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ABSTRACT

Placement is central to IC physical design: it determines spatial
embedding, and hence parasitics and performance. From coarse-
to fine-grain, placement is conjointly optimized with logic, per-
formance, clock and power distribution, routability and manufac-
turability. This paper gives some personal thoughts on futures for
placement research in IC physical design. Revisiting placement as
optimization prompts a new look at placement requirements, opti-
mization quality, and scalability with resources. Placement must
also evolve to meet a growing need for co-optimizations and for co-
operation with other design steps. “New” challenges will naturally
arise from scaling, both at the end of the 2D scaling roadmap and
in the context of future 2.5D/3D/4D integrations. And, the nexus
of machine learning and placement optimization will continue to
be an area of intense focus for research and practice. In general,
placement research is likely to see more flow-scale optimization
contexts, open source, benchmarking of progress toward optimality,
and attention to translations into real-world practice.
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1 INTRODUCTION

Placement is at the heart of physical implementation of hardware
systems because it defines spatial embedding. Figure 1 (left) shows
the convergence of physical implementation through traditional
flow stages: design syntheses converge logic and spatial embedding,
which enables estimates of parasitics, coupling, timing and power
to correspondingly converge in design analyses and verifications.
Optimization of the design outcome is both a backdrop and an over-
arching goal: the IC design process itself is a complex optimization
that must be performed within a given “box” of resources (servers,
licenses, people, weeks of schedule).

Placement is conjointly optimized with logic, performance, clock
and power distribution, routability, and manufacturability. At a
next level of detail, there are many interleaved steps. Just a few ex-
amples: buffering and sizing (for slack, slew and cap load), multi-bit
flop clustering, useful skew, hold padding, low-power (clock and
power gating, voltage islands, etc.), and pin access and sub-metal
improvements. The co-optimization of placement with logic syn-
thesis and timing has led to numerous placement-based synthesis
and timing-driven layout techniques seen in today’s physical syn-
thesis [5]. The co-optimization of placement with routability and
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Figure 1: Left: convergence of spatial embedding, parasitics
and performance in physical implementation. Right: The in-
terlock of synthesis, placement, routing and optimization.
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Figure 2: A history of placement methods, from [79].

manufacturability, most recently in light of pin access and design
rule checks that the router alone cannot resolve, has led to tighter
connections between placement and routing engines in modern
place-and-route (P&R) tools. Figure 1 (right) shows the complete
graph of interlocks between synthesis, optimization, placement and
routing, with stronger links depicted by wider traces. [Challenge
1: Improve understanding of the question, “Who’s on top?”]!

Scope, history and key challenges for VLSI placement research
are superbly summarized in “Progress and Challenges in VLSI Place-
ment Research” [79] [78] by Markov, Hu and Kim. [79] reviews 50
years of progress in the field, according to a taxonomy of wirelength-
driven placement, mixed-size placement, routability-driven place-
ment, timing- and power-driven placement, and physical synthesis
integration. Landmark works across several eras are visualized in
Figure 2, reproduced from [79]. Tables 1 through 7 of [79] summa-
rize literatures for legalization and detailed placement; mixed-size
placement; congestion estimation and routability-driven placement;
timing- and power-driven placement; and placement for physical
synthesis. The paper also discusses benchmarking and open chal-
lenges for the field.

In other words, who will ultimately need to “drive”? ([11] suggested that routing
would ultimately need to drive.) The left part of the figure reflects orthogonaliza-
tion/separation of concerns and localized “A-B-C” loops. The right part reflects a
“co-equals” power-sharing perspective that begins with unified and common incre-
mental syntheses, analyses, and underlying data structures. (The trace widths also
reflect gradual unifications over the past 25+ years.) There is a long-standing tension
between realities of R&D organization and product architecture in commercial EDA
(left) and “philosophy” (right).
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The remainder of this paper offers some personal thoughts on
future directions and challenges for placement research. The dis-
cussion broadly buckets these directions and challenges into Op-
timization; Co-Optimization and Co-Operation; “New” Problems;
Learning and Placement; and Support for Placement Research. Sec-
tion 7 comments on how the review of [79] might be updated, and
gives other conclusions as well.

2 PLACEMENT OPTIMIZATION

Future placement research will see renewed attention to placement
as optimization that lives in a given “box” of resources. Optimization
within resource limits is central to wringing design quality and
value out of a given design enablement. And, because placement
optimization determines spatial embedding, it is central to (accurate)
design space exploration that will increase efficiency of the design
process without leaving product quality on the table.

