
Looking Into the Mirror of Open Source
(Invited Paper)

Andrew B. Kahng
CSE and ECE Departments, UC San Diego, La Jolla, CA 92093

abk@ucsd.edu

Abstract—The DARPA IDEA program has brought unprecedented
resources and attention to development of open-source EDA. As this
session convenes, IDEA is well into its second year, with “alpha” releases
in the rear-view mirror, and a public v1.0 unveiling just eight months
away. This talk will give a perspective on recent open-source development
for digital layout generation. First, any technology should have a roadmap
of quantifiable metrics, requirements, and potential solutions – projected
on the axis of time. What are key aspects of such a roadmap for open-
source EDA technology? Second, what does open-source EDA tell us
about ourselves? The goal of open-source is a mirror for the ecosystem
of academic research, semiconductor design, and commercial EDA. Who
is willing to contribute? Who is capable of contributing? What are bars
for “moving the needle” and sustainability?

I. INTRODUCTION

The DARPA Intelligent Design of Electronic Assets (IDEA) pro-
gram [27] has focused new attention on development of open-source
EDA technology. The program aims to create “Silicon Compilers
2.0” on a very ambitious timeline: the v1.0 release in July 2020
is targeted to achieve no-human-in-the-loop, 24-hour generation of
design rule-clean, manufacturable layouts (in particular, “RTL-to-
GDS” in the digital IC domain) for up to 200M-instance systems-
on-chip in commercial FinFET node enablements. Within IDEA, the
OpenROAD project [31] [1] [2] seeks to realize the Silicon Compilers
2.0 vision in the digital domain, across chips, packages and boards.
Further, OpenROAD aims to seed a new ecosystem of open-source
EDA technology,1 complementing the rapid growth of open source
seen in hardware (DARPA’s POSH program, CHIPS Alliance, FOSSI,
OpenHW Group, etc.). (The IDEA program’s 2017 launch coincides
with an uptick in EDA open-sourcing activity, as seen in Figure 1
[35].)

Fig. 1. “Digital” tools inventory collected at [35]. Some listed tools require
a download permission step and/or do not have well-formed open-source
licenses.

This invited paper gives personal perspectives on the past, present
and future of open-source EDA development, with focus on RTL-to-

1Discussion of “What IS open source?” is omitted. See [42] for an excellent,
EDA-relevant overview. Importantly, “open source” is accepted to mean
“code released under an open source license”, where “open source license”
complies with the Open Source Definition at opensource.org/osd-annotated.
Many “open” or “released” or “free” EDA codes today are actually not “open
source”.

GDS physical implementation for digital ICs. Backdrop for these
perspectives spans (i) open-source releases of Capo, MLPart and
UCLApack as well as the MARCO GSRC Bookshelf of Fundamental
CAD Algorithms [3] [36] initiative; (ii) the METRICS initiative [32]
[8] toward “measure to improve” in the IC design process; (iii) the
roadmapping of EDA technology within the overall semiconductor
industry roadmap; and (iv) initial learnings from OpenROAD’s RTL-
to-GDS efforts. Open-source EDA lives in an ecosystem of EDA
researchers, commercial EDA vendors and semiconductor design.
This affords perspectives on culture and potential future paths for
EDA in the large. Open-source EDA is also a technology. Ideally,
any technology should have a roadmap of quantified metrics, and of
requirements and potential solutions, projected on the axis of time.
This affords perspectives on potential roadmap elements for open-
source EDA technology.

In the following, Section II examines open source’s “relative lack
of success” and impact on EDA in the past, as well as motivations
for an open-source EDA culture going forward. Section III reviews
several near-term “unblocking” milestones that must be achieved for
open source to be viable as a foundation for research and practical
impact in the digital IC (RTL-to-GDS) space. Section IV outlines
longer-term challenges, and potential aspects of a future roadmap for
open-source EDA. Challenges and milestones that must be kept on
the research community’s radar include gaps to fill, enablement of
machine learning “inside and around” design tools and flows, and
evolutions of research incentives and culture. Section V concludes
the paper.

II. ON OPEN SOURCE IN EDA

A. Diagnosing Today’s Lack of Open-Source EDA

In the spirit of “those who do not learn from history are doomed to
repeat it,” it is worth reflecting on why open-source culture has been
slow to emerge in our domain. After all, the field of VLSI CAD / EDA
is well over a half-century old – and significant roots of commercial
EDA lie in early academic tools that were released as permissive open
source: SPICE, SUPREM, Magic, Espresso, FASTCAP, MIS/SIS, etc.
There is relatively little culture of open source in academic EDA
today, even as other fields have visibly flourished (both as academic
disciplines and as commercial industries) as a consequence of open-
sourcing practices. Root causes of today’s non-open source EDA
research culture fall into at least two buckets: (i) straight-out blockers
of (open source-enabled) EDA research; and (ii) resulting drivers and
incentives that are incompatible with open-source EDA. These root
causes motivate a number of future goals, such as new mechanisms
and community standards to support open-source EDA in the longer
term, as discussed in Section IV.
Straight-out blockers. EDA researchers have learned to accept a
world where research progress is unnecessarily hampered at many
turns. Notably, EDA researchers today live in a world where pub-
lished results are irreproducible by construction, due to the end
user license agreements (EULAs) that are executed in order to use
commercial EDA tools. For example, publication of commercial
EDA Tcl commands and runscripts, or excerpts from tool logfiles



and output reports, is prohibited.2 The same EULAs also prohibit
benchmarking of commercial EDA tools.3 A consequence is that there
has not been any available “open research backplane” within which
academic researchers can quickly prototype and assess their point-
tool innovations. (On the positive side, the long-standing academic
plaint of “we need real testcases”, and the irreproducibility of
results due to “proprietary testcases that cannot be released”, are
rapidly becoming moot with the emergence of a vibrant open-source
hardware community.)

