
DATC RDF-2019: Towards a Complete Academic
Reference Design Flow

Invited Paper

Jianli Chen∗, Iris Hui-Ru Jiang†, Jinwook Jung‡, Andrew B. Kahng§, Victor N. Kravets‡,
Yih-Lang Li¶, Shih-Ting Lin¶, and Mingyu Woo§

∗Fuzhou University, Fuzhou, China
†National Taiwan University, Taipei, Taiwan

‡IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
§UC San Diego, La Jolla, CA, USA

¶National Chiao Tung University, Hsinchu, Taiwan

Abstract—We describe a new RDF-2019 release of the IEEE
CEDA DATC Robust Design Flow (RDF). RDF-2019 enhances the
DATC RDF to span the entire RTL-to-GDS IC implementation
flow, from logic synthesis to detailed routing. The new release
represents a significant revision of the previously-reported RDF-
2018 flow. Noteworthy vertical extensions include addition of
logic synthesis starting from pure behavioral RTL Verilog RTL;
floorplanning that includes initial DEF creation, I/O placement
and PDN layout generation; and clock tree synthesis between
placement legalization and global routing. A number of horizontal
extensions to RDF are achieved by incorporating additional tool
options at the static timing analysis, global placement, gate sizing,
and detailed routing stages of the flow. Further, for the first time,
multiple open-source realizations of the entire RDF tool chain
are available. Last, RDF-2019 provides significantly enhanced
support of and interoperability with industry-standard tools
and design formats (LEF/DEF, SPEF, Liberty, SDC, etc.). We
illustrate the configuration and use of RDF-2019, with example
results on open as well as commercial design enablements.

I. INTRODUCTION

Winning tools from academic research contests have for
many years offered innovative solutions to modern design
challenges. Building upon these outstanding point tools,
the IEEE CEDA Design Automation Technical Committee
(DATC) [1] has developed an open reference design flow,
called DATC Robust Design Flow (RDF), to facilitate research
on flow-scale methodology and cross-stage optimizations. As
detailed in a series of papers beginning at ICCAD-2016 [2]–
[5], the DATC RDF seeks to (i) provide an academic reference
flow from logic synthesis to detailed routing based on existing
contest results; (ii) construct a database for design benchmarks
and point tool libraries; and (iii) connect academic research to
industry practitioners and designs by using industry-standard
design input/output formats.

While the past several years have seen increased engage-
ment and expansion of the RDF flow, several opportunities
for added research impact and industry engagement have
remained out of reach. We note three key challenges that
have been faced by RDF. (1) The chaining of academic
contest-winning tools alone leaves significant gaps that pre-
clude research on flow-scale or cross-stage optimizations. For
example, the last-reported RDF-2018 flow [4], [5], misses such

functions as initialization of floorplan DEF, I/O placement,
macro placement, clock tree synthesis, and generation of
SPEF from placed or routed DEF. (2) RDF has maintained a
policy of incorporating both open-source and non-open-source
(distribution via binaries, or with usage restrictions) tools, to
honor academic creators’ freedoms and preferences. However,
closed-source binaries cannot be updated, e.g., to handle a
new hierarchy delimiter case or an industrial format extension.
And, a tool with “no commercial use” typically cannot be
opened by industry collaborators (see [6], [7] for useful “Open
Source 101 / 102” background). (3) Crucially, a number of
academic contests out of necessity use testcases that embody
strong simplifications to data models and/or industry formats.
Perpetuating these simplifications (e.g., translating a Bookshelf
variant to LEF/DEF), along with a focus on comparisons
with previous works using (old) contest benchmarks, has
kept academic research in a kind of parallel universe of
“translated”, as opposed to “standard”, industry formats and
testcases. Tools developed in this parallel universe are often
unable to accept real-world designs and enablements.

The latest RDF-2019 release that we describe in this paper
makes significant progress toward overcoming the above bar-
riers. RDF-2019 leverages recent academic tool developments
in the OpenROAD project [8], [9] to add previously-missing
steps such as floorplanning, I/O placement, power planning
and clock tree synthesis. These vertical flow extensions lead
to a full academic flow from behavioral (RTL) Verilog to
final detail-routed DEF. RDF-2019 also includes horizontal
flow extensions that add numerous alternatives to existing
tools. RDF-2019 now provides many paths from Verilog to
routed DEF, including paths that are entirely open-source
and capable of delivering DRC-clean layout in a commercial
(65nm) foundry enablement.