There are two basic, intertwined needs. (i) First, design process ef-
ficiency must be scaled by “seeing ahead”, i.e., predicting outcomes
of current and downstream design optimization steps. Inability to
predict means guardbanding or divergence, both of which are unde-
sirable.? In particular, we need new placement optimizations that
are more predictable. (ii) Second, placement research must reexam-
ine “where corners were cut” in the deployment of optimization
methods. The goal is to recover solution suboptimality that has
been left on the table over the course of decades, as the EDA in-
dustry and research were driven by turnaround time requirements
(and, as IC designs and EDA were backstopped by process scaling).
Going forward, any solutions to (i) and (ii) will require exploitation
of modern (cloud, multi-core, GPU) compute substrates as well as
application of machine learning.

2.1 Predictability and Stability

Predictors within the physical implementation flow (see also Sec-
tion 6 below) are useful for identifying and terminating “doomed”
floorplans and placements. Other predictors shift the cost-accuracy
tradeoff of analysis, which tightens guardbands in optimization. A
number of “high-value targets” for prediction [52] center around
placement and the need for convergent co-optimizations. These
include (i) floorplan quality evaluation, (ii) power delivery network
synthesis that maximizes performance while maintaining routabil-
ity, and (iii) prediction of a block’s PPA change when the floorplan
(shape, 10 placement) context changes.? These targets remain open
due to a confounding aspect of today’s placement and other physi-
cal design optimizations: predictability of outcomes decreases with
increased solution quality. In other words, heuristics and tools be-
come noisy and chaotic when they are pushed to their limits [53].4
This manifests as “dancing floorplans” or other placement instabil-
ity that is not well-received by tool users. Prediction is even more
challenging because structurally dissimilar solutions can have sim-
ilar quality metrics such as total wirelength or total negative slack,
but which paths are critical or which layout regions are congested
can differ greatly between these solutions.

2Today’s flows and methodologies do not tolerate big loops (e.g., “redo the floorplan” or
“redo the clock tree”). Because optimism risks loops, in-built estimates and predictions
of parasitics, timing, congestion, etc. already have significant pessimism. Hard “max”
criteria (fixed-die routability, path timing) also induce pessimism.

3Figure 1 (left) may be recast in the light of accuracy versus information. More in-
formation about the design is known further along in the flow. Predictions offer the
potential of shifting the accuracy vs. information curve.

4Notions of chaos have been called out in [51] [31], and implications of a “noise floor”
on prediction accuracy are noted in [18].

Due to the above, it is difficult to make actionable predictions in
today’s regime of optimizers being pushed to their limits, and users
being unwilling to give up even 1% of solution quality. The presence
of black-box downstream steps such as CTS or routing only adds
to the difficulty. [Challenge 2: Develop more predictable placement
optimization methods.] Formal criteria for stability or predictability
must be developed, as well. [Challenge 3: Orchestrate placement
methods on modern (parallel, distributed, AI) compute substrates with
predictability of outcomes (from ensembles of optimization runs) as the
driving criterion.] When placement is performed using thousands
of threads, this by itself can confer predictability — if we can model
and predict the distributions and order statistics of optimization
outcomes [56]. Orthogonally, evolutionary or “parallel problem-
solving from nature” classes of metaheuristics map well to modern
substrates. Such methods as “go with the winners” [3], adaptive
multistart [12], particle swarm optimization [64], NGSA-II [34], etc.
will need to be revisited.

Chaos in placement optimization refers to non-smoothness: very
small changes to the input result in very large changes to the output.
[Challenge 4: Develop placement optimizers that have (provably)
smooth behavior.] Here, smooth is in the sense of a Lipschitz criterion:
if two placement instances differ by at most some distance §, then
their solutions should differ by at most some distance f(§). The
definition of “distance” is itself an open question. Useful stability of
outcomes may also be obtained if we cast placement optimization as
a trajectory of incremental optimizations [60] [30]. The key is that
a sequence of incremental optimizations should not gradually lose
solution quality. [Challenge 5: Develop incremental and re-entrant
placement methods that maintain from-scratch solution quality.]
In addition, smoothness or stability can be achieved by primitive
“tethering”: specified parts of the placement solution (e.g., for macros
or latches) must remain within some ball of radius r with respect to
locations in some given (previous) solution.’ [Challenge 6: Develop
methods to solve the tethered placement problem.]

We may also ask, “What should be predicted?” and “How will
predictions be used?” For the former, just predicting achievable solu-
tion quality (e.g., total power, or zero post-route DRCs) is relatively
useless without a certificate, such as an explicit tool setup and run-
script that will achieve such a solution. As noted in Section 5 below,
we still lack understanding of which within-flow figures of merit
signify good future outcomes. For the latter, [18] points out how
having oracular knowledge of a part of an optimizer’s solution (e.g.,
the eventual placed locations for half the macros in a P&R block,
or half of the swap-cell list at the end of leakage optimization)
can easily degrade placement solution quality. Le., actions based
on prognostication change the outcome. Hence: “be careful what
you ask for (and how you will use it)” when pursuing modeling,
prediction and/or machine learning in placement.