Beyond current industry-induced blockers to research progress, the
DAC-2019 invited paper [2] notes additional, higher-level challenges
to an open-source EDA ecosystem. These include the following.
(i) Since universities are not foundry-qualified, (encrypted) design
enablements cannot be accessed. As of this writing, there are no
public design enablements (PDK, library, IPs, memory compiler, etc.)
that can inform tool development for advanced production nodes.4

(ii) The R&D investment needed to develop golden signoff analyses
runs into the billions of dollars and thousands of engineer-years.
Verifications are, in general, a difficult challenge for open-source
EDA. (iii) Traditional “report a bug along with a testcase” exchanges
between EDA supplier and EDA user are painful or blocked when
the EDA supplier is a (non-commercial) entity, and cannot execute
standard commercial MNDAs (e.g., as a consequence of national
origin-blind and other policies, export control exposure, etc.).
Resulting drivers and incentives that run counter to open source.
At least in the digital IC implementation domain discussed here, the
above blockers have shaped how EDA research is practiced.

(1) Ripple effects of irreproducibility. Given the “irreproducible
by construction” aspects of EDA research, it is no surprise that EDA
conference and journal publication processes do not require results to
be reproducible. In EDA, there are no venues in which independent
confirmations of previously-published results can be published, as
is common in the life science and physical science literatures. At
the same time, the field of design technology itself is quite mature
and competitive (often, in a zero-sum sense), with many workers
focused on incrementally advancing the state of art for well-studied
problem formulations. And even as academia worldwide is rapidly
shifting its structures and financial models, variants of “publish
or perish” remain inevitable for individual researchers. Given this
“perfect storm” of context, there are many reasons to not open-
source one’s research software. These reasons include (i) main-
taining a competitive advantage over other researchers in the field,
(ii) concern over academic “bean-counting” metrics, (iii) overheads
(bandwidth, risks from transparency, and “industrial” skill set) of
open-sourcing that are inconsistent with Ph.D. students’ goals and the
latest project delivery demands, (iv) sponsors’ restrictions (example:
projects sponsored by the Semiconductor Research Corporation in

2Even if the authors of Paper A and Paper B both have proper access to
the same foundry process design kits, the same standard-cell libraries and
IPs, the same RTL, and the same licensed versions of commercial EDA tools,
direct A-to-B communication of the EDA tool-related information needed for
one group to reproduce the results of the other is prohibited. Note too that
standard terms and names that are familiar to users of commercial EDA tools
will be largely off-limits to creators of open-source EDA tools.

3Since commercial EDA tools are often required somewhere in the context
for a research paper, various contortions (no-benchmarking-intended dis-
claimers, anonymized tool and vendor names, “extra” columns of data to
prevent 1-1 mappings, etc.) are seen in published academic papers.

4A rumored open-sourcing of a foundry 130nm (even, 90nm) PDK in late
2019 will be an obvious watershed event for the open-source EDA ecosystem.
The timeline for PDKs at other ‘key’ nodes (65nm, 28nm, 16/14nm, 7nm)
will affect the rate of progress for digital IC tool research.

the U.S.) or co-ownership of IP, (v) entrepreneurial ambitions, and
(vi) moral objections to “giving away” the fruits of hard work. 5

Each of these reasons is perfectly rational and sensible. Indeed, 20+
years of experience with open-sourcing (UCLApack, Capo, MLPart,
Bookshelf, ..., RePlAce, TritonRoute, etc.) as an aspirational (i.e.,
ideally but not always followed) research practice have made it clear
that whether to open-source is always a 100% personal decision. (But,
the cumulative impact of these personal decisions affects an entire
research community.)

(2) Ripple effects of unavailability of a research ‘backplane’. Over
the years, a number of influential academic contests out of necessity
have used testcases that embody strong simplifications to data models
and/or industry formats. Perpetuating these simplifications (e.g.,
translating a Bookshelf variant to LEF/DEF), along with a focus on
comparisons with previous works using (old) contest benchmarks, has
kept academic research in a kind of parallel universe of “translated”,
as opposed to “standard”, industry formats and testcases. Tools
developed in this parallel universe are often unable to accept real-
world designs and enablements. This hinders technology transfer to,
and interest from, the commercial EDA and designer worlds.6 Fur-
thermore, without a full-flow backplane, heuristic innovations cannot
be assessed with respect to overall design flow outcomes. Thus, to use
the example of standard-cell placement, research can remain bound
to a placement metric such as “half-perimeter wirelength” (HPWL),
even though this may not capture 21st-century concerns such as
routability or timing.
B. Benefits of Open Source

At least several main benefits of an open-source EDA research
culture seem obvious. (1) Improved science and relevance. For aca-
demic researchers, open-source tools afford clarity and transparency,
along with better science: every result is reproducible. With open
source, the standard reviewer request of “please compare with the
previous work of ...” in a benchmark-centric literature becomes
much easier to satisfy. Implementations of older methods can be
more easily migrated to modern contexts, and would no longer
remain anchored in the benchmark suites and problem formulations of
the past. An industry-compatible open-source research infrastructure
also serves as a two-way channel in which problem formulations
and real (or, more realistic) testcases flow to academic researchers,
while low-overhead technology transfers and assessments flow to
industry.7 (2) True CAD-IP reuse. As pointed out in [3] [36], (CAD

5Note 1: Here, the phrase “not open-source” encompasses “not sharing
code or executable with other researchers, even privately, even for the limited
purpose of comparison”. Note 2: U.S. universities and federal research spon-
sors almost universally permit investigators to permissively open-source (per
the accepted meaning of this phrase) their research products, entirely at the
investigator’s discretion. Note 3: In this list of reasons, (i) can be closely linked
to (ii), i.e., the equivalencing of academic accomplishment with “numbers”:
number of publications in ‘archival’, peer-reviewed journals and conferences;
number of citations as reported by Google Scholar; number of prizes at CAD
contests; etc. In the past, the EDA research community has proactively reached
out to academic administrators regarding credit assignment for conference
papers versus journal papers. To mitigate (ii) and (i), it may be useful for the
research community to propose credit assignment methodologies for open-
source contributions.

6A given contest will focus on a specific, isolated core optimization and
evaluation metric. However, this is orthogonal to the perpetuation of data
models, formats and testcases that induce research codes which are unusable
in the real world.

7Even when “industry-standard formats” are used, unrealistic settings
(e.g., Liberty delay and power models) for contests risk driving academic
researchers to conclusions that do not match reality. See, e.g., [7]. This
highlights the value of having a robust two-way channel between academic
research and industry practice.