II. RDF-2019 FLOW EVOLUTION

Previous accounts of the DATC RDF flow [2]–[5] document
its origin as a composition of academic point-tool binaries for
logic synthesis, placement, timing analysis, gate sizing, global
routing, and detailed routing. These binaries are interfaced via
transitional scripts that enable data exchange between tools of



Logic synthesis

Floorplanning

Global placement

Detailed placement

Clock tree synthesis

Global routing

Detailed routing

GDSII streamout

Verilog RTL, SDC

Verilog, DEF, GDSII

OpenROAD

Yosys+ABC

TritonFP: v2def (Resizer) + ioPlacer
+ RePlAce + TritonMacroPlace + pdn + tapcell

RePlAce + Resizer + OpenDP

TritonCTS + OpenDP

FastRoute4-lefdef

TritonRoute

Magic

OpenDP

RC extraction / STA

RC extraction / STA

Gate sizing

OpenSTA + SPEF from placed DEF

OpenSTA + SPEF from routed DEF

Resizer, TritonSizer

Fig. 1. Overview of RDF-2019 flow. It unifies RDF-2018, OpenROAD and
additional tools. Vertical extensions made in this year are highlighted in gray.

other domains. The RDF flow continues to be maintained in
this form, both on a Jenkins Pipeline-based server and in a
commercial cloud deployment; see the README at [10].

As noted above, our current RDF-2019 includes both hori-
zontal and vertical extensions of the previous RDF-2018 flow.
Figure 1 shows the past year’s advances that have led to the
current state of RDF-2019. Vertical extensions from RDF-2018
to RDF-2019 include:

• Logic Synthesis from RTL (Yosys+ABC)
• Floorplan (TritonFP)
• Clock Tree Synthesis (TritonCTS)

Horizontal extensions from RDF-2018 to RDF-2019 include:

• Global Placement (FZUplace, RePlAce)
• Detailed Placement (OpenDP)
• Global Routing (FastRoute4-lefdef)
• Detailed Routing (Dr. CU, TritonRoute)
• Gate Sizing (Resizer, TritonSizer)
• Static Timing Analysis (OpenSTA)

Table I gives a concise summary of the recent RDF evolution.
We give details of these extensions in the next section.

III. DETAILS OF RDF-2019 FLOW ELEMENTS

A. Technology Libraries

RDF-2019 is tested on NanGate45 [11] and ASAP7 [12]
technology libraries. With NanGate45, we have fully tested
the RDF-2019 flow through the end of detailed routing. With
ASAP7, the flow has been tested through the global routing

Fig. 2. A DRC-clean P&R result in TSMC 65LP obtained by the OpenROAD
toolchain, which is available in RDF-2019.

stage.1 In addition to those libraries, RDF-2019 also supports
NCTUcell [13], a cell library based on the ASAP7 PDK which
is generated in a fully automated way without any manual
intervention. NCTUcell is newly included in the design flow
this year and publicly available under RDF-2019. In addition
to the cells in ASAP 7nm library, NCTUcell offers high-
driving strength cells than ASAP7, including AND (x3–x16),
BUF (x11–x14), Dlatch (x5–x8), INV (x11–x16), NAND (x3–
x4), NOR (x3–x4), OR (x3–x18), XOR (x3–x16), and XNOR
(x3–x16). The RDF library, based on ISPD-2012/2013 gate
sizing contest cell library and reported in [4], has been found
to have flaws in LEF and other elements. It is therefore no
longer part of the supported technologies/libraries in RDF-
2019.

Separately, tools in the OpenROAD project have demon-
strated DRC-clean layout generation capability in the TSMC
65LP foundry node [14], [15]. They are available in RDF-
2019 as noted above, and hence RDF-2019 can also support
TSMC 65LP library if it is configured to use the OpenROAD
toolchain (e.g., RePlAce, TritonCTS and TritonRoute). Fig-
ure 2 shows the DRC-clean P&R result in TSMC 65LP en-
ablement of a design block (bsg manycore tile, “VanillaBean”
[16]) with 17k standard-cell instances and four SRAM macros,
obtained by running the entire RTL-to-GDS OpenROAD tool
chain.