2.2 Closing the Suboptimality Gap

In optimization, the reality is “Better, faster, cheaper — pick any
two.” Curiously, in the EDA field we tend to insist (as customer
to EDA vendor, or as academic peer reviewer to someone with a
new approach to placement) on “I want all three”. We are trained
to formulate and attack difficult optimizations using ILPs, min-cost
flows, assignment, dynamic programming, satisfiability, and so on
[71]. But then: “We need the answer overnight”, “The approach is

5Note that tethered placement is not placement with fixed instances (which are known
to disrupt current methods). It is more akin to extreme fencing (which is also not
handled well today).



impractical due to its runtime”, or “While the method improves
wirelength by 1%, this is not a fair comparison because runtimes
are three times longer”. Such messages drive us to cut corners, and
to add more heuristics on top of existing stacks of heuristics.®

In Figure 3 (left), heuristic B clearly dominates heuristic A. Heuris-
tic B also seems to dominate heuristic C - until the computational
resource is expanded, and C pulls ahead. Thus, B and C together
define the quality-runtime Pareto (cf. studies such as [15]). It is un-
fortunate when heuristic C never sees the light of day — particularly
since we have little idea how close any of these are to reaching
optimality. Fields such as machine vision advance solution quality
with a culture of benchmarking and with computational resource
arguably as a secondary concern (Figure 3 (right)).
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Figure 3: Left: Optimization quality is monotone in re-
sources applied, and multiple optimizers together define the
resource-quality Pareto. Right: Excerpt from Figure 1 of [10],
showing advance of deep learning for ImageNet-1k.

Multiple vectors are needed to close the suboptimality gap. To
begin with, research must have proper aiming points: optimality in
what sense. Formulations (objectives, constraints) and benchmarks
should be clean, “core”, long-lived drivers of relevant research. In
this light, several past criteria (metrics, evaluation scripts and tools,
contest enablements) live on today but likely need to be refreshed.
[Challenge 7: Update core placement optimization formulations, and
develop long-lived benchmarks and solution criteria.]

The fraught topic of benchmarks merits revisiting with more
urgency than in the past. Absent any authoritative source (a la
Geekbench or Underwriters Laboratories) since the 1990s (MCNC),
benchmarks for placement have been episodically created and pas-
sively received. “Real” benchmarks are obfuscated (e.g., module
hierarchy stripped), incomplete (e.g., no clock), non-vertical (only a
placer needs to be fed), and past any competitive relevance (i.e., old).
Recent initiatives such as RISC-V, POSH, FOSSi, CHIPS Alliance,
and OpenHW Group hold the promise of more complete and mod-
ern benchmarks. Scale and diversity will also be needed to drive
research toward next-generation capabilities. And crucially, with
real benchmarks the remaining suboptimality gap is unknown.

Artificial netlist constructions have balanced between realism,
known optimal solution quality, scalability and other desiderata.
Real designs can be perturbed to retain some known achievable so-
lution cost [39] [62], or perturbed by scaling to yield bootstrapped
lower bounds on heuristic suboptimality [41]. Alternatively, by sac-
rificing realism, optimal solutions can be planted such that heuristic

5This has come at a cost. Arguably, we are as ill-informed about suboptimality gaps
for classical EDA optimizations, and about the potential benefits of long-running
distributed CAD optimizations, as we were 20+ years ago [14] [8]. But in today’s era
of optimization, 1% matters.

suboptimality can be exactly measured [22] [29]. Other construc-
tions produce artificial netlists that try to match prescribed topo-
logical criteria (in/outdegree distributions, IO counts, path depths,
sequential/combinational instance counts, etc.) [32] [93] [50] [70]
[67]. [Challenge 8: Develop and widely adopt generators and suites
of artificial testcases that are representative (to optimizers) of diverse
design types and future instance complexities.]

Another facet of closing the suboptimality gap is the use of
(modern) computational resources. Past focus has been on single-
threaded or single-server turnaround times. Future solution quality
gains will draw on massive increases in compute, through use of
cloud, distributed/federated, GPU, etc. platforms. [Challenge 9:
Develop and improve placement methods with solution quality that
increases monotonically with the given “footprint” (threads X runtime)
of computational resource.] This recalls and extends the notion of
anytime optimization [103].

Improved research infrastructure such as open-source codes,
PDKs and benchmarks (see Section 6) will also help advance place-
ment optimizations. The urgency of closing optimization quality
gaps suggests that we might aim higher. [Challenge 10: Establish
an “Underwriters Laboratories” for measurement, benchmarking of
IC design automation and designs.] Advances can also be supported
by a roadmap of optimization requirements and capabilities.