2



software) IP reuse offers enormous productivity improvements in
code development and the research process. Beyond being a “pay
now or pay later” issue [15], the present lack of reusable CAD IP
raises unnecessary barriers that force reinventing of wheels and make
the field unattractive to new researchers. (3) Removal of structural
“irreproducibility” challenges. The above-noted “irreproducibility by
construction” barriers to research progress would not exist in an open-
source EDA environment. (4) Improved maturity and attractiveness
of the field. In recent years, open-source culture has been strongly
associated with the rapid growth and success of other fields, e.g., AI
/ machine learning and computer vision. Arguably, the ease with
which new researchers and practitioners can access leading-edge
implementations has made these fields more attractive to new students
and entrepreneurs alike. Established companies benefit from the rapid
advance of core technologies and the larger pool of potential hires
already trained up by an open-source ecosystem. Indeed, in these
other fields the ethos of giving back (and/or, paying it forward) is
palpable.8

C. Guidance from the Community

Recent forums such as the DAC-2018 and DAC-2019 “birds of a
feather” meetings on Open-Source Academic EDA Software [34],
and at workshops such as the Workshop on Open-Source EDA
Technology (WOSET) [43] have elicited important messages and
guidance from the broader community of open-source advocates,
potential open-source EDA tool users, academic EDA researchers,
and potential open-source donors/contributors. A starting goal of the
OpenROAD project, namely, “critical mass and critical quality to
seed a FOSS EDA ecosystem”, was clearly reinforced. Toward such
critical mass and critical quality, table stakes include (i) a full (RTL-
to-GDS) tool flow with industry-standard inputs and outputs to match
commercial practice; (ii) proper tool integration onto an incremental
subtrate that includes an industry-compatible database (and, under-
lying data model) [24]; and (iii) a level of software engineering and
EDA development infrastructure (building from source, unit tests,
QA regressions, continuous integration / development framework,
scripting extension language, etc.) that enables and motivates others
to use and/or contribute. Also mandatory: (iv) proper open-source
licensing [42] that enables tools to be freely used in both research
and commercial settings. Last, great attention must be paid to (v)
continual and positive engagement with numerous, fluid communi-
ties of stakeholders that span professional societies (ACM, IEEE),
open software and hardware foundations (CHIPS Alliance, FOSSI,
OpenHW Group), academic conference and contest organizers (DAC,
ICCAD, ISPD, TAU, IWLS), funding sources (government, consortia,
companies), etc.9 The following section describes several ongoing or
near-term steps that respond to this guidance and/or mitigate the root
causes noted above.

8By contrast, the “no benchmarking” constraint in standard EDA industry
EULAs has been well-noted for many years as a sign of an “immature”
industry. Critics of the “no benchmarking” constraint ask how other product
domains (automobiles, mobile phones, PCs, etc.) would look today if competi-
tors were forbidden to buy and tear down each others’ products. Defenders of
the constraint usually note that “benchmarks can be skewed in unfair ways”.
At the same time, non-EDA industries appear to flourish in conjunction with
public benchmarking via SPEC, AnTuTu, Fortnite, etc.

9Different geographies such as EMEA, East Asia and North America can
have parallel efforts. As recounted in Section V of [18], past “research gap”
analyses assume a 3× redundancy of effort due to regional effects. An open
question is whether this sort of “parallel” redundancy is expected, or viable,
in a future open-source EDA ecosystem and culture. (This said, “only” 3×
loss of efficiency would arguably be a great improvement over the status quo.)

III. UNBLOCKING: NEAR-TERM MILESTONES

Four near-term, “unblocking” milestones for open-source EDA are
(i) unified flow, (ii) shared netlist architecture, (iii) continuous build
and integration, and (iv) generic node enablement.

A. Unified Flow

The IEEE CEDA Design Automation Technical Committee
(DATC) [28] has over the past several years maintained a Robust
Design Flow (RDF) based on winning tools from academic research
contests. The RDF provides (i) an academic reference flow from
logic synthesis to detailed routing based on existing contest results;
(ii) a database of design benchmarks and point tool libraries; and
(iii) a bridge between academic research and industry practice and
designs via the use of industry-standard design input/output formats.
At the same time, several opportunities for added research impact
and industry engagement remained out of reach due to factors such
as licensing, the “parallel universe” issue noted above, etc. As detailed
in [4], tools from the OpenROAD project and other researchers have
been added into the latest RDF-2019 release of the Robust Design
Flow (see Figure 2).

Logic synthesis

Floorplanning

Global placement

Detailed placement

Clock tree synthesis

Global routing

Detailed routing

GDSII streamout

Verilog RTL, SDC

Verilog, DEF, GDSII

OpenROAD

Yosys+ABC

TritonFP: v2def (Resizer) + ioPlacer
+ RePlAce + TritonMacroPlace + pdn + tapcell

RePlAce + Resizer + OpenDP

TritonCTS + OpenDP

FastRoute4-lefdef

TritonRoute

Magic

OpenDP

RC extraction / STA

RC extraction / STA

Gate sizing

OpenSTA + SPEF from placed DEF

OpenSTA + SPEF from routed DEF

Resizer, TritonSizer

Fig. 2. The RDF-2019 flow, reproduced from [4].

Relative to the previous RDF release, horizontal extensions include
adding numerous alternatives to existing tools, and vertical extensions
include adding previously-missing steps such as floorplanning, I/O
placement, power planning and clock tree synthesis. The result is
a full academic flow from behavioral (RTL) Verilog to final detail-
routed DEF. RDF-2019 provides many paths from Verilog to routed
DEF, including paths that are entirely open-source and capable
of delivering DRC-clean layout in a commercial (65nm) foundry
enablement.

B. Shared Netlist Architecture

Figure 3, adapted from [24], illustrates the architecture as well as
calls in the “common, incremental substrate” to which commercial
EDA has converged in the RTL-to-GDS domain. The thin blue arrows
illustrate the function or API calls and the thick blue arrow illustrates
the overall flow from synthesis to routing.