Note that only NanGate45 is, to the best of our knowledge,
freely distributable. The ASAP7 PDK and other design enable-
ment is not usable within commercial entities, and cannot be
redistributed. This has detracted from its use at the interface
between academic research and industry practice. Memory
generators are a key gap in RDF-2019; as of this writing,
we are not aware of any available memory generator for
NanGate45. We are hopeful that memory generators from UC
Santa Cruz (OpenRAM [17]), Yale (AMC [18]) or elsewhere
will be contributed for broad use, including in our flow.

B. Logic Synthesis

The synthesis step of RDF-2019 accepts the behavioral
circuit specification as Verilog RTL, and produces a library-
mapped netlist implementation. Verilog timing assertions as

1ASAP7 has several LEF58 design rules, as it seeks to emulate production
7nm foundry rules. These LEF58 rules are not fully supported by publicly
available academic detailed routers, which are typically based on the ISPD-
2018/2019 contests.

2



TABLE I
VERTICAL AND HORIZONTAL EXTENSIONS MADE IN THE RDF-2019 FLOW

Component RDF-2018 [4] RDF-2019 Extension
Logic synthesis (RTL) - Yosys+ABC
Logic synthesis (gate-level) ABC -
Floorplanning - TritonFP
Global placement NTUPlace3, ComPLx, mPL5/6, FastPlace3-GP, Capo, Eh?Placer FZUplace, RePlAce
Detailed placement FastPlace3-DP, MCHL-T OpenDP
Clock tree synthesis - TritonCTS
Global routing NCTUgr, FastRoute4.1, BFG-R FastRoute4-lefdef
Detailed routing NCTUdr Dr. CU, TritonRoute
GDSII streamout - Magic
Gate sizing USizer2012, USizer2013 Resizer, TritonSizer
Parasitic extraction - OpenROAD Utilities (PEX)
Timing analysis OpenTimer, iTimerC OpenSTA
Libraries/Technologies ISPD-2012/2013 Contests, ASAP-7nm NanGate45, NCTUcell

well as the standard SDC constraints format are supported
in the flow. Up to RDF-2018, only structural (gate-level)
Verilog was accepted as input to synthesis. In RDF-2019, the
Yosys+ABC extension allows for more general RTL speci-
fications, making the flow encompass RT-level Verilog as a
starting point for implementation.

C. Floorplanning

Floorplanning in the RTL-to-GDS flow begins with logic
synthesis outputs and ends with a DEF that is suitable
for standard-cell global placement, i.e., with completed I/O
placement, macro placement, PDN (P/G mesh) layout, and
welltap/endcap placement. The floorplanning step of RDF-
2019 is performed by TritonFP, whose first step uses [19]
to generate an initial floorplan DEF from the post-synthesis
structural Verilog netlist. The global placement tool RePlAce
[20], [21] is an open-source electrostatics-based placer that
supports mixed-size circuits and timing-driven placement. Its
use in RDF-2019 includes seeding the TritonMacroPlace
macro placement with a timing-driven mixed-sized placement
solution. To leave a simpler problem for later placement and
routing steps, TritonMacroPlace divides the layout region into
four quadrants and uses a modified ParquetFP [22] to pack
and snap macros into corners of the layout.

I/O placement is another step that is new in RDF-2019.
The ioPlacer [23] code developed at UFRGS heuristically
determines IO pin locations through applications of the Hun-
garian matching algorithm. Input to the I/O placement step
consists of the initialized floorplan DEF and the post-synthesis
gate-level netlist that can include macros. The ioPlacer code
also accepts constraints on pin layers and allowed/disallowed
segments of the region boundary along which I/Os are placed.
Last, TritonFP also includes codes and scripts for PDN (P/G
mesh) layout and tapcell insertion.

D. Global Placement

In RDF-2019, two recent global placers FZUplace [24] and
RePlAce [20], [21] are added to the six placers already present
in RDF-2018. FZUplace provides an analytical solution to the
equation to calculate the potential energy of an electrostatic

system. A fast computation scheme of Poisson’s equation
yields an effective and efficient global placement algorithm.
RePlAce proposes a new density function that comprehends
local overflow of area resources; this enables a constraints-
oriented local smoothing at per-bin granularity. Extensions are
also given to address timing and routability. In timing-driven
mode, RePlAce optimizes both WNS and TNS criteria, guided
by OpenSTA [25] and iterative reweighting of timing-critical
nets using the method of [26].