3 CO-OPTIMIZATION AND CO-OPERATION

Tight integration of more optimization engines on common struc-
tures and more common analysis engines together enable on-demand
constructive estimations and reduced miscorrelation. This reflects

a steady trend toward co-optimization (multiple objectives) and co-
operation (multiple engines).” Even with a fixed netlist, the placer

co-optimizes multiple objective function terms: wirelength (power),

timing, legality (density spreading), IR and routability (congestion).
Routability is qualitatively more difficult to capture: a placement

is known to be routable only after it has been successfully routed,

but this depends on a specific router’s long-running heuristic in

a fixed-die context. [Challenge 11: Develop improved congestion

formulations for use in analytic placement.]

The Art of Co-Optimization. How the placer co-optimizes mul-
tiple objectives, subject to constraints, is still very much an art.
(i) The importance of objectives can shift across iterations, and
across global-detailed-legalization stages. E.g., wirelength, timing,
density, congestion, non-overlap and pin accessibility might each
take the spotlight in turn. (ii) Constraints such as non-overlap or
setup timing are fungible with objectives — via weights, penalties,
and other forms of “softness” or relaxations. (iii) Considerations
such as edge-type conflict can be masked by whitespace (bloating
or padding) that is removed during later placement steps. (iv) Other
considerations such as local pin access pattern might be ignored
until last-mile fix-ups at the end of detailed placement.

A first observation is that in co-optimization, there is an over-
arching issue of “What should the placer know, and when should
the placer know it?” What can be ignored in global placement, and
safely fixed up afterward — with what solution quality gain or loss?
When should soft constraints be reverted to hard constraints - along
what schedule? When should (constructive, under the hood) predic-
tions be invoked - such as virtual buffering/sizing or timing-driven
global routing? [Challenge 12: Improve foundational understanding
7From the designer standpoint, a holy grail is to know “the cost of X”, where X =

incremental area, speed, robustness, low-power, etc., in a high-dimensional Pareto.
Placers and other optimizers in PD do not directly support this yet.



of how objective function estimation accuracy, constraint relaxation
and instance evolution determine solution quality.]?

A second observation is that required amounts of “masked” or
“ignored” guardbanding in global placement depend on the strength
of detailed placement optimizations, e.g., for sub-metal rule com-
pliance or pin accessibility. Weaker detailed placement requires
larger upstream guardbanding. [Challenge 13: Develop stronger,
distributable “heavy optimizations” in detailed placement.] Use of
branch-and-bound, ILP/SAT/SMT, and/or high-dimensional DP [87]
[15] [43] [33] [42] can better optimize routability and other detailed
placement objectives. This reduces upstream guardbanding while
improving chances of routing success.

Co-Optimization Through Co-Operation. Co-optimizations can
require co-operation between placement and other engines. Exam-
ples include (i) physical floorplanning, where macro placement and
global placement together determine block placements, channel
widths and halos, fences and density screens; and (ii) physical syn-
thesis (place-opt), where synthesis and global placement together
optimize buffer trees and other parts of the netlist as spatial em-
bedding and timing evolve. Other partnerships are between (iii)
placement and global routing, (iv) placement and power delivery
network synthesis, (v) placement and clock distribution synthesis,
and (vi) detailed placement and detailed routing.

Co-operation is typically via coarse interleaving, reflecting the
need to reach a fixed point in a “chicken-egg loop”. In the netlist-
placement loop, buffering, sizing, and various local transforms are
interleaved with incremental placement. There is considerable art in
the orchestration of objectives, granularities and degrees of freedom.
For (ii), (iii) and (iv) especially, the interleaving is tedious when high-
quality (as opposed to quick-and-dirty) solutions are needed at each
step. [Challenge 14: Develop methods to directly solve for the fixed
point of simultaneous “chicken-egg” optimizations.] Tightly coupled
co-operations are seen in (i) and (v), where quality of results is still a
key challenge. Especially: [Challenge 15: Develop improved conjoint
optimization of placement and clock distribution.]’ The example of
(vi) reflects the difficulty in advanced nodes for either the placer or
the router to ensure success of the P&R outcome.

A final comment: Placement and other engines can co-evolve
into evolutionary niches, whether via academic contests or com-
mercial R&D. Anecdotally, this can be seen when companies each
have well-performing P&R platforms, but transplanting any individ-
ual {synthesis, placement, CTS, routing} step into another platform
worsens results. [Challenge 16: Develop foundational understand-
ing of placement-centered co-optimizations.]

4 “NEW” FOCI FOR PLACEMENT

Apart from what is pointed out in other sections, several placement
topics are likely to receive focused attention in the near term.!?

8Tuning the evolution of objectives, the softness or relaxation of constraints, and
overall “flow control” in the placer are all at the nexus of learning and placement, as
noted in Section 5.

This conjoint optimization should address clock sink clustering into multi-bit flip-
flops, bottom-up sink clustering that accurately comprehends CRPR impacts, mitigation
of hold padding, useful skew — as well as low-power design and variation-robustness.
There are many chicken-egg loops here, e.g., [19].

