
Revisiting Inherent Noise Floors for Interconnect Prediction

Tuck-Boon Chan1, Andrew. B. Kahng2 and Mingyu Woo2
1Qualcomm, San Diego, CA, USA
2UC San Diego, La Jolla, CA, USA

ABSTRACT
Today’s synthesis, placement and routing (SP&R) tools routinely
handle millions of instances. Accurate prediction of outcomes is
needed to avoid long wasted runtimes from, e.g., unroutable floor-
plans or placements. However, tool outputs have inherent noise
that implies a lower bound on prediction error [10] [7]. The goal of
interconnect prediction naturally raises a question of “How accu-
rate can interconnect prediction be?” In this work, we revisit the
topic of inherent noise and “chaos” in IC implementation flows,
to characterize current noise floors on interconnect prediction. We
study effects on commercial P&R tool outcomes of such previously-
identified noise sources as reordering and renaming in instance
cells, nets, and master cells. We also perform studies for macro
placement, by slightly shifting the location of macro placement
blockages in the center of the layout floorplan. We find that recent
commercial tool versions still show significant routed wirelength
noise of up to 7% when netlist reordering is applied, and 11.5%
when macro placement blockages are shifted. Finally, we also raise
the question of “How should predictions be used?” by showing
example scenarios where advance knowledge of physical design
outcomes can potentially worsen noise and predictability.

ACM Reference Format:
Tuck-Boon Chan1, Andrew. B. Kahng2 and Mingyu Woo2. 2020. Revis-
iting Inherent Noise Floors for Interconnect Prediction. In System-Level
Interconnect - Problems and Pathfinding Workshop (SLIP ’20), November
5, 2020, San Diego, CA, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3414622.3431907

1 INTRODUCTION
With the slowdown of classical scaling, it is more important than
ever for industry design organizations to achieve improved design
quality with reduced design schedule. Toward this goal, a key lever
is prediction: what will be the power, performance and area quality
of the design outcome, if the implementation flow is allowed to
continue? An accurate predictor can enable more design space
exploration earlier in the design process – e.g., at SOC architecture,
floorplan or RTL design – since designers can prune solution paths
that are hopeless, and free up design resources to pursue more
promising paths. In this way, prediction leads to both quality and
schedule benefits.

The goal of interconnect prediction naturally raises a question
of “How accurate can interconnect prediction be?” [8] and [9] point

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SLIP ’20, November 5, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8106-2/20/11. . . $15.00
https://doi.org/10.1145/3414622.3431907

out that modern tools that internally chain many heuristic combi-
natorial optimizations exhibit the chaotic behaviors reported in [7],
especially when pushed to achieve the best possible solution quality.
Earlier work of [10] observed inherent noise in P&R tools: different
solutions with a large range of solution quality are produced for
isomorphic inputs that vary only in the names of cell instances,
nets, and cell masters.

Furthermore, the goal of interconnect prediction (and prediction
of layout and physical design attributes such as area, timing or
power in general) raises a second question of “How should predic-
tions be used?” Useful, or actionable, predictions in IC design tend
to be of a constructive nature. For example, a prediction of “total
routed wirelength will be 3km” or “3.3GHz is the maximum achiev-
able clock period within a 1W power budget” is not useful without
an associated implementation tool recipe (e.g., a Tcl runscript) that
will make the prediction come true. In another scenario, acting
upon a prediction in the obvious way may actually be harmful to
the final design quality. Below, we show that this is a very real risk
of prediction.

In this paper, we make the following contributions. (1) We exper-
imentally study the noise floor on interconnect prediction accuracy,
using recent releases of leading commercial P&R tools and a com-
mercial sub-20nm foundry technology with commercial cell library
and IPs. (2) We reproduce earlier studies of noise [10] and “chaos”
[7]. We find that new noise sources (e.g., reordering signal nets in
the input Verilog netlist) affect solution quality today. Furthermore,
previously identified noise sources (e.g., renaming cell masters, nets
and/or instances in the netlist) still affect the solution. (3) We also
observe a new form of chaotic behavior in the tool, where the input
perturbation is a slight movement of a placement blockage in the
middle of the layout region, and the solution shows high instability
with respect to this blockage’s exact location (see Figure 3). (4) We
show examples where naive use of information from prediction can
harm solution quality, and propose this as a key consideration for
future research on prediction of IC design implementation.

The remainder of this paper is organized as follows. Section 2
reviews several related works, including the key works [10] and
[7] whose experiments we revisit in this work. Section 3 describes
experiments that revisit the tool noise studies of [10]. Section 4
describes experiments that revisit the “chaos” studies of [7]. Section
5 adds studies of the border between chaotic and stable behaviors
in macro placements, as a function of relatively small placement
blockages placed near the middle of the layout region. Section 6
shows examples of risk in the use of prediction information, i.e.,
how a partial prediction can harm solution quality. We conclude
the paper in Section 7.

2 RELATEDWORKS
Heuristics for difficult optimizations in VLSI CAD often return
locally optimum solutions. The distribution of solution qualities
seen in local minima for graph bisection and traveling salesperson
problems, as well as ‘globally-convex’ structure of the set of local

https://doi.org/10.1145/3414622.3431907
https://doi.org/10.1145/3414622.3431907
https://doi.org/10.1145/3414622.3431907

minima, has been studied by, e.g., [1]. For a given problem, the
solution quality distribution seen over local minima will change
according to the strength of the heuristic [4]. Predictions of solution
quality, i.e., the learning of models for optimization outcomes, must
therefore deal with the existence of noise [11].

