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Abstract—The OpenROAD project develops an open-source
RTL-to-GDS tool that generates manufacturable layout from a
given hardware description – in 24 hours, with no human in
the loop. The project is part of the IDEA program within the
DARPA ERI. By reducing today’s cost, expertise and schedule
barriers to hardware design, OpenROAD enables access to
ASIC implementation, thus unleashing hardware innovation. This
paper describes the status and outlook for OpenROAD as of
its v1.0 release. The OpenROAD tool is integrated around an
open-source, commercial-quality database and timing engine. A
SkyWater 130nm tapeout was made by efabless.com in May
2020. DRC-clean layout generation in GLOBALFOUNDRIES
12nm was achieved in July 2020. OpenROAD’s futures include
(i) serving as a foundation for academic research and teaching;
(ii) seeding the transition of open-source EDA into government
and commercial usage; and (iii) driving new machine learning
research that further accelerates EDA and hardware innovation.
With permissively open-sourced code, and no restrictions on
sharing of scripts, OpenROAD enables transparency and repro-
ducibility of hardware and EDA research, thus accelerating the
pace of discovery.

I. INTRODUCTION

The OpenROAD project tackles a crisis which has been
decades in the making: Hardware design, and system in-
novation in hardware, are simply too difficult. Commercial
electronic design automation (EDA) tools have become ex-
tremely complex as they evolve to meet the demands of design
organizations who create products in leading-edge technology
nodes and whose goal is to hyper optimize their designs with
significant manual effort. Today, EDA tool and design process
outcomes are difficult to predict, and expert tool users are
needed. This raises barriers of cost, expertise, and risk to
hardware innovation.

One path forward is to automation, with “self-driving”
design tools and flows. The OpenROAD project https://
theopenroadproject.org is part of the DARPA IDEA program,
which was launched in June 2018 within the U.S. DARPA
Electronics Resurgence Initiative. The IDEA program broadly
aims for Hardware Compilers 2.0 – automated generation of
manufacturable layout in 24 hours, with no human in the
loop, and eventually with no loss of quality of results in
Power, Performance or Area. IDEA shifts the focus from tools
that squeeze out every last picosecond or microwatt from the
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manufacturing technology, to “self-driving” tools that require
neither expertise nor complex manually derived tool settings
to tape out a working chip.

OpenROAD’s scope is digital IC design: the tool takes Ver-
ilog hardware description in, and delivers a merged tapeout-
ready GDSII layout database. As described in [1], achieving
24-hour automation requires our project to advance three
foundational base technologies: extreme partitioning to de-
compose the design problem into bite-sized chunks; intelligent
orchestration of distributed and parallel optimization using
cloud resources; and machine learning to model and predict
what will happen when a given tool is run on a given design
input with a given target. Freedoms from choice are also
expected in a no-humans tool, just as a self-driving car will
eventually have no steering wheel.

II. OPENROAD TODAY
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Fig. 1. OpenROAD flow, built around the integrated OpenROAD tool.

Figure 1 depicts OpenROAD’s flow, which is wrapped
around our v1.0 integrated tool (aka the “OpenROAD app”).
The tool has a modern integrated architecture, industry-
strength database and timing analysis, and Tcl and Python
scripting interfaces for users. In Spring 2020, a commercial
user, Efabless, used OpenROAD for tapeouts of the “striVe”
family of SOC designs in the SkyWater 130nm [7] technology.
In Summer 2020, OpenROAD achieved a set of “proof points”,
including a 12nm SOC tape-in, for automated generation of
manufacturable layout (i.e., passing all physical verification
checks, and electrical and timing correctness checks) in TSMC
65LP and GLOBALFOUNDRIES 12LP technologies. Figure



2 shows a manufacturable layout produced by OpenROAD for
a single-core version of the University of Washington Black-
Parrot SOC [15], implemented in GLOBALFOUNDRIES
12LP using Arm 9-track cells and SRAMs, and Invecas IOs.

Fig. 2. OpenROAD automated layout of a single-core version of the
BlackParrot SOC, in GF12LP technology.