1010 2012 and 2015, Markov et al. [78] [79] called out as open challenges the scaling of
flat placement (for physical synthesis, more macros and more clocks), 3D placement,
and five main topics: (i) datapath layout, (ii) layout-friendly high-level synthesis, (iii)
integrated timing and power optimization, (iv) lithography-aware physical synthesis,
and (v) “quantifying the impact”. These are all still open. (i) is revisited here. (ii) is still
improving accuracy and scalability of constructive and learning-based predictions to
inform (ESL, architecture) design space exploration (cf. Sec. V of [55]). (iii) and (iv) are

Lack of attention and investment has allowed several topics (analog,
datapath, 3D, power planning, IO planning, ...) to become bottle-
necks today, even though their inevitability was well-understood
decades ago. Also, several topics listed can be seen as consequences
of the late-stage 2D scaling roadmap and recent scaling boosters.
For example, density scaling with low-track height cell architec-
tures while preserving PPA shines a spotlight on puzzle-fitting and
“island” constraints (multi-height cells, multi-row heights, voltage
domains, well structures, and sub-metal proximity). And, when 2D
scaling is no longer optimal for the product, this induces 2.5D, 3D
and 4D (reconfiguration) placement contexts. Finally, and perhaps
most crucially: “New” topics can return to foreground when we
decide to require automation with (super)human-quality solutions.
Examples of this include analog placement and macro placement.

4.1 Physical Context

Several near-term foci arise from the physical context of placement.
Two examples are true 3D placement and “island-heavy” placement.
(Also: die-package power and floorplan co-optimization.)

3D Placement. Heterogeneous More-Than-Moore integration,
as well as the monolithic 3D-VLSI end of More-Moore (1.0nm, 0.7nm
“equivalent” nodes), bring multiple 3D placement challenges. Exist-
ing approaches typically apply partitioning into tiers, 2D placement
per tier, and some interleaving of incremental improvement. Oppor-
tunities for cross-tier optimization (placement of inter-tier connec-
tions, power delivery, clocking, performance and power/thermal)
are lost early in these flows. Yet, our intuition is that the z-axis
should fundamentally change traditional co-optimizations due to
severe gradients (temperature, IR, device quality) and costs (inter-
tier connection). [Challenge 17: Develop “true 3D” placement.] True
3D placement would directly consider all objectives and constraints
(timing, power, routability, etc.) in the full tiered 3D placement
resource, throughout global placement, detailed placement, legal-
ization and optimization.

Island-Heavy Placement. Low-track height libraries are used
for density scaling even as multi-bit flip-flops [58] and high-drive,
low output-resistance cells are needed to deliver high performance
with minimum power. This results in standard-cell placement with
a significantly higher proportion of multi-height cells (e.g., 1-, 2-
and 3-row cell heights). In addition, rows with three or more dis-
tinct heights (cf. [35]) may be laid down in alternation or in other
patterns. The different-height rows are analogous to voltage islands
and conventional- vs. flip-well regions in FDSOI [37]. That is to say,
each row has a specific spatial extent and site type, and determines
the performance model of every cell placed in it. [Challenge 18:
Develop techniques for “island-heavy” placement.] Mixed row-height
and multi-height cell “puzzle-fitting” constraints must be intro-
duced and enforced - at the right junctures — during the placement
flow.!! Ubiquity of multiple row heights and other “island” types
opens new placement-floorplan co-optimizations, and adds new
complexities to placement-CTS co-optimization.

4.2 Design Context

Other near-term foci arise from the design context. Two examples
are macro placement for designs with extreme memory-dominance,
and system interconnect-savvy SOC floorplan assessment.

types of co-optimizations (Section 3 above), with (iv) arguably having turned out to be
a non-issue. Progress on (v) may be along axes set out in Sections 2.2 and 6.
Before puzzle-fitting can begin, different cell types must be distributed with even
density. Displacement must be well-controlled in detailed placement.



Extreme Memory-Dominance. Al and machine learning ac-
celerator architectures can have very high fractions of die or block
area occupied by SRAM and register file instances. When hun-
dreds of macros occupy 90% or more of area in performance-critical
blocks, only human experts can find viable placements plus collater-
als such as clock and power distribution strategies, density screens
and IO placements. [Challenge 19: Develop performance-driven
macro packing and floorplan automation that matches or surpasses
human solution quality.] In this context, use of deep RL to achieve
“placements that are superhuman or comparable” [81] is a huge
breakthrough, but this capability is not yet broadly available.