The work of [10] studied noise sources in the context of Ca-
dence QPlace and WRoute tools. The phenomenon of tool noise
due to naming and ordering of cells/nets in a netlist was previ-
ously noted in works of Hartoog [5], Harlow and Brglez [6], and
Bodapati and Najm [2]. [10] gives a taxonomy of tool behavior
criteria (monotonicity, smoothness, scaling) as well as a taxon-
omy of perturbations (randomness, ordering and naming, library
richness, constraints, and geometric properties) that do not affect
the correctness (i.e., well-formed nature) of solutions. Experiments
are performed to assess tool monotonicity, effect of random seeds,
netlist ordering, random renaming of cells and nets, and random
cell renaming while preserving hierarchy. Further studies of noise
additivity and the potential for exploiting noise through best-of-𝑘
multi-start approaches, are also given.

Jeong et al. [7] also studied noise sources across synthesis, place-
ment and routing (SP&R), and across tools from multiple EDA ven-
dors. This work also addressed “chaos”, the non-smoothness of out-
put metrics with respect to small input changes such as picosecond-
scale changes to timing constraints (clock period, clock uncertainty
and IO delay). Experiments in [7] showed that a 1ps change in
timing constraints could cause up to 16.4% variation in the area of
the post-synthesis gate netlist. A method was proposed to find the
input parameters to which solution quality is most sensitive, and
to empirically determine the optimal number of runs 𝑘 needed to
obtain a robust “best-of-𝑘” solution in practice.

Motivated by noise and chaos in SP&R tools, Kahng et al. [9]
study multi-armed bandit (MAB) formulation and propose an adap-
tive sampling strategy under license, schedule, area and frequency
constraints. Adaptive sampling in the MAB context embodies the
exploration versus exploitation tradeoff inherent in search and
optimization – in this case, automatic (no-human-in-the-loop) opti-
mization of the design process to obtain a high-quality final design
solution.

3 REVISITING TOOL NOISE
In this section, we revisit the taxonomy of P&R noise sources from
[10]. In [10], the term noise source connotes a perturbation of the
input that is not expected to change the underlying optimization
instance, and hence should not change the tool solution. We per-
form experiments using recent releases of two leading commercial
P&R tools, that are selected from among three major tools (Cadence
Innovus, Synopsys IC Compiler II, and Mentor Olympus-SoC), but
report anonymized results to comply with EULA restrictions. (We
use the names “P&R_1” and “P&R_2” consistently to refer to these
tools, but do not disclose the mapping of names to tools.) Experi-
ments are performed with a commercial 14nm foundry technology,
with multiple-VT 9-track standard cells and generated memories
from a leading third-party IP provider. All timing metrics (worst
negative slack (WNS), total negative slack (TNS)) are reported for
worst-case analysis in the same (unnamed) corner for this enable-
ment. Table 1 lists testcases used in our study.1

1Sources. (1) AES from [12], (2) JPEG from [13], (3) SweRV_wrapper from [14], and (4)
BlackParrot from [15].

Table 1: Testcases used in our experiments.

Design ClkPer IO Delay WNS TNS Num Num
(ns) (ns) (ns) (ns) Macros Insts

AES 0.300 0.000 -0.235 -56.502 0 14837
JPEG 0.400 0.000 -0.038 -8.939 0 60127

SweRV_wrapper 0.500 0.000 -0.204 -252.882 28 109692
BlackParrot 0.800 0.760 -0.128 -21.676 49 314393

(a)

Inst Reorder P&R_1

(b)

Inst Reorder P&R_2

(c)

Net Reorder P&R_1 Net Reorder P&R_2

(d)
Inst Rename P&R_2

(e)

Net Rename P&R_2

(f)
Inst Hier Swap P&R_2

(g)

Figure 1: Noise from reordering, renaming, and hierarchical
instance swap. Routed wirelength distributions from AES
(P&R_1 tool) over 100 runs, where 0% corresponds to mean
wirelength over all runs. Results are for (a) instance reorder-
ing in P&R_1 and (b) inst reordering in P&R_2; (c) net re-
ordering in P&R_1 and (d) net reordering in P&R_2; (e) inst
renaming in P&R_2, (f) net renaming in P&R_2, and (g) hi-
erarchical swapping in P&R_2. A 7% spread in routed WL is
seen from instance reordering and 2.5% spread in routedWL
is seen from instance renaming. Note that P&R_1 does not
show any difference from inst renaming, net renaming, or
hierarchical swapping.

2

3.1 Monotonicity and Random Seeds
Sections 3.1 and 5.1 of [10] define and execute a monotonicity test,
and demonstrate how a user-determined tool effort level affects
solution quality. In recent P&R tools, such fine-grained control over
effort level is now unavailable. Similarly, Sections 4.1 and 5.2 of
[10] define and execute a test for sensitivity to user-defined random
seeds. However, in recent P&R tools, seeding is not available.

3.2 Ordering and Naming
Sections 4.2 and 5.3, 5.4 and 5.5 of [10] define and execute several
tests involving ordering, naming, and hierarchy perturbation in the
input design data.

3.2.1 Renaming instances, nets and master cells. [10] reported that
Cadence P&R tools showed routed wirelength variation of up to 7%
when renaming is applied. We follow the experimental procedure
described in [10]. We rename the instance names as “INST_XXX”,
net names as “NET_XXX” andmaster cell names as “MASTER_XXX”,
where XXX is a random number between 1 and #INSTs, #NETs, and
#MASTERs, respectively. When cell instances or nets are renamed,
we change the gate-level Verilog that is input to P&R accordingly.
When master cells are renamed, we change Verilog, cell LEFs, and
cell Liberty models accordingly.