E. Detailed Placement

An open-source detailed placer OpenDP has been newly
added in RDF-2019. Developed for the ICCAD-2017 Mixed-
Cell-Height Standard Cell Legalization Contest, OpenDP [27]
performs mixed-height legalization based on fence region
constraints. It first performs pre-legalization and mixed-height
standard cell legalization, then improves solution quality using
simulated annealing to reduce displacement from the original
cell locations.

F. Clock Tree Synthesis

Clock tree synthesis (CTS) is another vertical extension seen
in RDF-2019. TritonCTS [28] is an open-source extension of
the academic code reported in [29], with usage of mathe-
matical programming solvers replaced by heuristic codes that
are more amenable to open-sourcing. Inputs to the CTS step
consist of a gate-level netlist (.v) and a placed DEF; standard-
cell library information is also needed for a lookup-table
characterization step that informs slew- and delay-constrained
buffering. TritonCTS calls OpenDP internally to legalize clock
buffers inserted during CTS.

G. Global Routing

A new open-source global router, FastRoute4-lefdef [30],
has been added to RDF-2019. FastRoute4-lefdef is based on
the well-known open-source FastRoute4.1 [31] from Iowa
State University, and is written on top of Rsyn [32], the open-
source physical design framework developed by the Federal
University of Rio Grande do Sul (UFRGS). It “natively”
supports LEF/DEF format. Importantly, it also outputs the

3



“route guide” format established by the ISPD-2018 and ISPD-
2019 Initial Detailed Routing Contests, to achieve a well-
defined handoff between global and detailed routing in the
academic research world. (Such a handoff is always hidden
inside any commercial place-and-route tool.) We note that pre-
vious academic global routers are largely unable to “natively”
read LEF/DEF input files, as they were developed for the
formats of the ISPD-2007 and ISPD-2008 contests (.gr), or of
the ISPD-2011, DAC-2012 and ICCAD-2012 contests (.route).
Thus, RDF-2019 provides a preprocessor utility that creates
global routing benchmark inputs in the ISPD-2007/2008 con-
test format from LEF/DEF placement instances (recall the
challenge of “translated” versus “standard” industry formats
noted above).

H. Detailed Routing

In RDF, the detailed routing step takes as input industry-
standard LEF/DEF along with the route guide (.guide) format
established by the ISPD-2018 Initial Detailed Routing Contest
[33]. Similar to the case of global routing, the RDF flow
provides a utility to ensure that the detailed routing inputs
are well-formed. The utility checks if (i) the track information
in given DEF file conforms with the metal pitch information
defined in LEF, and (ii) there are any missing design rules,
e.g., minimum area and/or end-of-line spacing on layers in
LEF. The utility also serves as a .route guide checker, to
examine whether the global router ignores the routes of the
overflowed nets. Since existence of a global route guide for
each net is compulsory for some detailed routers,2 if a net
without a global guide is found, the checker will add for this
net a global routing guide enclosed by the bounding box of
all of the net’s pins.

The ISPD-2019 contest-winning team’s detailed router,
Dr. CU [34], has been added to the RDF-2019 flow. With the
aid of global route guides, Dr. CU has excellent performance
in terms of quality and runtime. However, if there are some
nets with no initial global guide from the global router, Dr. CU
becomes slow because the range of the global guide offered
by the checker may be very large as compared to a global
guide identified by the global router.

TritonRoute [35] is also added in RDF-2019. With its
integrated DRC engine, TritonRoute is the first open-source
academic detailed router which is capable of delivering DRC-
clean routing solution in a commercial foundry node (e.g.,
TSMC 65LP, with Arm standard cells and generated memo-
ries) with a restricted selection of standard cells and macros.

I. GDSII Streamout

Magic VLSI [36] is a VLSI layout tool originally written
in the 1980s at UC Berkeley. Now maintained by developer
Tim Edwards, it supports various foundry process design kits
(PDKs). It also provides a DEF-to-GDSII flow which has

2In ISPD-2018/2019 Initial Detailed Routing Contest benchmark circuits,
every net has associated routing guides. Hence, academic detailed routers
based on ISPD-2018/2019 contests may assume that a routing guide is
available for every net.