System Interconnect-Savviness. System-, architecture-, and
SOC-level design space exploration all require fast and accurate
assessment of achievable PPAC envelopes; this is a function of
placement (partitioning, shaping and packing). Such assessment is
increasingly dominated by system interconnects such as standard
buses and NOCs, which challenges even human experts. [Chal-
lenge 20: Develop system interconnect-savvy SOC floorplan optimiza-
tions with expert-human solution quality.] For example, timing- and
global interconnect-aware shaping and packing must comprehend
the number of pipeline stages needed for long-distance communi-
cation [80], in addition to clock periods and routability.

4.3 Specializations
Additional foci arise in “domain-specific” specializations, e.g., dat-
apath placement has growing impact in Al, communications and
signal processing architectures. Sectors such as aerospace (rad-hard)
or automotive (harsh) bring extreme requirements that challenge
placement. For instance, reliability physics of nanoscale devices
are acknowledged by architectural features such as multi-modular
redundancy. This requires placers to optimize physical separation
of replicated or spare copies of key sub-blocks (in so-called master-
checker configurations). Other “new” foci include areas where
human expertise and productivity are long-standing bottlenecks:
analog placement [36] [69] [100], IO placement, and die-package
planning. [Challenge 21: Develop niche placement automations that
remove human expertise bottlenecks.] Many research opportunities
also exist at the blurred border between placement and partitioning
(FPGAs, multi-FPGA emulation, chiplet-based integration, etc.).
Datapath Placement. Regular structures in RTL and netlist can
be identified and used to guide structured placement of datapaths
during global placement [102] [86] [6]. Commercial efforts of 25+
years ago (Cadence SmartPath, Synopsys ModuleCompiler, Arcadia
Mustang, etc.) never sought to supplant the human designer. Rather,
these tools put the burden on the designer to manage and manually
place datapaths within the overall P&R block, while allowing for
global parameters such as feedthroughs. As global placer quality
improved, the need for specialized datapath placement decreased.
With today’s tiled architectures, loss or gain in datapath place-
ment solution quality is replicated hundreds of times. And, manual
design steps scale poorly. [Challenge 22: Develop datapath place-
ment automation that surpasses human-directed solution quality.] As
timing-critical paths are repeated across multiple bit slices, there
is opportunity for speedup by abstraction and bundling of these
paths and their components.

5 LEARNING AND PLACEMENT

The nexus of machine learning (ML) and physical design has seen
tremendous activity in recent years. The first [IEEE CEDA DAWN
seminar [113], IEEE CASS webinars, the MLCAD workshop [114],

the ICCAD20 keynote of [89], and the excellent survey of Huang
et al. [49] together give a solid picture of this fast-moving area.
Commercial EDA has also taken up the challenge of scaling design
quality and schedule with ML. Following are several directions that
are expected to advance rapidly.

Learning objectives. ML models can provide improved optimiza-
tion objectives (cf. Challenge 11) and provide insight into the “What
should the placer know, and when should the placer know it?”
question noted in Section 3. ML can also characterize correlations
between different objectives (HPWL, density, TNS etc.) and apply
such correlations in prediction and optimization.

Smart flow and flow control. Many commands and options are
available to users of commercial placers. Placement heuristics have
tunable parameters such as weight schedules, step size or number of
passes. And, the placer-internal flow can initiate and terminate vari-
ous hidden features at different junctures of a given tool run. In this
context, few-shot or one-shot learning can enable design-specific
“smart flows”, ranging from recipe (runscript) recommendations to
hidden control of numerical solvers and placer-internal flow. The
concept of “smart flow” also encompasses the “target sequence”
challenge in [52]: determine PPA and other constraints that will
steer a multi-step optimization to a best-possible outcome.
Embedding and clustering. Embedding and clustering provide
rich links between ML and placement. Statistical learning of low-
dimensional representations can cast placement into already-tractable
forms, and be reused across search spaces. Vector node embeddings
and associated distance measures can be applied in placement opti-
mizations (revisiting IO placement through this lens may be fruitful).
Clustering criteria from ML such as modularity have been success-
fully adapted for problem size reduction and “blob placement”.
Deep learning for placement. High-quality combinatorial opti-
mization via deep learning is an active research area [9]. Today,
there are open questions around (i) methods and resources needed
for model training, and (ii) reproducible demonstrations of solution
quality, generalization and transferability, and scalability. On the
other hand, we have seen breakthrough deep-RL macro placement
[81] and generally more rapid advances toward “Stage 4: Reinforce-
ment Learning, Intelligence” [52] than originally foreseen.
Domain expertise. The complexity and hard-won capability of
today’s placers suggest leveraging rather than rediscovering do-
main expertise. This highlights methods such as imitation learning,
algorithm alignment and transfer learning. On the other hand, the
“Bitter Lesson” [94] might be kept in mind as ML is fused with
traditional placement approaches.

AI hardware. Exploitation of Al hardware has turned a corner in
global and detailed placement (DREAMPlace [73], ABCDPlace [74]).
These methods make high-quality constructive placement predic-
tion feasible in iterative floorplan and PDN optimization. Logical
next steps include combining with RL-based macro placement [81],
and developing RL-based standard-cell placement.