3



FLOW

Shared Netlist or Abstract Network Adapter

Timer

Synthesis

Netlist 
changes
callback

Delays
for a stage

Shared Physical or Data Model Adapter

Routed 
Metal

Placement CTS Routing
Post-Place Opt

(Sizing)

Timer API

Shell Interpreter

Script

Delay Calc

Fig. 3. Incremental shared netlist architecture.

By calling the Timer API, all of Synthesis, Placement, CTS,
and Post-placement Optimization can be timing-driven. The Shared
Physical or Data Model Adapter, which contains physical informa-
tion such as placement location or routed metal shapes, can communi-
cate with Synthesis, Placement, Routing, and the Timer. The Shared
Netlist or Abstract Network Adapter, which enables incremental
netlist modification, can communicate with Synthesis, Placement,
CTS, Post-Place Opt, Routing, and the Timer. In commercial EDA
tools, up to 10K incremental optimizations iterations per second can
be supported by this architecture.10

C. Continuous Build and Integration

Fig. 4. A multi-module continuous integration pipeline for EDA flow.

Maintaining the integrity of an open source-based EDA flow
requires a continuous integration (CI) pipeline that includes auto-
mated testing and packaging as part of the development life cycle.
The CI pipeline is necessary for speed of development in addition
to the stability of the code base. To reach this goal, automation

10An open-source instantiation of this architecture, including an open-
source physical design database and many aspects of a bona fide “EDA
framework”, is anticipated in OpenROAD [31] by the time of this paper’s
publication.

is a key component in the CI infrastructure. When implemented
using modular and independent open-source tools, the incremental
architecture presented in Figure 3 can be achieved by adopting the
approach that is illustrated in Figure 4 (see also [31]). Key aspects
are as follows.
Flow Components. Each module resides in its own git-based
repository and all modules can be built from sources. One module
can include another using the submodule feature of the git protocol.
The git submodule mechanism enables a tool to reference a specific
version of another tool or a module without breaking the flow unified
build if it uses another version. Here, the flow unified build is a
separate repository unto itself that has the recipe for building the
flow from the independent tools.
Git Branches. Adopting a branching scheme is important in
maintaining the code base of all the tools, and subsequently the flow
unified build. A variation of Git flow [38], a well-known scheme,
is shown in the figure where all contributions are committed to the
dev (development) branch. Changes that should be tested against the
flow unified build can be checked out to an intermediate branch that
represents the unified build. The master branch should always contain
a clean and stable state of the code base. Hence, the master branch
is merged to only when the unified build has been tested against the
new changes.
Automation Server. Although there are many cloud-based services
that can reduce the time to implement a CI pipeline, testing of
EDA tools and flows sometimes requires private environments to
run specific tests using private technology libraries. Therefore, at
least within the OpenROAD project, employing a self-hosted Jenk-
ins [39] installation is deemed essential. The Jenkins server monitors
repositories for changes committed to any of the code base, and
runs predefined steps in the automation pipeline. The pipeline builds
the code and runs unit tests on every commit pushed to the dev
branch. When commits are merged to the unified-build branch, flow
integration tests and Quality of Results (QoR) tests (see Section IV-C
below) are executed automatically and a full report is generated. If
this stage succeeds, it automatically merges changes to the master
branch. Build servers are where the actual execution of the pipeline
steps occurs. Build servers might also hold private designs and
technology libraries.
Community Contribution. The above-described branching scheme
allows code base maintainers as well as outside contributors to build
and contribute to the development in the same way – i.e., by pushing
(or issuing pull requests) to the develop branch only. Direct commits
to the unified-build or master branches are not allowed. In this way,
the presented approach welcomes outside researchers to contribute
directly to tools in the exact way that core maintainers do, thus
leading to faster research-to-production turnaround times.

D. Generic Node Enablement

Achieving advanced-node, no-human-in-the-loop, design rule-
clean layout is exceptionally challenging. This might be attributed
to the past decades of “coevolution” of commercial EDA tools, cell
libraries, IC design methodologies, and tool users’ expectations.11

11Commercial EDA and silicon vendors enable ultimate product PPA to be
achieved by large, expert design organizations over very long timelines for
design enablement and physical implementation. Design rule manuals have
thousands of rules; SP&R tools have thousands of command-option knobs;
and last-mile, manual fixing of several hundreds or thousands of design rule
violations just before tapeout is expected. Notably, today’s foundry PDKs and
third-party IPs (standard-cell libraries, etc.) do not need to be consistent with
“no-humans” EDA technology that guarantees design rule-clean layout.

4



Today, a given EDA provider spends enormous engineering effort to
qualify its tools with respect to each individual commercial design
enablement, without any of the “straight-out blockers” noted above.
An open-source EDA ecosystem has neither the R&D resources, nor
the access to proprietary foundry and third-party IP, to match this,
and the “coevolved” context is not likely to change. On the other
hand, projects such as OpenROAD aim for ultimate ease of use,
not ultimate PPA; furthermore, care-abouts of software in academic
research (e.g., transparency and modularity) are very different from
those for commercial software (e.g., ultimate “fusions” and scalability
in service of hyperoptimization). A crucial milestone for open-
source EDA is to achieve a foundation of infrastructure and design
enablement methodology that – as far as possible – “will work for
any node”. Such “generic” node enablement methodology is required
given the R&D resource and IP access limits cited above.

To generically support even advanced technology nodes, an ap-
proach taken by the OpenROAD project is to impose simplified
routing rules that serve to reduce “degree of difficulty” for academic
open-source detailed routers. Under the proposed simplifications, the
main requirements for the routing tool developer are (i) to enable
strict unidirectional routing, and (ii) to enable on-grid and in-pin pin
access. First, unidirectional routing makes design rules much simpler.
Especially for double-patterning technology routing layers, judicious
choices for only the end-to-end and side-to-side spacing rules (see
Figure 5 (bottom)) can cover most of the foundry design rule set for
routing layers. Furthermore, one of the most difficult challenges with
advanced nodes is for tools to correctly understand advanced design
rule syntax.12 The goal of generic node enablement implies that we
must avoid or otherwise subsume complex rules with LEF57 and
LEF58 prefix seen in advanced-node technology LEF. Second, on-
grid and in-pin access can simplify design rules related to pin access.
Since this avoids extra shapes on pin layers (e.g., M1), it enables
routing of designs without consideration for any rules between pin
shapes and routing.