III. DEVELOPMENT APPROACH: BUILT TO LAST

The OpenROAD team is working to build a platform for
research and innovation which can stand the test of time. This
includes having a strong software development methodology
and testing platform. The team is comprised of student re-
searchers and EDA industry veterans, which allows our effort
to distinguish and balance between prototyping for innovation
and robust feature development. OpenROAD has a continuous
integration framework using Jenkins and GitHub hooks to
ensure that no code which breaks the tests can be integrated.
Figure 3 shows an example of a report from our public CI.

Fig. 3. Public CI snapshot.

Some organizations will entrust the OpenROAD team with
confidential data. The team is set up to keep this data secure
and private. This secure data is also used to test the system and
ensure that the software stays stable for our critical partners
with confidential data. Figure 4 shows a snapshot of our secure
CI. We do not provide external contributors access to this
secure CI since the results are confidential and must remain
secure as well. However, infrequent failures found from these
contributions are caught by periodic secure testing and are

Fig. 4. Secure CI snapshot.

resolved by internal developers who have both the needed
NDA access and the required security training.

OpenROAD’s continuous integration-based software devel-
opment environment allows for parallel development using
many branches and repository forks. Our goal is to develop a
community of contributors: this has started with members of
the project, and is expanding to others who are interested in
developing the core technology, as well as to users who are
interested in completing designs and adding new methodolo-
gies to the flow. Figure 5 shows the security protocols and
mechanisms that allow OpenROAD to manage development
and data – both secure and public – in its growing community.

Key:

Public Repo
hosted on GitHub

Private Repo
hosted on GitLab

Private 
Module

Private 
OpenROAD mirror

main branch from public repo is 
automatically mirrored onto

the main branch on private repo.

Private 
Integration
Repo

submodule

submodule

  UCSD-xxxx/
      OpenROADUpstream “root” repository

UCSD “fork” 

Pull requests are sent from 
branch XXX on UCSD-xxxx/OpenROAD 
to
branch main on 
The-OpenROAD-Project/OpenROAD

Private 
OpenROAD mirror

Private 
Module

branch AAA on private OpenROAD mirror
  is pushed (with manual approval) into
branch AAA on public 
UCSD-xxxx/OpenROAD 

Private 
Integration
Repo

submodule

submodule

Private 
Data Center or Cloud

Private
Developer’s workstation

Only pathway
for data egress

 xxxxxx/
      OpenROAD

External Developer’s “fork” 

Pull requests are sent from 
branch XXX on xxxx/OpenROAD 
to
branch main on 
The-OpenROAD-Project/OpenROAD

Public 
GitHub or Cloud

Either, 
access to public repo 

or 
all access to public GitHub

is explicitly blocked

The-OpenROAD-Project/
    OpenROAD

Fig. 5. Secure community interaction flow.

IV. DESIGN SUCCESSES AND COMMUNITY ENGAGEMENT

As a project, OpenROAD is strongly invested in supporting
both industry and academic users, across a broad range of
commercial and research design needs. Our overarching goal
is to support and engage the community to grow an ecosystem.
To this end, the project has organized and sponsored prizes for
academic contests (e.g., ICCAD-2019, TAU-2020), organized
new workshops and meetings (e.g., the Workshop on Open-
Source EDA Technology (WOSET)), and presented tutorials



at numerous meetings (e.g., VLSI Design-2020, DAC-2020).
A special session at ICCAD-2020, “Taking Open-Source EDA
to the Next Level: From Research to Production IC Design”,
focused on OpenROAD and its partnerships [16] [3] [7] [9].
OpenROAD also engages with professional societies and con-
sortia on many fronts. For example, OpenROAD is a member
of the CHIPS Alliance [23], and participates in workshops of
that organization.
Efabless OpenLANE and Community Growth. In the spirit
of open source, Efabless has extended the OpenROAD appli-
cation and flow in its design platform called OpenLANE [7].
OpenLANE is focused on the SKY130 130nm open-source
process and PDK from SkyWater Technology Foundry [22].
Efabless has built a community around OpenLANE while
working closely with the OpenROAD team. This work has
resulted in good extensions to OpenROAD as well as a number
of design tapeouts. Figure 6 shows the projects in the recent
Google-Efabless SKY130 shuttle (multi-project wafer).