Open source. Machine learning for placement-centric optimiza-
tions may benefit from at-scale use of open-source platforms such
as [106]. This motivates: [Challenge 23: Develop accurate predictors
of closed-source tool outcomes using open-source tools.] Interestingly,
co-evolution and convergence of closed- and open-source engines
could result: (i) open source would seek to reduce deltas from closed
source, and (ii) closed source would seek to be more predictable.
More. [Challenge 24: Find quantum leaps in solution quality and
speed at the nexus of ML and placement.] Along the path to “di-
rect inference” or “end-to-end”, various practical realities and small



steps should be worked out. Deployable ML would need to provide
robustness, explainability and model debuggability when results
are poor. [89] points out real-world aspects of Al automation such
as few-shot learning, data augmentation and 3-layer model architec-
ture that help deal with small data and/or user-confidential data (cf.
Sections 2 and 6). In addition, “target lists” will evolve and require
curation. Today, routability hotspot prediction is being commodi-
tized, but placement that can predict and preemptively mitigate
SI or IR hotspots is an open challenge (cf. target lists in [52] and
Section 2). Advancing performance predictions from GBA-accuracy
to {PBA,SLMCMM}-accuracy is still the missing key to better corre-
lation between timing- and power-driven placement optimizations
and post-route outcomes.

6 SUPPORT FOR PLACEMENT RESEARCH

Any research community continually seeks to accelerate progress,
attract new talent, and achieve real-world impact. Given the breadth
and difficulty of the above challenges, this need is now more critical
than ever before. Directions to keep an eye on include flow-scale
contexts for optimization; open-source research enablement; and
metrics collection to support machine learning.

6.1 Flow-scale Context and Open Source

The ISPD Contests (and the earlier ISPD-98 partitioning benchmark
suite) have been key drivers for the entire physical design field.
Half of the contests from ISPD-2005 to ISPD-2020 have been on
placement, reflecting the central and evergreen nature of placement
challenges. Overall, 14 placement contests have been run at major
conferences (Table 1).

Table 1: History of academic placement contests.

Year Title

ISPD05 | Placement

ISPD06 | Placement

ISPD11 | Routability-Driven Placement

DAC12 | Routability-Driven Placement
ICCAD12 | Design Hierarchy Aware Routability-Driven Placement
ICCAD13 | Detailed Placement

ISPD14 | Detailed Routing-Driven Placement
ICCAD14 | Incremental Timing-Driven Placement

ISPD15 | Blockage-Aware Detailed Routing-Driven Placement
ICCAD15 | Incremental Timing-Driven Placement

ISPD16 | Routability-Driven FPGA Placement

ISPD17 | Clock-Aware FPGA Placement
ICCAD17 | Multi-Deck Standard Cell Legalization

ISPD20 | Wafer-Scale Deep Learning Accelerator Placement

Many significant methods and publications have directly resulted
from placement contest entries. However, contests in general do
not span multiple flow steps, even as the placement context contin-
ues to shift toward co-optimization and co-operation. Furthermore,
contest enablements often have proprietary (and/or “disabled”) ele-
ments [23], and are thus difficult to propagate or extend. As a result,
progress and relevance have been hampered by a lack of platforms
for integration, interoperability, and in-context evaluation of aca-
demic research. Past efforts to overcome these challenges include
the MARCO/GSRC Bookshelf [16], OpenAccess Gear [99], and A2A
“horizontal benchmark extension” [57].12

2These works have all shared the same basic motivations. E.g., the abstract of [99]
begins: “Physical design EDA research in academia has historically been based on
infrastructure developed independently by individual contributors. This has led to
fragmentation in the community, where interaction, data interchange and comparison

A significant ongoing initiative, dating from ICCAD-2016, is the
IEEE CEDA DATC Robust Design Flow (RDF). As stated in [23],
the RDF aims to “.. facilitate research on flow-scale methodology
and cross-stage optimizations” and “seeks to (i) provide an academic
reference flow from logic synthesis to detailed routing based on exist-
ing contest results; (ii) construct a database for design benchmarks
and point tool libraries; and (iii) connect academic research to in-
dustry practitioners and designs by using industry-standard design
input/output formats” As of its most recent iteration [24] [104],
the RDF spans all of RTL-to-GDS and includes multiple options
at several stages, notably global placement. In 2020, the RDF also
added open analysis calibrations.

