options with respect to block-level area
density using the PROBE2.0 framework.

Fig. 4 shows results for the cell-level routability assessments.
We study 15 standard cells with size X1, in each of four libraries
(Lib{1,2,3,4}). Results in Fig. 4(c) show that standard cells with M1
have better routability than those with BPR, and standard cells with
five tracks have better routability than those with four tracks. Further,
standard cells with larger numbers of input pins have worse routability
than those with smaller numbers of input pins. Figs. 4(a) and (b) show
#DRCs vs. K plots for NAND and OAI gates, respectively.

Fig. 5 shows results for design-level routability assessments with
four designs, AES, LDPC, JPEG and VGA. Fig. 5(b) shows Kth

metric per standard-cell library per design while Fig. 5(a) shows
#DRCs vs. K plots for the AES design. Fig. 6 shows results of our
achievable utilization study for AES and LDPC designs. We observe
strong positive correlation between Kth and achievable utilization.

In addition, we perform case study for block-level area benefits
across four main axes of technology options.

• Case 1: Available M2 routing tracks (RT) (Lib1 vs. Lib3).
• Case 2: Use of buried power rails (Lib1 vs. Lib2).
• Case 3: Gear ratios for MP to CPP (Lib1 vs. Lib5).
• Case 4: Different RT with the same CH (Lib3 vs. Lib9).
In Case 1, Lib3 has 20% larger cell area than Lib1. However,

based on the achievable utilization (0.71 and 0.92 for Lib1 and Lib3,
respectively), the achievable block-level area with Lib1 is 7% larger
than with Lib3. It is important to note that in this case, reduction of RT
brings less cell-level area, but the block-level area actually increases.
In Case 2, Lib2 has M1 PGpin while Lib1 has BPR, so that Lib2 also
has 20% larger cell area than Lib1. Applying the same calculation
as with Case 1, we obtain that the achievable area with Lib2 is 19%
greater than with Lib1. Thus, in Case 2, the cell-level area benefit
from use of BPR is reflected as a design-level area benefit. In Case 3,
Lib1 has a 1:2 gear ratio for MP to CPP and Lib5 has a 2:3 gear ratio.
Since Lib5 has 26nm MP, Lib5 has 30% more cell area than Lib1.
But, block-level area of Lib5 is 14% larger than that of Lib1 since
the respective Lib1 and Lib5 achievable utilizations are 0.71 and 0.62.
Last, in Case 4, Lib9 has the same CH (120nm) as Lib3, but MP of
Lib9 is 24nm instead of 20nm. Larger MP brings benefits of reduced
resistance, but Lib3 incurs 15% area penalty at design-level. Table III
summarizes our case study. As shown in Table III and Fig. 6(b), block-
level area no longer changes linearly with CH at advanced nodes. Even
when CH increases, block-level area can decrease.

Machine Learning (ML)-Assisted Routability Assessment
PROBE2.0 [2] uses ML-based Kth prediction to reduce the number

of place-and-route (P&R) implementation runs needed for accurate
routability assessment. However, large training sets (e.g., 80% of
libraries) are used. In this work, we apply Latin hypercube sampling
(LHS) [4] to select an asymptotically more efficient training set for
ML-based Kth prediction. In a case study, we create 448 standard-cell
libraries as follows: (i) CPP = 39, 42, 45, 48, 51, 54, 57nm; (ii) MP =
16, 18, 20, 22, 24, 26, 28, 30nm for M1 and M2; (iii) 4 and 5 RT; (iv)
BPR and M1 PGpin; and (v) M3 pitch:CPP ratios of 1:2 and 2:3. We
choose training sets of 64, 128 and 256 data points (i.e., standard-cell
library and Kth) by LHS and use all remaining (resp. 384, 320, 192)
data points for model testing. Fig. 7 shows comparisons for golden



Kth values (which are extracted from P&R experiments) and predicted
Kth values from our ML-based prediction. Figs. 7(a) and (b) show
the golden and predicted Kth comparisons when 128 and 320 data
points are used for training and testing, respectively. Fig. 7(c) shows
the error distribution for the testing dataset. For the three LHS-based
training set sizes (64, 128, 256) we obtain 3.07, 3.00, 2.90 average
Kth prediction error in testing.

Conclusion
A machine learning (ML)-assisted design-technology co-

optimization (DTCO) framework [2] is applied to study sub-3nm node
cell and block-level DTCO. We perform cell- and design (block)-level
routability assessments for >400 unique standard-cell architectures
by varying technology options along axes of CPP, MP, RT, and
use/non-use of BPR. The regime of CH <120nm with four available
tracks shows increasing block-level area due to routing difficulty,
indicating diminishing return on efforts to push ground rules. BPR
improves block-level scaling with CH <120nm, but scaling benefits
slow down with CH <100nm. A 1:2 gear ratio (MP:CPP) improves
block-level area compared to a 2:3 ratio. The proposed DTCO method
will extend to evaluate power and performance along with the cell-
and block-level area density assessment presented in this study.