1 - stage: synth
2 tool: yosys-abc
3 parms: { max_fanout: 16, script: resyn2rs }
4

5 - stage: floorplan
6 tool: TritonFP
7 parms: { utilization: 0.5, aspect_ratio: 1 }
8

9 - stage: global_place
10 tool: RePlAce
11 parms: { target_density: 0.8, timing-driven: true }
12

13 - stage: detail_place
14 tool: opendp
15

16 - stage: cts
17 tool: TritonCTS
18 parms: { target_skew: 50, max_fanout: 32 }
19

20 - stage: global_route
21 tool: FastRoute4-lefdef
22

23 - stage: detail_route
24 tool: TritonRoute
25 parms: { time_out: 36000 }
26

27 - timer: OpenSTA
28 - sizer: TritonSizer

Fig. 3. RDF-2019 flow configuration example.

been demonstrated to successfully convert routed DEF into
GDSII (with correctness confirmed using commercial physical
verification tools), in both commercial foundry 65LP and open
NanGate45 technologies.

J. Timing Analysis

OpenSTA [25] has been developed over nearly 20 years and
is an open-sourced version of the commercial Parallax timer.
OpenSTA is publicly available on GitHub [25] and supports
other timing-aware tools in RDF-2019 such as RePlAce [21],
Resizer [19], TritonCTS [28] and TritonSizer [37]. A crucial
benefit of OpenSTA is its production-proven (as an engine
embedded in over 15 EDA companies’ products) handling of
SDC constraints as well as Verilog, cell libraries and parasitic
files seen with commercial designs.3

K. Gate Sizing

Two gate sizers, Resizer and TritonSizer, are added in
RDF-2019. Resizer [19] performs buffering of long nets and
upsizing of gates for placed designs. Resizer supports all
OpenSTA commands, and can take LEF/DEF format as inputs
and outputs. TritonSizer [37] is a gate sizer that optimizes
leakage and dynamic power, and fixes timing violations. It is
the result of several years’ evolution from an original ISPD-
2013 Discrete Gate Sizing contest metaheuristic. TritonSizer
has achieved strong leakage reduction results on a commercial
mixed-signal SoC product (with multi-corner signoff at 35
timing views) [39] and supports integration with leading
commercial STA engines as well as OpenSTA.

3The RDF-2019 flow also adds capability to generate SPEF files from DEF
layout, closing the loop to timing-driven layout capability. SPEF generation
from placed DEF (using FLUTE to estimate Steiner trees), and from routed
DEF, is performed by utilities at [38].

4



(a) (b) (c) (d) (e)

Fig. 4. Placement results of des3 perf from IWLS 2005 benchmarks on NanGate45: (a) RePlAce, (b) ComPLx, (c) NTUplace3, (d) Eh?Placer, and (e)
FZUplace. OpenDP was used to perform detailed placement. Flip-flops are highlighted in red.

(a) (b) (c) (d) (e)

Fig. 5. Detailed routing results obtained using FastRoute4-lefdef and TritonRoute for the placements (a)–(e) in Fig. 4.

L. Flow Configuration

In RDF-2019, a design flow is composed using a set of
configuration files in YAML format. In a design configuration
file, a user specifies the top module name, an SDC file,
Verilog RTL source files, and the library to be used throughout
the flow. Flow configuration includes the point-tool name of
each stage, along with parameters such as target density and
maximum fanout. There is also a library configuration file,
which specifies the paths to timing libraries, technology and
cell LEF files, and other PDK-related parameters and setups.
Figure 3 shows an example flow configuration file (see [10]
for more detail on the flow configuration).

IV. DEMONSTRATION

To illustrate the capability of RDF-2019, we show results
of a small experiment that juxtaposes DRC violations after
detailed routing, versus placement half-perimeter wirelength
(HPWL). For a circuit benchmark des3 perf, a behavioral Ver-
ilog RTL from IWLS 2005 benchmarks, we run the entire flow
from logic synthesis through detailed routing on NanGate45.
We use five global placers available in RDF-2019 and obtain
five different placement solutions; detailed placement is done
using OpenDP (see Fig. 4). Detailed routing results for each
of the placements are obtained using FastRoute4-lefdef and
TritonRoute, as shown in Fig. 5.

Table II shows the results.4 The second and third columns
of the table show the DRC violation counts and the routed

4As the purpose of this demonstration is not to benchmark different global
placers, we sort the results in ascending order of HPWL and hide the names
of the placers by assigning arbitrary names to them (e.g., GP1).