Fig. 6. Recent Google-Efabless SKY130 shuttle with more than 40 designs
completed with OpenROAD tooling and Efabless OpenLANE extensions.

The success of OpenLANE and the Fall 2020 release of
OpenROAD’s integrated v1.0 tool (see Section V below) are
well-correlated with growth of OpenROAD’s user community.
Figure 7 shows recent visitors and downloads for OpenROAD,
which can be seen as indicators of community engagement.
ASAP7: An Open-Source, Advanced-Node Research
PDK. To complement the SKY130 open-source manufac-
turable PDK, OpenROAD has also open-sourced the ASAP7
advanced-node research PDK from Arizona State University
[6]. This is a highly realistic PDK with design rules that reflect
advanced patterning technologies and scaling boosters (single
diffusion break, contact-over-active-gate, dense crossovers,
etc.). Cell libraries are released in multiple threshold voltage

Fig. 7. Community engagement as seen in visitors and downloads.

flavors and with full design enablement. The development
roadmap includes memories (SRAM, register files, ROMs,
CAMs and TCAMs) and an ASAP5 5nm PDK based on
horizontal nanowire transistors. Figure 8 shows example D-
latch layouts in the ASAP7 7.5-track and 6-track cell libraries.

Fig. 8. D-latch layouts in ASAP7. Above: 7.5-track layout. Below: 6-track
layout.

OpenROAD in the IEEE CEDA DATC “Robust Design
Flow” (RDF). Since 2016, the IEEE Council on Electronic
Design Automation (CEDA) has, via its Design Automation
Technical Committee (DATC), advanced the Robust Design
Flow (RDF) initiative. Among other objectives, the RDF aims
to “facilitate research on flow-scale methodology”; “provide an
academic reference flow from logic synthesis to detailed rout-
ing”; and “connect academic research to industry practitioners
and designs” [4]. OpenROAD has been a key element of the
RDF initiative since 2019. The RDF-2020 release includes
the OpenROAD integrated app, as well as new analysis
calibrations that drive progress on timing, power, reliability
and other analyses based on OpenROAD results [5].



V. RECENT ADVANCES

OpenROAD v1.0 is the combined result of many technical
and software engineering advances. On the algorithmic end,
advances range from more robust sink clustering in clock
tree synthesis, to advanced-node design rule handling in the
detailed router, to the addition of antenna rule checking and
fixing. A parasitic extraction tool has been added, and SOC-
level planning for wire-bonded and flip-chip packaging is also
new in OpenROAD today. Software methodology advances in-
clude the robust (Jenkins-based) continuous integration noted
earlier, and improved code coverage in tests. Especially note-
worthy is the completion of tight tool integration onto a
single shared data structure. Last, updated logging and metrics
infrastructure have enabled machine learning and quality-of-
results improvements (power, performance and area – or PPA)
to gain traction. This section briefly reviews several highlights.
Tool Integration. The integrated v1.0 OpenROAD tool real-
izes the incremental shared netlist architecture that is common
to all commercial place-and-route tools since the early 2000s.
In Figure 9, the Shared Netlist or Abstract Network Adapter
enables incremental netlist modification; it communicates with
logic synthesis, place-and-route, clock tree synthesis, post-
place optimization, and the static timing engine. The arrows in
the figure show how, e.g., if synthesis changes the netlist, there
is a callback to place-and-route; if place-and-route updates a
cell’s location or the routing, this is updated via the Shared
Physical or Data Model Adapter, which handles physical
information. The timer also listens for a netlist change, and
to update delays and slews, the delay calculation must use
the updated location and routing information. This architecture
enables thousands of sizing or incremental moves per second,
and is the heart of optimization in a modern RTL-to-GDS tool.

Fig. 9. Incremental shared netlist structure in OpenDB, showing support of
incremental optimization via callbacks.