Acknowledgments
We thank Chung-Kuan Cheng, Hayoung Kim, Dongwon Park and

Daeyeal Lee for their collaboration in the work of [2].
REFERENCES

[1] A. Ceyhan et al., IEEE IEDM, 2019, pp. 36.6.1-36.6.4.
[2] C.-K. Cheng et al., IEEE Trans. on CAD, In revision. https://bit.ly/3pVX9sB
[3] C.-K. Cheng et al., Proc. ISCAS, 2020, doi: 10.1109/ISCAS45731.2020.9180592.
[4] M. D. McKay et al., Technometrics 21(2), pp. 239–245, doi:10.2307/1268522.
[5] A. Kahng et al., IEEE Trans. on CAD 37(7) (2018), pp. 1459-1472.
[6] D. Lee et al., IEEE Trans. on CAD, doi: 10.1109/TCAD.2020.3037885.
[7] D. Prasad et al., Proc. IEDM, 2019, pp. 19.1.1-19.1.4.
[8] Z. Zhang et al., SNW, 2019, doi: 10.23919/SNW.2019.8782897.
[9] H2O AutoML. https://www.h2o.ai

Fig. 1: (a) Overall flow of PROBE2.0 [2] and (b) machine learning-based Kth
prediction.

Fig. 2: An example of neighbor-swap operation. The blue-colored cell is
swapped with one of the red-colored neighboring cells.

Fig. 3: Standard-cell layout of the nine standard-cell libraries in Table II.
OAI21 X1 of Lib1 to Lib9 are illustrated in (a) to (i), respectively. We show
a LEF view (cell boundary and pin) of layout of OAI21 X1 per library.

TABLE I: Technology and design parameters in this work. We use all the
parameter types defined in [2].

Param. Type Name Option Name Option

Technology
Fin 2, 3 PGpin BPR, M1
CPP 39, 40 CH 5, 6, 7
MP 20, 24, 26 MPO 3
RT 4, 5 DR EUV-Loose

Design
BEOL 13M Tool Tool A
PDN Sparce Util 0.6

Design Knight’s tour, AES, LDPC, JPEG, VGA

TABLE II: Technology parameters for the nine standard-cell libraries which
we study in this work.

Name Fin CPP MP RT PGpin CH (T) CH (nm)
Lib1 2 40 20 4 BPR 5T 100
Lib2 2 40 20 4 M1 6T 120
Lib3 3 40 20 5 BPR 6T 120
Lib4 3 40 20 5 M1 7T 140
Lib5 2 39 26 4 BPR 5T 130
Lib6 2 39 26 4 M1 6T 156
Lib7 3 39 26 5 BPR 6T 156
Lib8 3 39 26 5 M1 7T 182
Lib9 2 40 24 4 BPR 5T 120

Fig. 4: Results for cell-level routability assessments. (a) #DRC vs. Kth plot
for NAND2 X1 and NAND3 X1. (b) #DRC vs. Kth plot for OAI21 X1 and
OAI22 X1. (c) Kth values for 15 cell types per four standard-cell libraries.

Fig. 5: Design-level routability assessment for the nine standard-cell libraries.
(a) #DRC vs. Kth plot for AES design. (b) Kth values for AES, JPEG and
VGA designs. We use 0.6 Util for AES, JPEG and VGA and 0.15 Util for
LDPC design.

Fig. 6: Achievable density and block-area case study. (a) Plot for Kth vs.
achievable utilization for AES and LDPC designs. (b) Achievable block-area
study with the nine libraries and AES design. The arrows show block-level
area and cell height differences in the case study, as also shown in Table III.

TABLE III: Results for achievable block-level area case study, expressed as
overhead of Lib B relative to Lib A, i.e., (AreaB −AreaA)/AreaA×100%

Case Lib A Lib B Cell-Level Block-Level
Name CH Name CH Area Overhead Area Overhead

Case 1 Lib1 100nm Lib3 120nm 20% -7%
Case 2 Lib1 100nm Lib2 120nm 20% 19%
Case 3 Lib1 100nm Lib5 130nm 30% 14%
Case 4 Lib3 100nm Lib9 120nm 20% 15%

(a)

AE=2.91

(b)

AE=3.00

(c)
Fig. 7: Comparison between golden Kth (extracted from P&R experiments)
and predicted Kth from the best model chosen by AutoML [9], (i.e., Gener-
alizedLinearModel (GLM)). (a) Results for 128 training data sampled by LHS.
(b) Results for 320 testing data. (c) Error distribution on the testing dataset
with kernel density estimation (KDE) plot.