We find that one vendor’s P&R tool P&R_1 is unaffected by
instance, net and master renaming. However, the other vendor
tool, P&R_2, gives different results when names are changed in the
netlist. This noise effect is shown in Figures 1(e) and (f). Up to 2.5%
variation in routed wirelength is seen across 100 runs with the AES
testcase. The authors of [10] also study perturbation of the design
hierarchy (Sections 4.2, 5.5 of their paper), that swaps two instance
names in the same hierarchical-level modules. We find that P&R_1
is unaffected by such perturbation, as one would expect from being
unaffected by renaming. P&R_2 results do change with hierarchy
perturbation, as presented in Figure 1(g). The magnitude of total
wirelength variation reported in [10] for this type of noise source
was 12%, which is larger than what we observe for the modern tool.

3.2.2 Reordering instances and nets. To assess the impact of in-
stance and net ordering, we shuffle wire statements for given nets
and reorder instance declaration lines inside the input gate-level
Verilog. Shuffling of master cell declarations is subsumed by the
shuffling of cell instance declarations, since the input gate-level Ver-
ilog has an instance declaration on each line. We do not separately
study reordering of master cell declarations.

We generate 100 different gate-level Verilogs by shuffling the
instance declaration orders using NumPy with different seeds. Sim-
ilarly, we generate 100 different gate-level Verilogs by shuffling net
declarations.We run the P&R tools on each instance- or net-shuffled
Verilog. For the P&R_1 tool, the routed wirelength distributions
with shuffling for the AES (aes_cipher_top) design are shown in
Figure 1. The tool shows up to 7% noise. For P&R_2, the observed
wirelength variation is 2.5%. The magnitude of total wirelength
variation reported in [10] for this type of noise source was 7%,
which is similar to what we observe for the modern tools.2

3.3 Another Noise Source: Floorplan Symmetry
We also consider a noise source that is absent from previous stud-
ies, namely, whether an optimization such as macro placement

2We have separately examined the effect of reordering macro definitions inside each
LEF file (using a python parser and “shuffle”), and changing the order in which multiple
LEF files are read into the P&R tool. For P&R_1, no change in tool outcome is observed.

(a) (b)

(c) (d)

Figure 2: Test of symmetry noise in macro placement, using
the SweRV_wrapper design. The center light blue square is
a fixed macro placement blockage. Fixed macros are shown
in darker blue and movable macros are shown in orange. (a)
Some macros in lower-left, upper-left, upper-right regions
are fixed, while remaining macros are movable in P&R_1
tool. (b) Same as (a), but mirrored about the Y-axis. (c) Some
macros in lower-right, upper-left, upper-right regions are
fixed, while remaining macros are movable in P&R_2 tool.
(d) Same as (c), but mirrored about the Y-axis.

Table 2: Routed wirelength distribution on SWeRV_wrapper
design when all macros are fixed in advance.

Flipped Info Routed Wirelength (𝜇m)
P&R_1 P&R_2

Original 1720095 1752283
LR Flipped 1728234 1775584
UD Flipped 1731809 1731447

LRUD Flipped 1730830 1794888

or standard-cell place-and-route is affected by symmetries. For ex-
ample, in modern technologies, it is possible to mirror the entire
layout about the Y-axis, obtaining an equally manufacturable layout
with identical timing and wirelength metrics. We have examined
whether the macro placement step in modern tools shows noise in
outcomes due to such symmetry.

We study the behavior of the P&R_1 and P&R_2 tools on the
SweRV_wrapper design, when all of the macros are fixed in advance.
Table 2 shows routed wirelength after all of the macros are fixed
in advance as in original, left-right flipped, up-down flipped, and
left-right-up-down flipped. P&R_1 and P&R_2 show 0.6% and 3.6%
variations in routed wirelength, respectively.

3

We further study the behavior of P&R_1 using the same design,
where three macros at corners of a placed floorplan are selected
randomly and fixed (dark blue instances in Figure 2).We thenmirror
the fixed layout about the Y-axis and determine whether the tool
solution will also be mirrored. Figure 2 shows that very different
solutions result from the two mirrored pre-placements.3

Furthermore, the routedwirelength of (a) is 9.7% greater than that
of (b), while the routed wirelength of (c) is 0.1% greater than that of
(d). This type of noise (in the P&R_1 tool) suggests simple heuristics,
as noted in [10] [7]: e.g., run place-and-route twice (mirrored and
non-mirrored), and return the better solution. Mirroring of site
maps (N, FS row orientations) and pre-placements about the X-axis
to induce noise in outcomes may also be possible.

4 REVISITING TOOL “CHAOS”
In this section, we revisit the concept of tool “chaos” [7], where
very small changes to inputs (clock period, I/O delay, and clock
uncertainty) are observed to cause large changes to outputs.

In replicating studies of [7], we use the designs and clock settings
as in Table 1. For synthesis tools, Table 3 shows post-synthesis
WNS and area outcomes of the Syn_1 and Syn_2 tools. Here, the
two tools are selected from among three major tools (Synopsys
Design Compiler, Cadence Genus, and Mentor Oasys-RTL). To
further anonymize, we consistently refer to one of these tools as
“Syn_1” and the other as “Syn_2”. Both Syn_1 and Syn_2 show small
post-synthesis WNS effects from small perturbations, particularly
clock period and clock uncertainty. The Syn_2 tool shows near-
deterministic results with respect to I/O delay perturbation in most
cases.