Parasitic Extraction. OpenROAD’s OpenRCX is a highly
scalable, 2.5D extractor optimized for the digital IC design
context. It is a product of Athena Design Systems, a mid-
2000s era EDA startup whose code base was made avail-
able for open-sourcing in late 2019. OpenRCX has been
integrated into OpenROAD and validated on 14nm, 28nm,
65nm and 130nm foundry technologies. Figure 10 shows plots
from a jpeg encoder block implemented using OpenROAD in
the GF12LP process with an Arm 9-track cell library. The
upper part of the figure shows correlations of capacitance
and resistance values from OpenRCX versus those reported

by a commercial extraction tool. The bottom part of the
figure shows endpoint timing slack correlations between Open-
ROAD’s analysis flow (OpenRCX plus OpenSTA), versus an
analogous commercial flow. Note that OpenROAD’s analysis
stays on the pessimistic side of the 45-degree line, as desired.

Fig. 10. Correlation of OpenRCX and OpenSTA with commercial parasitic
extraction and timing analysis: jpeg encoder in GF12LP technology.

Fig. 11. SOC “footprint” definition and signal mapping in ICeWall.

Pad Ring and Footprint Creation. OpenROAD has recently
added a capability for pad ring and “footprint” creation in
an SOC planning tool, ICeWall. A footprint is a pad ring
and I/O definition that is reusable across many designs, but
that is technology-specific. To facilitate complete automation
with less detailed technology-specific knowledge, in each
technology a set of footprints will be made available for usage
in an automated flow. As shown in Figure 11, ICeWall can take
a previous design’s layout .def, and extract the footprint from
it – or, ICeWall can be used to specify a new footprint from
scratch. Users who want full automation will be restricted to
the set of predefined footprints. Creation of a new footprint
necessarily requires user input and interaction. Furthermore,
the I/O definition is often passed down from the board level.



ICeWall has a signal mapping file which can accept this
ordering and create a placed pad ring. Figure 11 illustrates
the ICeWall workflow.

GUI. The development of OpenROAD seeks to achieve critical
mass, critical quality, maximum velocity and maximum open-
ness – while attracting a developer community and serving the
needs of early-adopter users. This explains why our project,
even though it targets 24-hour, no-human-in-the-loop automa-
tion, has a GUI. The OpenROAD GUI serves the dual purpose
of allowing users to investigate their designs, and developers
of the OpenROAD application to investigate their algorithms.
Figure 12 shows several images from the OpenROAD GUI.

Fig. 12. Images from OpenROAD’s GUI for designs in GF12LP technology.
Clockwise from top-left: (i) redistribution layer routing showing 45-degree
geometries; (ii) OpenROAD-generated BEOL fill showing OPC and non-OPC
fill shapes; (iii) post-global route congestion map for jpeg testcase; (iv) clock
tree of single-core BlackParrot testcase.

Metrics Collection and Machine Learning Enablement.
Machine learning is a key part of OpenROAD’s envisioned no-
humans, self-driving RTL-to-GDS capability [10]. To support
data collection and data-enabled machine learning, standards
and infrastructure are needed [8] [13]. Metrics of the design
and the design process must have standard nomenclature and
semantics, with a well-defined underlying data model. To this
end, OpenROAD provides a working open-source database
(OpenDB), data model and implementation. All tools in Open-
ROAD use a common spdlog-based messaging package, with
consistent message types and tool namespaces.1

Figure 13 (left) illustrates metrics naming in the current
OpenROAD, based on universes of flow stage names, nouns
at run-level and tool metric-level, and modifiers. The figure
shows how run metrics or tool metrics would have canonical

1Standardized metrics collection in OpenROAD flow encompasses both
Design metrics (e.g., #buffers, total wirelength) and Run metrics (e.g., CPU
time, peak memory usage). This enables not only learning-enabled automation,
but continuous improvement of the tool’s quality of results (QoR) as well.
Among the purposes that are served by metrics collection: (i) dashboards,
and digests of nightly regression runs; (ii) QoR evaluation of incremental
functional changes; (iii) validations before any code is merged to the master
branch in GitHub; and (iv) large-scale data collection and analysis.

names. For example, the blue path shows the name for post-
global placement estimated wirelength. (The metrics can be
tied to corners, runs, designs, etc.) In Figure 13 (right), logging
in the tool is shown above, and metrics extracted and recorded
using Python and JSON are shown below. Using such infras-
tructure, the research community can collaboratively amass
data for machine learning, draw interest via Kaggle contests,
etc.