Initial assessments of a commercial 14nm enablement from a
leading IP vendor show that existing commercial cell libraries and
memory generators are likely to be usable by open-source place-and-
route tools with only relatively minor restrictions. Such restrictions
include, for example, setting “don’t use” for cells with high pin
density. Depending on the sophistication of the open-source routing
tool, other help may be required, such as wrapping a “LEF-prime”
veneer area around certain cells and macros to ensure straightforward
on-grid pin access. Figure 5 (top) shows an example of such a veneer
around an SRAM instance to ensure on-grid pins.

IV. FUTURES AND LONGER-TERM CONSIDERATIONS

Open source must be welcoming and open, but cannot flourish as
a chaotic “tower of Babel”. Threading a path between openness and
chaos is helped by existence of a strong “backplane” of industry-
compatible database and underlying data model, along with well-
engineered, well-architected and maintainable tools. Three of the
near-term needs described in the previous section contribute to this
“backplane”. However, beyond near-term steps, many longer-term
considerations must be kept in mind. This section offers comments
on several of these.

12Today, design rules for a given advanced foundry node are encoded in
completely different ways (technology LEF, SVRF, TF) by major EDA place-
and-route tools.

Fig. 5. Top: Illustration of SRAM “veneer” to achieve on-grid pins. Bottom:
Simplified design rule set made possible by strict unidirectional routing for
DPT layers.

A. Community and Ethos

An open-source software project critically depends on its com-
munity of developers and users.13 The rise of internet-based software
development tools have enabled highly distributed collaborations with
others. To make it inviting to contribute to the project, the project
must provide value to the individual contributor. A first major source
of value is the infrastructure of the project. With viable EDA open
source, the developer can start with an existing and tested data model,
parsers and testcases which together provide much of the overhead
that would be needed to start a project from scratch. This value
is enhanced by the regression testing process, which protects the
integrity of the code base. A second major source of value is that the
open-source project provides a platform for publishing contributions.
A basic tenet is that making a direct and tangible contribution to the
project community leads to meaningful recognition. It is therefore
important for the open-source EDA community to provide proper
credit for contributions where due – and to help ensure that the credit
is properly comprehended by academic promotion committees, R&D
managers, funding agencies, etc.

Working in an open-source project requires adjustments from
developers as well. To be valued contributors, developers will need to
pay attention to the interests of the community. While it is certainly
possible to make a copy of open source and “do your own thing with
it” for one’s own purposes, in the long term this is not a winning
strategy [42]. Increasing divergence over time makes it more difficult
to profit from contributions of others. Contributions will need to fit
within the existing project and be a positive contribution, or at least
not be disruptive.

B. Outreach and Alignments

Open-source tools, software infrastructure (build/CI, test/QA), and
clear value delivered to open-source developers and users are at the
start of a long journey. To achieve a vibrant, self-sustaining open-
source EDA ecosystem, issues of growth, outreach and alignment
must be strategically considered – sooner rather than later. A key
issue is the support of stable, expert development resources; here, the

13 [42] [9] provide additional commentary on open-source culture and
behaviors.

5



substantial support that GNU, LLVM and other projects draw from
user companies can be instructive. Should open-source EDA achieve
greater maturity and capability, community needs could bifurcate
into those of academic researchers and those of large IC design
organizations; if this occurs, careful attention to and management
of interests will be needed.

Within the traditional EDA community – which has little experi-
ence with open-source culture – recent outreach and alignment efforts
have included the following. (1) Significant vertical and horizontal
extensions of the IEEE CEDA DATC academic Robust Design Flow
have been made, including the incorporation of several open-source
tools from the OpenROAD project. This provides a skeletal RTL-
to-GDS “full-flow” academic research backplane that can access
industry designs and foundry enablement. As a result, RDF-2019
brings academic EDA research and industry design practice signif-
icantly closer together [4]. (2) Meetings such as WOSET [43] and
DAC Birds-of-a-Feather [34] meetings have been organized. Such
face-to-face events will likely be complemented by freely-accessible
online seminars (e.g., [26] or those organized by [41]) and illustrative
donated source code bases. (3) The ICCAD-2019 global routing
contest [6] aims to address real-world challenges and, for the first
time, directly encourage codes to be released under a permissive
open-source license. Besides the core global routing algorithm, the
contest is unique in setting “resource abstraction” in the to-do list
for contestants, rather than providing pre-digested capacity and edge
adjustments. This captures the need for a modern global router
to achieve accurate resource modeling, with consideration of pin
accesses, existing power delivery networks (PDNs), blockages and
design rules – all from the raw inputs. Another unique aspect of the
contest is its evaluation of entries using an academic detailed router,
rather than comparing abstracted overflow metrics. A good global
router must correlate well with the detailed router, since only metrics
at the “achieved” end of the flow are meaningful in a real-world sense.
(4) Another recent mechanism directly encourages the community
itself to recognize meaningful contributions to open-source EDA.
The Open-Source Community Contribution Awards [30], initiated
in mid-2019, have a simple and open nomination mechanism and
are overseen by an industry committee; the first award was made in
August 2019 to the three undergraduates at UFRGS in Brazil who
developed the FastRoute4-lefdef global router. Many more creative
ideas and mechanisms toward “outreach” must emerge.

There is a clear prevailing zeitgeist of open-sourcing in systems,
hardware, software and design tooling. The DARPA ERI, and its
IDEA/POSH programs, are part of a wave that includes active and
well-supported entities such as RISC-V, CHIPS Alliance, FOSSI, and
OpenHW Group. These entities have brought reflected attention, if
not a spotlight, to open-source EDA. The EDA community would
do well to pay attention to the needs of these entities, as their mem-
berships include many leading semiconductor and system companies
who know EDA well and have been strong supporters of production-
quality open-source development.