Our studies of chaotic effects in P&R show that small changes
in timing constraints, as well as perturbations of aspect ratio and
utilization, can cause changes in post-routed results. Table 4 shows
the post-routed outcomes for WNS and TNS (self-reported) of the
P&R_1 and P&R_2 tools. One discovery is that P&R_1 has very
deterministic results when run multiple times with exactly the
same settings, i.e., zero perturbations of clock period perturbation
by +0 ps, clock uncertainty by +0 ps, I/O delay by +0 ps, aspect
ratio by +0.00, and utilization by +0 % show deterministic results
on most of the designs. In contrast, P&R_2 generates quite noisy
results when run multiple times with the same settings. Further,
we find that the P&R_2 tool exhibits extremely large “chaos” in its
outcomes.4 Arguably, chaotic effects in place-and-route are larger
than what was seen a decade ago. This suggests a greater challenge
for interconnect prediction today than in the past.

5 CHAOTIC TOOL BEHAVIOR IN MACRO
PLACEMENT

We further study a type of chaotic behavior involving designs with
large numbers of macros (e.g., SRAMs and register files). This type
of design is increasingly relevant in modern IC products. Today’s
commercial place-and-route tools offer automated macro place-
ment capability, typically for use in early design planning steps.
Macro placements strongly affect final layout metrics, including

3Note that in (a) and (c), the dark-blue fixedmacros are in either N, FN, S, FS orientation;
in (b) and (d), they are flipped individually (i.e., N <-> FN, S <-> FS). All orange (unfixed)
macros are allowed to be placed freely by the tool, with any orientation among (N, FN,
S, FS).
4The worst TNS of -101.280ns for JPEG is not a typo. Indeed, most of the JPEG runs
of P&R_2 return very reasonable results. A possible explanation of the outlier is that
today’s tools are known to “give up” mid-run if timing or routability looks incurable.
This may have happened with the outlier run.

(a) (b)

(c) (d)

Figure 3: Visualized solutions when a relatively small macro
placement blockage (light blue square) is shifted slightly
in the SweRV_wrapper implementation. The orange rectan-
gles are movable macros. Four example P&R_1 macro place-
ments are shown. The macro placement blockage is 64um ×
64um. From its original position, the blockage is (a) located
at center (baseline), (b) 6um to the left, (c) 6um to the right,
and (d) 12um to the right. These correspond respectively to
Rows 4, 10, 12, 13 of Table 5.

timing, wirelength, routability (number of post-route DRC viola-
tions), and power. The commercial macro placement follows the
conventional strategy of pushing macros to corners and sides of
the layout, leaving a relatively unobstructed region for standard-
cell place-and-route. Such a strategy can be seen in such academic
works as Chen et al. [3], whose MP-tree algorithm leaves empty
space at the center of the layout to maintain routability. In practice,
a physical designer normally defines the macro placement blockage
at the center of the layout during auto-macro placement, in order
to preserve the region for place-and-route.

In our study, we first run auto-macro placement repeatedly and
confirm that the outcomes are identical in each run. This indicates
that the auto-macro placer produces a deterministic output for a
fixed input. However, we observe chaotic behavior when the small
macro placement blockage in the center region of the block is shifted
slightly. Figure 3 shows example outcomes for SweRV_wrapper and
the P&R_1 tool, in which macro placements are drastically different
when a small fixed macro placement blockage (light blue square)
is shifted slightly. Details of 13 macro placement outcomes (post
P&R) with slight changes in the location of a fixed 64um × 64um
macro placement blockage (i.e., original location, and shifts of {left,
up, right, down} by {6, 12, 18} um) are given in Table 5. Results in
Table 5 show that the different implementations with slight changes
in the macro placement blockage location have up to -3%/+11.5%
difference in wirelength compared to the baseline implementation.
This is again a challenge for interconnect prediction.

4

Table 3: Revisiting experiments of [7]. Chaotic behavior is studied in synthesis tools.

Parameter Noise (Δ)
AES JPEG

Syn_1 Syn_2 Syn_1 Syn_2
WNS (ns) Area (𝜇𝑚2) WNS (ns) Area (𝜇𝑚2) WNS (ns) Area (𝜇𝑚2) WNS (ns) Area (𝜇𝑚2)

Clock Period

-3 ps -0.137 3349.422 -0.065 3873.663 -0.113 15734.759 -0.088 13780.086
-2 ps -0.133 3492.679 -0.061 3924.829 -0.113 15420.182 -0.084 13921.811
-1 ps -0.135 3446.472 -0.061 3962.004 -0.114 15621.580 -0.081 13814.640
+0 ps -0.130 3490.099 -0.063 3863.825 -0.117 15433.850 -0.084 13896.732
+1 ps -0.131 3454.899 -0.055 4052.402 -0.109 15537.876 -0.078 13660.376
+2 ps -0.131 3393.452 -0.055 3985.350 -0.109 15523.643 -0.074 13769.401
+3 ps -0.130 3438.852 -0.049 4061.877 -0.105 15684.117 -0.081 13749.080