Fig. 13. OpenROAD metrics naming and extraction from logging.

Availability of metrics infrastructure enables analytics and
visualizations that help push the tool’s quality of results
forward. Using Google Cloud or other compute infrastructure,
thousands of results can be gathered in a matter of hours.
Figure 14 shows data from a study of the ibex 32-bit RISC-
V core in SKY130HS technology. The figure shows that the
default runscript in the SKY130HS platform stacks up well
against many possible settings, i.e., the yellow circle has good
slack and area properties. The colorings show how post-CTS
slack (y-axis) is an early indicator of router failure. The use of
high-volume experiments to gain insight allows us to ratchet
up the baseline results for our testcases.2

Fig. 14. Visualization of constraint and flow settings for the ibex core
in SKY130HS, confirming quality of results from the default OpenROAD
runscript.

VI. LOOKING FORWARD

Over its two-year existence, the OpenROAD project has
sought to meet many objectives [12]. (1) It is a four-year
basic research project, part of the U.S. DARPA Electronics
Resurgence Initiative. (2) It is an RTL-to-GDS EDA tool with
external users who use it for new design tapeouts. (3) It is

2The single-core BlackParrot layout shown in Figure 2 represents a 36%
faster implementation, with 12% less wirelength, compared to what the tool
could deliver a few months earlier.



a seed for open-source EDA innovation and research [5] that
must reach critical mass and critical quality. And (4) it aligns
with interests of a large and active open-source hardware
community. Of necessity, OpenROAD has remained agile and
flexible, e.g., balancing “production quality” and advanced-
node capability against the academic research setting, or
balancing no-humans automation against users’ requests for
more controllability.
Focus on Users in Government and the DIB. Users of EDA
technology in the U.S. Government and the defense industrial
base (DIB) have in various ways been underserved by tradi-
tional EDA companies. The EDA business model (licensing,
pricing, support, etc.) and structure (three dominant vendors)
places a focus on large contracts for a small number of
worldwide enterprise customers. Smaller design organizations,
and teams with niche design requirements (reliability, security,
heterogeneous integration, novel device and circuit fabrics, as
well as extreme ease of tool bringup) are perfect users of
OpenROAD. The code is open-source and can be modified
as needed. There are no up-front licensing costs. A number
of community members can be engaged to provide support,
modifications or enhancements to the tool. There is a strong
analogy with Linux and its open-source nature which allows
the usage of OpenROAD to have flexibility in tandem with
robust support for real-world business applications.

As described above, there is currently an open-source
manufacturable PDK for the SkyWater 130nm process node.
Dozens of tapeouts have been made on this platform using
OpenROAD. As the open-source EDA effort evolves, it is
only natural that foundries will open-source their PDKs in
order to lower the barrier for experimentation by potential
customers. OpenROAD supports multiple closed-source com-
mercial PDKs as well. It is exciting to see this development
taking place and we expect increasing numbers of PDKs to
become open source in the future. The ability to download,
design, and manufacture without signing IP agreements or
explain design objectives to vendors is an important benefit,
especially when secrecy is needed.
Key Directions. Looking ahead, two directions are particularly
critical to OpenROAD. First, we feel that differentiating, high-
value use cases for open-source EDA must be identified. For
example, OpenROAD’s low adoption cost and cloud scalability
may match well with the long-standing challenge of early
system/architecture design space exploration [12]. Second, a
sustainable open-source EDA based ecosystem must be created
that serves not only IC and system companies, but smaller
design teams (e.g., in government and in the DIB) whose
needs are not presently well-served, along with open-source
hardware and software communities, as well. The interests
of EDA researchers and professional societies, policy-making
bodies and consortia, and commercial EDA vendors must
also be considered. In his recent 2020 DARPA ERI Summit
plenary talk [14], the IDEA program manager, Mr. Serge Leef,
posed the question: “Can DARPA improve access [to state-
of-the-art EDA tools] and fuel advances through open-source
EDA technologies?” Finding answers to this question will be
important to OpenROAD even as we now pursue “Phase 2”
of our project.
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