C. Challenges of EDA Regression Testing

Section III-C above reviewed the architecture of CI/CD (continuous
integration / continuous delivery) [23] as implemented in the Open-
ROAD project. This provides developers with a stable code base to
develop new features from, and provides users with stable code to
use. However, “stable” is not the same as “bug-free”. Bug-free code
is an ideal that may be approximated but can never be reached. Stable
code, on the other hand, is good enough so that people can work on
real issues and improvements, rather than deal with fixing things that

used to work. In this context, it is clear that regression testing plays
a crucial role in the EDA development and integration process.14

While not specific to open-source EDA, it is worth noting the
special concern of instability that arises in regression testing for EDA
optimization (i.e., ‘synthesis’ or ‘creation’) heuristics. Trevillyan [25]
refers to such heuristic optimization methods as “automated design
algorithms”; such an algorithm is termed unstable when a small
change in the input can cause a large change in the output. (This
phenomenon has been referred to as “noise” or “chaos” in other
works [21] [10] [19].) For decades, EDA technology in well-studied
problem domains such as logic optimization or place-and-route has
been dominated by heuristics that exhibit chaotic behaviors.15

Chaotic tool behavior poses special challenges for regression
testing. While in most software projects a regression test checks for
correct versus incorrect behavior, in automated design algorithms a
wide variety of solutions can be considered correct. For example,
any routing solution that connects all of wires correctly without
overlap can be considered a correct solution to the routing problem.
Various different solutions can be evaluated by quality metrics – e.g.,
different routing solutions can be evaluated by total wirelength. So, a
regression test for the router which routes an input design would set
an upper bound for the acceptable wirelength. When the wirelength
exceeds the upper bound, the regression test fails.

While a regression test can work around the problem of algorithmic
instability by allowing a range of solutions, such an approach is
not problem-free. If the upper bound in the regression test is set
tightly, the regression test may fail occasionally due to “noise”. Mere
random fluctuations in the wirelength quality metric may cause the
test to fail even when no real bug or error exists in the code. Thus,
debugging the failed regression may be difficult, as it may be difficult
to determine whether a bug is actually present. On the other hand,
setting a loose upper bound minimizes spurious regression failures
but suffers a different problem: small changes in the optimization
quality may not be detected, and the optimization heuristic may
slowly deteriorate over time without triggering a regression failure.
When finally detected, several problems may have crept in over time
without being detected, and the latest change may not be the actual
source of the regression failure. These challenges of QoR testing at
both flow and tool levels will likely require significant management
oversight and QA/developer effort in the open-source context.

D. Measuring Progress: Roadmapping of Open-Source EDA

Open-source EDA is synonymous with open-source design technol-
ogy. In this light, the over 25 years of technology roadmapping in the
semiconductor industry, including over 15 years of the ITRS roadmap
[40], can guide the roadmapping of open-source EDA. Among other
functions, an impactful roadmap must (i) set out difficult challenges,

14Regression testing consists of applying testcases that were known to be
successfully handled by the software. Having sufficient coverage by such
testcases ensures that most features that work will continue to work. In the
context of the release process, the regression testing assures that releases meet
a certain quality threshold.

15As an example, consider the case of a router. Most routers route wires
one by one, starting with an empty routing area and avoiding existing wires
as they are added. Even if each wire can be optimally routed, the final result
will be dependent on the order of the wires. If one starts with a different
wire, the routes of the subsequent wires will be different and the overall
solution will be different. [19] and Section 2 of [16] point out that this chaos
is especially apparent when complex heuristics are pushed to their solution
quality limits. When different types of optimization are executed in sequence
in a flow, the problem is compounded. And, unfortunately, not only changes
to the input design but also changes to the software or even changes in the
runtime environment can cause this type of behavior.

6



potential solutions, and a mapping between challenges and solutions,
at both near- and long-term time horizons; (ii) establish required
trajectories of quantified metrics that meaningfully capture progress
of the field; and (iii) engage and unite with common purpose a
broad community of stakeholders (e.g., industrial R&D, academic re-
searchers, government/consortia, users, entrepreneurs and investors).

Fig. 6. Illustration of roadmap styles for open-source design technology
metrics.

It is difficult to precisely define metrics that can be used over a
decade or more to measure progress of a given technology. Figure
6 illustrates various flavors of open-source EDA metrics that might
exist within the classic 15-year, white-yellow-red roadmap table style
seen in the ITRS. The first row illustrates a normalized or relative
metric, for which the definition of threshold (e.g., as a function of
contributors, commits, forks, pull requests, documented usage, ...)
is crucial. The second through fourth rows illustrate numerically-
quantified metrics, along with the kind of specificity (commercial
entity, technology node, market sector, headcount, ...) that enables
metric evaluation. These rows also illustrate the yellow-red coloring
convention of roadmap targets to indicate, e.g., the dependence of
commercial product tapeouts on emergence of open-source industry
structures (cf. Section 5 of [2]). The fifth row again highlights the
critical nature of a metric’s definition - in this case, with respect to
the universe of “relevant” papers. The sixth row, “PPA metric ratio”,
illustrates a metric with bounded value – in this case, bounded from
below, by 1.

The use of devices such as “N − 4” (i.e., “four nodes behind the
leading-edge node”) in the “PPA metric ratio” example helps enable
longitudinal assessment of progress without referring to a specific
technology node. To avoid references to specific tools, algorithms
or testcases, PROBE [17] gives a testcase-insensitive methodology
for comparing design enablement elements ranging from placement
and routing tools to back-end-of-line (metal layer) stacks. The so-
called Kth criterion [17] defines a continuum of layout problem
difficulty; tools can be compared by, e.g., the Kth value at which the
number of design rule violations exceeds a given threshold. Figure 7
shows how Kth could potentially expose and quantify the difference
between OpenROAD and commercial capabilities for placement and
for routing.