Clock Uncertainty

-3 ps -0.130 3438.852 -0.055 4061.877 -0.105 15684.117 -0.081 13747.749
-2 ps -0.131 3393.452 -0.055 3985.350 -0.109 15523.643 -0.074 13773.756
-1 ps -0.131 3454.899 -0.049 4052.402 -0.109 15537.876 -0.078 13662.795
+0 ps -0.130 3490.099 -0.063 3863.825 -0.117 15433.850 -0.084 13896.732
+1 ps -0.135 3446.472 -0.059 3995.470 -0.114 15621.580 -0.081 13814.640
+2 ps -0.133 3492.679 -0.061 3924.829 -0.113 15420.182 -0.084 13921.206
+3 ps -0.137 3349.422 -0.065 3873.663 -0.113 15734.759 -0.087 13784.279

IO Delay

-3 ps -0.132 3465.423 -0.063 3863.825 -0.124 15436.834 -0.084 13896.732
-2 ps -0.131 3455.746 -0.063 3863.825 -0.107 15854.065 -0.084 13896.732
-1 ps -0.130 3489.454 -0.063 3863.825 -0.117 15376.636 -0.084 13896.732
+0 ps -0.130 3490.099 -0.063 3863.825 -0.117 15433.850 -0.084 13896.732
+1 ps -0.132 3432.965 -0.063 3863.825 -0.114 15583.720 -0.084 13896.732
+2 ps -0.132 3453.690 -0.063 3863.825 -0.123 15419.134 -0.084 13896.691
+3 ps -0.133 3422.200 -0.063 3867.333 -0.121 15357.484 -0.084 13895.965

Best - -0.130 - -0.049 - -0.105 - -0.074 -
Worst - -0.137 - -0.065 - -0.124 - -0.088 -
Delta - 0.007 - 0.016 - 0.019 - 0.014 -

Parameter Noise (Δ)
SweRV_wrapper BlackParrot

Syn_1 Syn_2 Syn_1 Syn_2
WNS (ns) Area (𝜇𝑚2) WNS (ns) Area (𝜇𝑚2) WNS (ns) Area (𝜇𝑚2) WNS (ns) Area (𝜇𝑚2)

Clock Period

-3 ps -0.198 137864.035 -0.167 135813.803 -0.388 315843.656 -0.318 294107.103
-2 ps -0.210 137659.250 -0.151 136047.579 -0.406 315855.067 -0.328 294984.224
-1 ps -0.202 137777.629 -0.154 135833.318 -0.398 315836.076 -0.323 295421.898
+0 ps -0.206 137688.079 -0.174 135649.741 -0.392 315798.498 -0.315 295225.983
+1 ps -0.198 137806.176 -0.173 135648.088 -0.399 315886.879 -0.321 295110.063
+2 ps -0.188 137973.464 -0.156 135976.333 -0.393 315773.338 -0.317 295342.467
+3 ps -0.183 137905.283 -0.167 135238.598 -0.386 316127.912 -0.297 294933.905

Clock Uncertainty

-3 ps -0.184 137866.495 -0.154 135619.945 -0.388 315751.041 -0.297 294933.905
-2 ps -0.188 137942.216 -0.160 135530.918 -0.383 315918.490 -0.317 295343.153
-1 ps -0.196 137797.144 -0.155 135902.628 -0.385 315788.902 -0.321 295110.063
+0 ps -0.206 137688.079 -0.174 135649.741 -0.392 315798.498 -0.315 295225.983
+1 ps -0.198 137796.459 -0.153 135877.186 -0.395 315876.880 -0.323 295417.825
+2 ps -0.214 137618.890 -0.158 135612.123 -0.402 315839.745 -0.328 294983.901
+3 ps -0.219 137535.951 -0.159 135895.653 -0.394 315804.788 -0.318 294106.780

IO Delay

-3 ps -0.186 137925.362 -0.174 135649.741 -0.390 315790.877 -0.315 295225.983
-2 ps -0.191 137879.196 -0.174 135649.741 -0.390 315790.877 -0.315 295225.983
-1 ps -0.205 137652.799 -0.174 135649.741 -0.390 315790.152 -0.315 295225.983
+0 ps -0.206 137688.079 -0.174 135649.741 -0.392 315798.498 -0.315 295225.983
+1 ps -0.199 137745.898 -0.164 135714.011 -0.393 315825.553 -0.315 295225.983
+2 ps -0.196 137862.422 -0.169 135590.592 -0.394 315850.793 -0.315 295225.983
+3 ps -0.211 137680.136 -0.174 135584.463 -0.393 315841.600 -0.315 295225.983

Best - -0.183 - -0.151 - -0.383 - -0.297 -
Worst - -0.219 - -0.174 - -0.406 - -0.328 -
Delta - 0.036 - 0.023 - 0.023 - 0.031 -

6 BEYOND NOISE AND CHAOS: CAN
PREDICTIONS BE HARMFUL?

We have also studied a second key question, namely, “How should
predictions be used?” Recent years have seen tremendous energy
devoted tomachine learning formodeling and prediction of physical
design. Yet, there may be contexts where use of predictions can
cause, e.g., additional noise or chaos in tool outcomes. The message
here, perhaps, is “Be careful what you ask for.”