Another initiative, dating from mid-2018, is the DARPA IDEA
program [111], which launched multiple open-source EDA projects.
For digital RTL-to-GDS automation, OpenROAD [106] integrates
20+ engines with the OpenDB physical implementation database!>
and the OpenSTA timer. It has been part of the IEEE CEDA RDF
initiative since 2019. Figure 4 shows the tool’s incremental shared
netlist architecture, which enables in-memory communication be-
tween tools and tight incremental optimization loops. This pro-
vides an available backplane for research on flow-level optimiza-
tions, and for assessment of algorithm and engine improvements,
in an industry-compatible, open-source context. The past year
has also seen the open-sourcing of a manufacturable PDK and
libraries (130nm, SkyWater Technology Foundry [108]), along with
the ASAP7 advanced-node research PDK and 7.5T cell library [28]
[109]. Together, these developments remove many roadblocks for
research noted in [79], and facilitate more rapid transfer of academic
research into real-world practice. How the trajectory of research
will change as a result remains to be seen.
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Figure 4: OpenROAD shared netlist architecture.

6.2 Metrics Collection and ML Enablement

Standards and infrastructure are needed to support data collection
and data-enabled machine learning [52] [38] [59]. On the one hand,
tools must produce harvestable metrics using standard terms and
semantics. In the placement context, such metrics include TNS,
WNS, wirelength, overcongestion, etc. — sometimes referred to as

of results between tools are difficult. We discuss our early experience with the Ope-
nAccess Gear system, an open source software initiative intended to provide pieces
of the critical integration and analysis infrastructure that are taken for granted in
proprietary tools, but often wholly absent in research tools.”

B30penDB’s underlying data model is similar to that of LEF/DEF and OpenAccess
[110].
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Figure 5: OpenROAD metrics naming and extraction from

logging.

“derived data” since it is derived from the state of the physical de-
sign. Furthermore, data generation for machine learning requires a
data model, an implementation, and an API to extract derived data
[112]. OpenROAD with its OpenDB database provides a working
open-source database, data model and implementation. All tools
use a common spdlog-based messaging package, with consistent
message types and tool namespaces. Figure 5 (left) illustrates met-
rics naming in the current OpenROAD, based on universes of flow
stage names, nouns at run-level and tool metric-level, and modi-
fiers. The figure shows how run metrics or tool metrics would have
canonical names. For example, the blue path shows the name for
post-global placement estimated wirelength. (The metrics can be
tied to corners, runs, designs, etc.) In Figure 5 (right), logging in
the tool is shown above, and metrics extracted and recorded using
Python and JSON are shown below. Using such infrastructure, the
research community can collaboratively amass data for machine
learning, draw interest via Kaggle contests, etc. [Challenge 25:
Launch organized, multi-entity metrics collection to support ML stud-
ies and contests.] The related challenge is to get the ball rolling with
first results and first learnings.

7 CONCLUSIONS

Looking back, three personal observations re [79] are the follow-
ing. First, there are new highlights: (i) deep reinforcement learning
for macro placement [81]; (ii) game-changing exploitation of Al
hardware [73] [74]; (iii) the confirmed influence of the 2005 ISPD
Contest [83] and its successors, with ripple effects seen in Table
1, the DATC RDF, and the hotbeds of activity at NTU, Iowa State,
CUHK, Michigan, UCLA and elsewhere; and (iv) the advent of an
open-source, industry-compatible, full-flow platform for placement
research. Second, there are directions that should be advancing
faster: (v) floorplacement [90] [85], multilevel [17], distributable
heavy optimization (Challenge 13), and artificial testcase generation
(Challenge 8) paradigms; and (vi) clearing the haze over timing,
routability, incremental/reentrant usage, and stability in placement
optimization (Challenges 4-6, 11-12). Third, more notes from “the
sweep of history” seem apparent: (vii) the longevity of sequence
pair [82] and O-tree/B*-tree [40] [25] based annealing [98] [1] in
floorplanning; (viii) the place of early antecedents such as regular-
ization [4] [7] [65] as backdrop to [84], or [48] as backdrop to [96];
and (ix) the impact of multi-generation efforts that produced mPL6
[17], FastPlace3.0 [97] and IPR [88], NTUplace4h [47], late versions
of Capo [91] [92], and ePlace-MS/RePlAce [77] [26]. A personal
reading list is at [115].

Looking forward, placement research will need to match itself
to what CAD optimization in practice will need to look like in the
future: more intelligent and autonomous; deployed on distributed
and cloud resources; and optimizing expectations and Paretos. This
means serious investment in research on learning-enabled optimiza-
tion (i.e., at a new nexus of ML and optimization), distributed and
federated methods, the interplay between discrete-combinatorial
and continuous methods, and related directions. Last but not least,
culture changes (open sourcing, benchmarking, and focus on nar-
rowing of quantified suboptimality gaps) are also needed. As seen
in AI/ML fields, advancing optimization comes with benchmarks,
measured progress to reduce suboptimality, and tight translation
paths between research and leading-edge practice -~ all of which
are also part of the next chapter for research in VLSI placement
and physical design.
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