E. Long-Term Challenges and Potential Solutions

Many long-term challenges, along with their potential solutions,
require thoughtful roadmapping over at least a 5-10 year horizon.
Examples of such challenges (several touched on above) are as
follows. (1) With the very notable exception of the commercial static
timing analysis engine OpenSTA [37], open-source EDA has not yet
made significant progress toward signoff-quality verifications such

Fig. 7. (a) PROBE-based comparison of OpenROAD placement and a leading
commercial placer. The name “aes60” indicates testcase aes with 60% initial
utilization. (b) OpenROAD’s routing tool begins to show significant #DRCs
at Kth = 9, and cannot produce any solution when Kth > 28.

as timing and power analyses, or DRC/ERC/LVS checkers. Section
II-A noted the structural barrier of foundry qualification. More
daunting is the sheer difficulty of mastering this EDA technology,
particularly for advanced-node design requirements. There is likely
no shortcut for well-resourced development by EDA veterans over
a multi-year span. (2) For current open-source projects, the non-
commercial status of academic research labs remains a barrier to
the traditional bug-fix and support interactions between EDA provider
and user. Here, the aegis of open-source foundations, and/or secure
cloud-based EDA infrastructures pioneered by commercial EDA in
partnership with foundry/IP and customers, and/or emerging IP-
preserving cryptographic protocols, may provide solutions. Perhaps
more critically, academic researchers often lack training and motiva-
tion to produce and support production-quality tools. Section IV-B
noted the possibility of a future bifurcation of open-source EDA as
academic research needs and commercial IC design needs diverge.
(3) The IC design ecosystem increasingly looks to bf enablement
of machine learning for future cost and schedule savings in IC
design [16] [32]. Such savings are among the “last scaling levers”
in a late- or post-Moore’s-Law scaling era. Since open-source EDA
tools are transparent with regard to “what the tool is thinking”,
machine learning in the context of open-source tools and designs
can advance more rapidly than in the typical commercial (closed-
source tools, arms-length insight into customer designs) context.
Standardized metrics naming, enablement of flow-scale (reinforce-
ment) learning, federated learning and privacy-preserving modeling,
model sharing mechanisms, and many other needs are reviewed
in various talks linked from https://vlsicad.ucsd.edu/. (4) Viable
business and support models (“RedHat of FOSS EDA”, GPL open-
sourcing plus consulting services, funding of development via an
open-source foundation, etc.) are needed. As noted in Section IV-
B, potential alignments to open hardware organizations may provide
a path forward, while also helping with growth and support of a
healthy ecosystem for open-source EDA. (5) Open-source EDA

7



should accelerate growth paths for commercial EDA. With critical
quality and critical mass including elements described in Section
III above, open-source innovation should see faster research-to-
production pathways in the existing scope of EDA. Open-source
EDA also has great potential to boost the quality of research tools
for nascent or niche “XDA” challenges (design automation for X
= monolithic 3D VLSI, microfluidic labs-on-chip, next-generation
FPGA P&R, etc.) that commercial vendors have not yet addressed.
A long-term roadmap of “XDA” targets (cf. [44]) may provide useful
direction to the community.

V. CONCLUSIONS

Over 40 years ago, permissively open-sourced academic tools
helped seed the field of electronic design automation as we know
it. Since that time, our field has endured decades of blame for cost,
quality and productivity shortfalls in the IC design ecosystem. While
research in EDA has always been very challenging, it has also been
made unnecessarily difficult by a number of “straight-out blockers”,
as well as a systemic lack of reusable research artifacts, research
infrastructure, and bridges to industrial practice. At the same time,
a wave of open-source has swept across software, hardware and
systems – every adjacency of electronic design automation – visibly
accelerating growth and innovation.

As stated in Section II-A above, “whether to open-source is always
a 100% personal decision”. Open source affords the EDA community
a means of paying it forward, sharing wisdoms accumulated over
entire careers, and attracting and teaching a next generation of EDA
researchers and technologists. Open source is not a threat, but rather
a complement and boost, to commercial EDA. At a personal level, it
is liberating. For a community that has the strength of good intentions
and a shared vision, it is absolutely doable. Let’s not be afraid.

ACKNOWLEDGMENTS

The author thanks many past and current students and collabora-
tors, including members of the OpenROAD project, who have helped
to develop the works and perspectives given here. Many thanks are
due to Lukas van Ginneken, Tom Spyrou and Abdelrahman Hosny
for providing substantial inputs, including figures and text, for the
discussions of testing, incremental tool architecture, and CI/repository
organization. And, many thanks to Pierre-Emmanuel Gaillardon for
inviting this contribution. Research at UCSD is supported by Qual-
comm, Samsung, NXP Semiconductors, Mentor Graphics, DARPA
(HR0011-18-2-0032), NSF (CCF-1564302), and the C-DEN center.

REFERENCES

[1] T. Ajayi, D. Blaauw, T.-B. Chan, C.-K. Cheng, V. A. Chhabria, D. K. Choo, M.
Coltella, S. Dobre, R. Dreslinski, M. Fogaça, S. Hashemi, A. Hosny, . B. Kahng, M.
Kim, J. Li, Z. Liang, U. Mallappa, P. Penzes, G. Pradipta, S. Reda, A. Rovinski, K.
Samadi, S. S. Sapatnekar, L. Saul, C. Sechen, V. Srinivas, W. Swartz, D. Sylvester,
D. Urquhart, L. Wang, M. Woo and B. Xu, “OpenROAD: Toward a Self-Driving,
Open-Source Digital Layout Implementation Tool Chain”, Proc. GOMACTECH,
2019, pp. 1105-1110.

[2] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M.
Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda, M. Saligane, S. S.
Sapatnekar, C. Sechen, M. Shalan, W. Swartz, L. Wang, Z. Wang, M. Woo and B.
Xu, “Toward an Open-Source Digital Flow: First Learnings from the OpenROAD
Project”, Proc. DAC, 2019, pp. 76:1-76:4.

[3] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Toward CAD-IP Reuse: The
MARCO GSRC Bookshelf of Fundamental CAD Algorithms”, IEEE Design and
Test of Computers 19(3) (2002), pp. 70-79.

[4] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li, S.-T. Lin
and M. Woo, “DATC RDF: Towards a Complete Reference Flow”, Proc. ICCAD,
2019, to appear.

[5] R. Cox, “Surviving Software Dependencies”, Comm. of the ACM 62(9) (2019),
pp. 36-43.

[6] S. Dolgov, A. Volkov, L. Wang and B. Xu, “2019 CAD Contest: LEF/DEF Based
Global Routing”, Proc. ICCAD, 2019, to appear.

[7] H. Fatemi, A. B. Kahng, H. Lee, J. Li and J. Pineda de Gyvez, “Enhancing
Sensitivity-Based Power Reduction for an Industry IC Design Context”, Integra-
tion, the VLSI Journal (2019), doi:10.1016/j.vlsi.2019.01.008

[8] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik and B. Thielges, “METRICS:
A System Architecture for Design Process Optimization”, Proc. DAC, 2000, pp.
705-710.