In this section, we show an example scenario where advance
knowledge of the physical design outcome worsens noise and pre-
dictability. We select a subset of macros, pre-place them to locations
in original macro placement output and let the P&R tool place re-
maining macros. This experiment mimics the use case where a par-
tial solution (i.e., locations of some macros) is determined through
prediction. Figure 4 shows example outcomes for SweRV_wrapper
using P&R_1 and P&R_2 tools. Results show that macro placement
outcomes vary when different subsets of macros are pre-placed. For

example, post-P&R implementation wirelength of macro placement
in Figure 4(b) is 1,772,586 𝜇m or 3.5% longer compared to baseline
macro placement in Figure 4(a). This experiment highlights that
even though some locations of macros are known and pre-placed,
there is still some uncertainty in final P&R wirelength. This chaotic
behavior in P&R tools again puts a limit on achievable accuracy of
interconnect predictions.
Epilogue. We add a final “epilogue” regarding the earlier comment,
“be careful what you ask for” (in terms of predictions). A well-
known challenge for prediction is to bridge the gap between the
post-synthesis netlist and the post-P&R netlist which has undergone
sizing, buffering, hold fix, and many other physical synthesis and
optimization transforms. Physical designers and methodologists
universally agree that bridging this gap will improve timing and
routability convergence. We ask the question, “Is it helpful to know
exactly what the final post-P&R netlist will be?” Then, a trivial
experiment takes a final post-P&R(&Opt) netlist and feeds it back

5

Table 4: Revisiting experiments of [7]. Chaotic behavior is studied in P&R tools.

Parameter Noise (Δ)
AES JPEG

P&R_1 P&R_2 P&R_1 P&R_2
WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns)

Clock Period

-3 ps -0.232 -58.262 -0.230 -29.233 -0.064 -9.332 -0.026 -10.991
-2 ps -0.240 -58.440 -0.227 -29.745 -0.040 -12.319 -0.024 -8.659
-1 ps -0.229 -56.220 -0.223 -29.221 -0.051 -10.270 -0.034 -15.317
+0 ps -0.235 -56.502 -0.244 -30.112 -0.038 -8.939 -0.052 -10.733
+1 ps -0.236 -56.306 -0.226 -30.314 -0.039 -8.955 -0.030 -9.221
+2 ps -0.229 -56.717 -0.220 -29.523 -0.045 -13.505 -0.024 -8.248
+3 ps -0.231 -55.345 -0.230 -29.302 -0.034 -8.859 -0.026 -10.252

Clock Uncertainty

-3 ps -0.234 -56.518 -0.224 -28.752 -0.033 -9.448 -0.031 -11.650
-2 ps -0.233 -56.770 -0.224 -29.634 -0.038 -14.466 -0.024 -8.400
-1 ps -0.240 -56.046 -0.232 -29.877 -0.040 -9.995 -0.033 -8.519
+0 ps -0.235 -56.502 -0.245 -30.663 -0.038 -8.939 -0.054 -11.020
+1 ps -0.235 -56.120 -0.224 -29.988 -0.041 -10.839 -0.031 -8.128
+2 ps -0.232 -58.406 -0.232 -29.638 -0.046 -11.917 -0.026 -7.406
+3 ps -0.238 -57.927 -0.234 -29.011 -0.042 -8.540 -0.031 -11.416

IO Delay

-3 ps -0.236 -56.588 -0.230 -29.396 -0.041 -10.002 -0.033 -9.132
-2 ps -0.237 -56.136 -0.235 -32.322 -0.038 -10.015 -0.039 -9.614
-1 ps -0.235 -57.233 -0.220 -29.723 -0.042 -9.862 -0.031 -8.500
+0 ps -0.235 -56.502 -0.248 -30.461 -0.038 -8.939 -0.061 -11.636
+1 ps -0.228 -56.762 -0.230 -29.686 -0.039 -11.289 -0.032 -9.144
+2 ps -0.241 -56.067 -0.221 -28.934 -0.043 -9.516 -0.046 -10.431
+3 ps -0.232 -56.770 -0.223 -28.393 -0.044 -10.283 -0.036 -7.903

Aspect Ratio

-0.03 -0.243 -56.916 -0.229 -29.404 -0.039 -10.310 -0.027 -10.028
-0.02 -0.229 -58.337 -0.222 -30.464 -0.029 -5.623 -0.028 -9.841
-0.01 -0.235 -56.502 -0.225 -29.705 -0.039 -12.495 -0.070 -101.280
+0.00 -0.235 -56.502 -0.234 -30.820 -0.038 -8.939 -0.054 -9.934
+0.01 -0.228 -58.638 -0.226 -31.309 -0.038 -9.543 -0.038 -11.587
+0.02 -0.233 -58.890 -0.228 -29.209 -0.038 -10.984 -0.035 -11.803
+0.03 -0.250 -58.067 -0.240 -30.619 -0.041 -8.356 -0.031 -10.055

Placement Util

-3 % -0.235 -57.330 -0.237 -29.374 -0.035 -10.812 -0.031 -9.896
-2 % -0.230 -57.392 -0.224 -28.910 -0.037 -7.755 -0.022 -8.901
-1 % -0.227 -56.387 -0.224 -29.526 -0.037 -8.477 -0.023 -7.767
+0 % -0.235 -56.502 -0.243 -30.571 -0.038 -8.939 -0.036 -9.819
+1 % -0.237 -57.808 -0.227 -30.787 -0.044 -11.394 -0.058 -10.013
+2 % -0.239 -59.136 -0.231 -30.060 -0.042 -12.405 -0.034 -10.882
+3 % -0.233 -56.937 -0.231 -30.093 -0.039 -9.086 -0.027 -12.468

Best - -0.227 -55.345 -0.220 -28.393 -0.029 -5.623 -0.022 -7.406
Worst - -0.250 -59.136 -0.248 -32.322 -0.064 -14.466 -0.070 -101.280
Delta - 0.023 3.791 0.028 3.929 0.035 8.843 0.048 93.874