TABLE II
DETAILED ROUTING RESULTS AND PLACEMENT HPWLS FOR VARIOUS

GLOBAL PLACEMENT RESULTS

Placer DRC Viol. RtWL (mm) HPWL (mm)

GP1 40 2.71 2.23
GP2 386 2.73 2.27
GP3 20 2.84 2.36
GP4 28 2.85 2.37
GP5 38 3.04 2.56

wirelengths (RtWLs), and the fourth column gives the place-
ment HPWLs. It can be seen that the traditional measure of
placement quality (i.e., HPWL), and even final RtWL, shows
miscorrelation with actual DRC violation counts. These results
highlight the need for future research in flow-scale contexts,
or addressing cross-stage optimization rather than any single
flow stage.

We also demonstrate support for the ASAP7 library in RDF-
2019. As noted above, RDF-2019 can support ASAP7 from
logic synthesis through global routing. Figure 6 (a) shows
a placement result of des3 perf obtained by RePlAce and
OpenDP. We perform global routing on the placement using
NCTUgr; the resulting global routing congestion map is shown
in Fig. 6(b) and (c).

V. CONCLUSION

We have presented RDF-2019, an updated version of the
IEEE CEDA DATC’s Robust Design Flow. With its numerous
horizontal and vertical extensions, RDF-2019 brings academic
researchers and industry practitioners closer together, and
serves as a unifying framework for academic research works

5



(a) (b) (c)
0

20

40

60

80

100

110

90

70

50

30

10

Fig. 6. Placement and global routing results for des3 perf using the ASAP7
library: (a) placement, and routing congestion maps of (b) M5 and (c) M6
layers. RePlAce and OpenDP were used to generate the placement, and
NCTUgr was used to generate the global routing.

in the RTL-to-GDS tools space. Today, RDF-2019 embraces
two flavors of academic tool flows: (i) flows with genealogy in
academic contests that use “interpreted” industry formats (e.g.,
subsets of LEF/DEF recast in Bookshelf format variants), and
(ii) flows that attempt to support “standard” industry formats.
Importantly, academic tools in RDF can be either closed source
or open source, staying true to the original RDF ethos that
researchers must always be free to choose how their code is
made available to, or used by, others.5

As of now, there are only three intersections where tools can
be freely swapped: Logic Synthesis, Static Timing Analysis,
and Detailed Routing. In future RDF-2020+ versions of our
framework, we hope to see more academic tools entering an
RDF world that increasingly brings researchers and practition-
ers closer together, and enables more efficient and exciting
research progress.

ACKNOWLEDGMENT

This work was supported by IEEE CEDA Design Automa-
tion Technical Committee (DATC). We thank the OpenROAD
project team for many contributions and support for RDF-
2019. We also would like to thank Myung-Chul Kim of
IBM and Igor Markov of of University of Michigan for their
generosity in providing the ComPLx placer binary. Also, we
would like to thank Shinichi Nishizawa of Fukuoka University
and Hidetoshi Onodera of Kyoto University for supporting
NCTUcell release under RDF-2019.

REFERENCES

[1] “IEEE CEDA Design Automation Technical Committee,” https://ieee-
ceda.org/node/2591.

[2] J. Jung, I. H.-R. Jiang, G.-J. Nam, V. N. Kravets, L. Behjat, and Y.-L.
Li, “OpenDesign Flow Database: The infrastructure for VLSI design and
design automation research,” in Proc. Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2016, pp. 42:1–42:6.

[3] J. Jung, P.-Y. Lee, Y. Wu, N. K. Darav, I. H. Jiang, V. N. Kravets,
L. Behjat, Y. Li, and G. Nam, “DATC RDF: Robust design flow
database,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD), Nov.
2017, pp. 872–873.

[4] J. Jung, I. H.-R. Jiang, J. Chen, S.-T. Lin, Y.-L. Li, V. N. Kravets, and
G.-J. Nam, “DATC RDF: An academic flow from logic synthesis to
detailed routing,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2018, pp. 37:1–37:4.

5Thus, RDF-2019 is a proper superset of the OpenROAD project. This will
always be the case since OpenROAD by its design and policy only includes
open-source, while RDF includes both open and closed source.

[5] ——, “DATC RDF: An open design flow from logic synthesis to detailed
routing,” in Proc. Workshop Open-Source EDA Tech. (WOSET), Nov.
2018, pp. 6:1–6:4.

[6] “Open Source 101,” https://j.mp/eri19-foss101.
[7] “Open Source 102,” https://j.mp/eri19-foss102.
[8] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.

Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an open-source digital
flow: First learnings from the OpenROAD project,” in Proc. Design
Autom. Conf. (DAC), Jun. 2019, pp. 76:1–76:4.

[9] “The OpenROAD Project,” https://github.com/The-OpenROAD-Project.
[10] “RDF-2019 GitHub,” https://github.com/ieee-ceda-datc/RDF-2019.
[11] “NanGate FreePDK45 Generic Open Cell Library,” http://projects.si2.

org/openeda.si2.org/projects/nangatelib.
[12] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,

C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm FinFET predictive
process design kit,” Microelectronics J., vol. 53, pp. 105–115, Jul. 2016.

[13] Y.-L. Li, S.-T. Lin, S. Nishizawa, H.-Y. Su, M.-J. Fong, O. Chen,
and H. Onodera, “NCTUcell: A DDA-aware cell library generator for
FinFET structure with implicitly adjustable grid map,” in Proc. Design
Autom. Conf. (DAC), Jun. 2019, pp. 1–6.

[14] ERI Summit 2019, “OpenROAD: Foundations and realization of
open, accessible design,” https://theopenroadproject.org/openroad event/
openroad-presentation-at-the-eri-summit-2019.

[15] “OpenROAD Alpha Release Github page,” https://github.com/The-
OpenROAD-Project/alpha-release.

[16] https://bitbucket.org/taylor-bsg/bsg manycore/src/vanilla bean/.
[17] “OpenRAM,” https://openram.soe.ucsc.edu/.
[18] S. Ataei and R. Manohar, “AMC: An asynchronous memory compiler,”

in Proc. Int. Symp. Async. Circuits Syst. (ASYNC), May 2019, pp. 1–8.
[19] “Resizer,” https://github.com/The-OpenROAD-Project/Resizer.
[20] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing

solution quality and routability validation in global placement,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., pp. 1–14, Early
Access, 2019.

[21] “RePlAce,” https://github.com/The-OpenROAD-Project/RePlAce/.
[22] “ParquetFP,” http://vlsicad.eecs.umich.edu/BK/parquet.
[23] “ioPlacer,” https://github.com/The-OpenROAD-Project/ioPlacer.
[24] W. Zhu, Z. Huang, J. Chen, and Y.-W. Chang, “Analytical solution of

Poisson’s equation and its application to VLSI global placement,” in
Proc. Int. Conf. Comput.-Aided Design (ICCAD), 2018, pp. 2:1–2:8.

[25] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA.
[26] M. Fogaça, G. Flach, J. Monteiro, M. Johann, and R. Reis, “Quadratic

timing objectives for incremental timing-driven placement optimization,”
in Proc. Int. Conf. Electron. Circuits Syst. (ICECS), 2016, pp. 620–623.

[27] “OpenDP,” https://github.com/The-OpenROAD-Project/OpenDP.
[28] “TritonCTS,” https://github.com/The-OpenROAD-Project/TritonCTS.
[29] K. Han, A. B. Kahng, and J. Li, “Optimal generalized H-Tree topology

and buffering for high-performance and low-power clock distribution,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., pp. 1–14, Early
Access, 2018.

[30] “FastRoute4-lefdef,” https://github.com/The-OpenROAD-Project/
FastRoute4-lefdef.

[31] Y. Z. Yue Xu and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proc. Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jan. 2009.

[32] “Rsyn,” https://github.com/RsynTeam/rsyn-x/.
[33] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, “ISPD 2018

initial detailed routing contest and benchmarks,” in Proc. Int. Symp.
Phys. Design (ISPD), Mar. 2018, pp. 140–143.

[34] “Dr.CU,” https://github.com/cuhk-eda/dr-cu.
[35] “TritonRoute,” http://github.com/The-OpenROAD-Project/TritonRoute.
[36] “Magic,” https://github.com/The-OpenROAD-Project/magic.
[37] “TritonSizer,” https://github.com/The-OpenROAD-Project/TritonSizer.
[38] “Parasitic-Extraction–OpenROAD Utilities,” https://github.com/The-

OpenROAD-Project/OpenROAD-Utilities/tree/master/PEX.
[39] H. Fatemi, A. B. Kahng, H. Lee, J. Li, and J. P. de Gyvez, “Enhancing

sensitivity-based power reduction for an industry IC design context,”
Integration, the VLSI Journal, vol. 66, pp. 96–111, 2019.

6