[9] T.-W. Huang, C.-X. Lin, G. Guo and M. D. F. Wong, “Essential Building Blocks
for Creating an Open-source EDA Project”, Proc. DAC, 2019, pp. 78:1-78:4, https:
//tsung-wei-huang.github.io/talk/dac19-invited.pdf.

[10] K. Jeong and A. B. Kahng, “Methodology From Chaos in IC Implementation”,
Proc. ISQED, 2010, pp. 885-892.

[11] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, V. N. Kravets and G.-J. Nam,
“DATC RDF: An Academic Flow from Logic Synthesis to Detailed Routing”,
Proc. ICCAD, 2018, pp. 37:1-37:4

[12] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, V. N. Kravets and G.-J. Nam,
“DATC RDF: An Open Design Flow from Logic Synthesis to Detailed Routing”,
Proc. WOSET, 2018, pp. 6:1-6:4.

[13] J. Jung, I. H.-R. Jiang, G.-J. Nam, V. N. Kravets, L. Behjat and Y.-L. Li,
“OpenDesign Flow Database: the Infrastructure for VLSI Design and Design
Automation Research”, Proc. ICCAD, 2016, pp. 42:1-42:6

[14] J. Jung, P.-Y. Lee, Y.-S. Wu, N. K. Darav, I. H.-R. Jiang, V. N. Kravets, L.
Behjat, Y.-L. Li and G.-J. Nam, “DATC RDF: Robust Design Flow Database”,
Proc. ICCAD, 2017, pp. 872-873.

[15] A. B. Kahng, “CAD Research, Pay Now or Pay Later...”, ICCAD Monday Evening
Panel, 2006. https://vlsicad.ucsd.edu/Presentations/talk/ICCADPanel-abk-v3.ppt

[16] A. B. Kahng, “Reducing Time and Effort in IC Implementation: A Roadmap of
Challenges and Solutions”, Proc. DAC, 2018, pp. 36:1-36:6.

[17] A. Kahng, A. B. Kahng, H. Lee and J. Li, “PROBE: A Placement, Routing, Back-
End-of-Line Measurement Utility”, IEEE Trans. on CAD 37(7) (2018), pp. 1459-
1472.

[18] A. B. Kahng and F. Koushanfar, “Evolving EDA Beyond its E-Roots: An
Overview”, Proc. ICCAD, 2015, pp. 247-254.

[19] A. B. Kahng, S. Kumar and T. Shah, “A No-Human-in-the-Loop Methodology
Toward Optimal Utilization of EDA Tools and Flows”, unpublished manuscript,
2017, linked from https://vlsicad.ucsd.edu/MAB/.

[20] A. B. Kahng, M. Luo, G.-J. Nam, S. Nath, D. Z. Pan and G. Robins, “Toward
Metrics of Design Automation Research Impact”, Proc. ICCAD, 2015, pp. 263-
270.

[21] A. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA Tools”, Proc.
ISQED, March 2002, pp. 206-211.

[22] H. A. Landman, “Visualizing the Behavior of Logic Synthesis Algorithms”, SNUG
San Jose, 1998.

[23] R. Potvin and J. Levenberg, “Why Google Stores Billions of Lines of Code in a
Single Repository”, Comm. of the ACM 59(7) (2016), pp. 78-87.

[24] T. Spyrou, “Open-Source EDA Challenges and Architecture”, opening talk at DAC-
2019 Open-Source Academic EDA Software Birds-of-a-Feather meeting.

[25] L. Trevillyan, “An Overview of Logic Synthesis Systems” Proc. DAC, 1987, pp.
166-172.

[26] L. van Ginneken, “Regression Testing & Quality Assurance”, online seminar,
August 1, 2019. Video and slides at https://youtu.be/LhssH9Qx9Lc.

[27] DARPA IDEA,
https://www.darpa.mil/program/intelligent-design-of-electronic-assets

[28] DATC, https://ieee-ceda.org/node/2591 and https://github.com/ieee-ceda-datc/
RDF2019

[29] OpenROAD, https://theopenroadproject.org/
[30] Open-Source Community Contribution Awards Nomination Form, https://

theopenroadproject.org/openroad event/oscca/
[31] OpenROAD GitHub, https://github.com/The-OpenROAD-Project (see also https:

//github.com/The-OpenROAD-Project/alpha-release).
[32] The METRICS Initiative, https://vlsicad.ucsd.edu/GSRC/metrics/
[33] Yosys Open SYnthesis Suite, http://www.clifford.at/yosys/
[34] DAC 2019 Birds-of-a-Feather Meeting: Open-Source Academic EDA Software

Continued, https://github.com/The-OpenROAD-Project/
Birds-of-a-Feather-Open-Source-Academic-EDA-Software/wiki/
DAC-2019-Birds-of-a-Feather:-Open-Source-Academic-EDA-Software

[35] Census of Open-Source Academic EDA Software, https://github.com/
abk-openroad/Academic-Open-Source-Tool-and-Contest-Winners/wiki/
Academic-Open-Source-Tool-and-Contest-Winner-Stats

[36] (MARCO GSRC) VLSI CAD Bookshelf. http://vlsicad.eecs.umich.edu/BK/
[37] OpenSTA, https://github.com/The-OpenROAD-Project/OpenSTA/
[38] Git branching model, https://nvie.com/posts/a-successful-git-branching-model/
[39] Jenkins website, https://jenkins.io/
[40] International Technology Roadmap for Semiconductors (multiple year reports of

Design, System Drivers, and System Integration (ITRS2.0) chapters), http://www.
itrs2.net/itrs-reports.html.

[41] VLSI System Design website, https://www.vlsisystemdesign.com/
[42] T. Ansell, “FOSS 101” and “FOSS 102” presentations, July 2019. j.mp/

eri19-foss101 and j.mp/eri19-foss102.
[43] Workshop on Open-Source EDA Technology (WOSET), http://scale.engin.brown.

edu/woset/.
[44] IEEE CEDA Design Automation Futures Workshop, October 2016. https://

ieee-ceda.org/event/design-automation-futures-workshop-2016-dafw

8