Parameter Noise (Δ)
SweRV_wrapper BlackParrot

P&R_1 P&R_2 P&R_1 P&R_2
WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns) WNS (ns) TNS (ns)

Clock Period

-3 ps -0.257 -339.301 -0.502 -278.424 -0.123 -15.197 -0.194 -60.090
-2 ps -0.225 -291.141 -0.793 -241.234 -0.126 -49.392 -0.107 -41.889
-1 ps -0.265 -336.346 -0.682 -280.573 -0.139 -18.283 -0.122 -64.540
+0 ps -0.204 -244.887 -0.566 -163.356 -0.128 -21.676 -0.121 -32.079
+1 ps -0.212 -287.519 -0.608 -205.182 -0.111 -10.723 -0.108 -45.347
+2 ps -0.224 -318.609 -0.710 -228.354 -0.159 -50.867 -0.167 -78.630
+3 ps -0.216 -245.109 -0.528 -232.646 -0.115 -7.891 -0.115 -32.865

Clock Uncertainty

-3 ps -0.221 -347.686 -0.679 -211.716 -0.135 -118.041 -0.111 -31.143
-2 ps -0.210 -265.114 -0.619 -169.827 -0.104 -15.631 -0.117 -42.325
-1 ps -0.236 -285.039 -0.602 -259.697 -0.145 -69.956 -0.117 -48.378
+0 ps -0.204 -244.887 -0.580 -180.897 -0.128 -21.676 -0.119 -29.889
+1 ps -0.207 -332.116 -0.561 -290.598 -0.139 -24.162 -0.143 -32.522
+2 ps -0.254 -315.494 -0.620 -282.778 -0.123 -23.965 -0.154 -30.463
+3 ps -0.233 -328.919 -0.871 -252.655 -0.141 -11.075 -0.112 -39.416

IO Delay

-3 ps -0.225 -279.308 -0.578 -224.977 -0.147 -13.286 -0.131 -50.011
-2 ps -0.242 -313.851 -0.451 -225.109 -0.147 -58.600 -0.111 -84.830
-1 ps -0.250 -332.225 -0.724 -215.154 -0.152 -44.178 -0.094 -28.919
0 ps -0.204 -244.887 -0.566 -170.578 -0.128 -21.278 -0.112 -61.921
1 ps -0.240 -291.155 -0.697 -179.544 -0.144 -50.005 -0.114 -36.972
2 ps -0.206 -289.353 -0.538 -240.698 -0.140 -31.646 -0.119 -44.766
3 ps -0.217 -292.142 -0.667 -331.423 -0.123 -26.904 -0.112 -53.538

Aspect Ratio

-0.03 -0.462 -311.995 -0.572 -218.755 -0.114 -47.975 -0.143 -77.539
-0.02 -0.268 -338.009 -0.708 -202.611 -0.115 -37.853 -0.121 -40.504
-0.01 -0.205 -229.347 -0.588 -230.526 -0.144 -30.131 -0.129 -35.700
+0.00 -0.204 -244.887 -0.589 -169.131 -0.128 -20.879 -0.122 -68.511
+0.01 -0.223 -273.615 -0.573 -263.628 -0.153 -52.868 -0.107 -27.486
+0.02 -0.214 -244.578 -0.622 -161.388 -0.141 -22.935 -0.098 -36.148
+0.03 -0.272 -231.320 -0.623 -255.692 -0.161 -34.448 -0.110 -42.620

Placement Util

-3 % -0.200 -260.962 -0.625 -284.832 -0.186 -62.789 -0.110 -28.408
-2 % -0.197 -250.333 -0.634 -217.232 -0.150 -79.364 -0.112 -34.864
-1 % -0.228 -232.827 -0.637 -219.109 -0.119 -30.741 -0.137 -50.131
+0 % -0.204 -244.887 -0.575 -172.473 -0.128 -21.278 -0.131 -41.080
+1 % -0.208 -283.216 -0.672 -216.844 -0.221 -119.503 -0.141 -52.975
+2 % -0.246 -294.268 -0.691 -187.814 -0.241 -302.801 -0.131 -32.278
+3 % -0.282 -428.977 -0.709 -196.054 -0.235 -122.664 -0.112 -36.651

Best - -0.197 -229.347 -0.451 -161.388 -0.104 -7.891 -0.094 -27.486
Worst - -0.462 -428.977 -0.871 -331.423 -0.241 -302.801 -0.194 -84.830
Delta - 0.265 199.63 0.420 170.035 0.137 294.91 0.100 57.344

6

Table 5: Overall post-routed result comparison with a
shifted macro placement blockages on SweRV_wrapper de-
sign. P&R_1 is used. The bold font denotes min andmax val-
ues.

Noise (Δ) WNS (ns) TNS (ns) Wirelength (um) DRCshiftX (um) shiftY (um)

0

-18 -0.078 -12.579 1852592.927 268
-12 -0.064 -6.356 1767687.207 322
-6 -0.061 -9.672 1859084.593 155
+0 -0.085 -11.143 1712514.599 115
+6 -0.050 -2.564 1660819.498 322
+12 -0.088 -18.800 1909736.061 616
+18 -0.068 -8.538 1769723.536 280

-18

0

-0.087 -12.036 1711466.776 268
-12 -0.050 -2.564 1660819.498 322
-6 -0.085 -11.143 1712514.599 115
+0 -0.085 -11.143 1712514.599 115
+6 -0.104 -12.477 1839574.923 418
+12 -0.098 -14.756 1874447.234 > 1000
+18 -0.085 -9.786 1777746.608 103

(a) (b)

(c) (d)

Figure 4: Visualized macro placement solutions when a sub-
set of macros are pre-placed on SweRV_wrapper design. The
center light blue square denotesmacro placement blockages,
and darker blue denotes fixed macros from original solu-
tions. (a) original solution fromP&R_1. (b) lower-left, upper-
left, upper-right macros are fixed from (a). (c) original so-
lution from P&R_2. (d) lower-right, upper-left, upper-right
macros are fixed from (c).

to the P&R(&Opt) flow. The original P&R(&Opt) result serves as a
constructive proof of the achievable QORwith this netlist. However,
as shown in Table 6, the second run can have anywhere from 4%
to 10% more routed wirelength than the first run.

7 CONCLUSION
In this work, we have revisited the studies of tool noise and chaos
by [10] [7], toward determining “noise floors” for interconnect pre-
diction accuracy. We find that additional sources of tool noise now

Table 6: P&R result comparisonwhenpost-route final netlist
(.v) is fed back into the P&R(&Opt) flow, for the AES test-
case. The target clock period is set as 450ps. In both tools,
the wirelength is increased significantly in the second run,
even though the result of the first run is a constructive proof
of achievable QOR.

Tools 1st WNS(ns) 1st WL(um) 2nd WNS(ns) 2nd WL(um)
P&R_1 -0.061 101667.24 -0.050 112284.63
P&R_2 -0.064 110604.19 -0.075 114939.83

exist beyond what had been identified in the works of a decade ago,
and that today’s major vendor tools show qualitatively different
susceptibilities to noise sources. We further identify a new source
of tool noise: symmetry in the floorplan definition. And, we observe
very large chaotic effects on auto-macro placement from the loca-
tion of a small fixed obstacle. Finally, we ask the question, “How
should predictions be used?” and show example scenarios where
advance knowledge of physical design outcomes can potentially
worsen noise and predictability. We show a potentially harmful
effect of knowing part of a macro placement solution in advance.
And, we show a somewhat trivial example of harm from knowing
the post-route netlist in advance of P&R. Each of these examples
reinforces a new caveat for prediction: “Be careful what you ask
for.”

ACKNOWLEDGMENTS
Research at UCSD is supported by DARPA (HR0011-18-2-0032),
the U.S. National Science Foundation (CCF-1564302), Samsung,
Qualcomm, NXP Semiconductors, Mentor Graphics, and the C-DEN
Center.

REFERENCES
[1] K. D. Boese, A. B. Kahng and S. Muddu, “A New Adaptive Multistart Technique

for Combinatorial Global Optimizations”, Operations Research Letters 16(2) (1994),
pp. 101-113.

[2] S. Bodapati and F. N. Najm, “Pre-Layout Estimation of Individual Wire Lengths”,
Proc. ACM Intl. Workshop on System-Level Interconnect Prediction, 2000, pp. 93-98.

[3] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang and T.-Y. Liu, “MP-trees: A
Packing-Based Macro Placement Algorithm for Modern Mixed-Size Designs”,
IEEE Trans. on CAD 27(9), 2008, pp. 1621-1634.

[4] L. Hagen and A. B. Kahng, “Combining Problem Reduction and Adaptive Multi-
Start: A New Technique for Superior Iterative Partitioning”, IEEE Trans. on CAD
16(7) (1997), pp. 709-717.

[5] M. R. Hartoog, “Analysis of Placement Procedures for VLSI Standard Cell Layout”,
Proc. DAC, 1986, pp. 314-319.

[6] J. E. Harlow and F. Brglez, “Design of Experiments in BDD Variable Ordering:
Lessons Learned”, Proc. ICCAD, 1998, pp. 646-652.

[7] K. Jeong and A. B. Kahng, “Methodology From Chaos in IC Implementation”,
Proc. ISQED, 2010, pp. 885-892.

[8] A. B. Kahng, “New Directions for Learning-Based IC Design Tools and Method-
ologies”, Proc. ASP-DAC, 2018, pp. 405-410.

[9] A. B. Kahng, S. Kumar and T. Shah, “A No-Human-in-the-Loop Methodology
Toward Optimal Utilization of EDA Tools and Flows”, DAC work in progress poster,
2018. https://vlsicad.ucsd.edu/MAB/.

[10] A. B. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA Tools”, Proc.
ISQED, 2002, pp. 206-211.

[11] M. Kearns, “Efficient Noise-tolerant Learning from Statistical Queries”, Proc. ACM
STOC, 1993, pp. 392-401.

[12] Rijndael IP Core, https://opencores.org/projects/aes_core, 2008.
[13] Video compression systems, https://opencores.org/projects/video_systems, 2008.
[14] SweRV RISC-V CoreTM 1.1 from Western Digital. https://github.com/

westerndigitalcorporation/swerv_eh1, 2019.
[15] D. Petrisko, F. Gilani, M. Wyse, T. Jung, S. Davidson, P. Gao, C. Zhao, Z. Azad, S.

Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin and M. B. Taylor, “BlackParrot:
An Agile Open Source RISC-V Multicore for Accelerator SoCs”, IEEE Micro, July-
August 2020, pp. 93-102.

7

https://vlsicad.ucsd.edu/MAB/
https://opencores.org/projects/aes_core
https://opencores.org/projects/video_systems
https://github.com/westerndigitalcorporation/swerv_eh1
https://github.com/westerndigitalcorporation/swerv_eh1

