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ABSTRACT
In advanced technology nodes, IC implementation faces increasing
design complexity as well as ever-more demanding design sched-
ule requirements. This raises the need for new decomposition ap-
proaches that can help reduce problem complexity, in conjunction
with new predictive methodologies that can help avoid bottlenecks
and loops in the physical implementation flow. Notably, with mod-
ern design methodologies it would be very valuable to better predict
final placement of the gate-level netlist: this would enable more
accurate early assessment of performance, congestion and floorplan
viability in the SOC floorplanning/RTL planning stages of design. In
this work, we study a new criterion for the classic challenge of VLSI
netlist clustering: how well netlist clusters “stay together” through
final implementation. We propose use of several evaluators of this
criterion. We also explore the use of modularity-driven clustering
to identify natural clusters in a given graph without the tuning of
parameters and size balance constraints typically required by VLSI
CAD partitioning methods. We find that the netlist hypergraph-
to-graph mapping can significantly affect quality of results, and
we experimentally identify an effective recipe for weighting that
also comprehends topological proximity to I/Os. Further, we empir-
ically demonstrate that modularity-based clustering achieves better
correlation to actual netlist placements than traditional VLSI CAD
methods (our method is also 4× faster than use of hMetis for our
largest testcases). Finally, we show a potential flow with fast “blob
placement” of clusters to evaluate netlist and floorplan viability in
early design stages; this flow can predict gate-level placement of
370K cells in 200 seconds on a single core.
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1 INTRODUCTION
Modern Systems-on-Chip (SoCs) aggregate billions of transistors
within a single die, and drivers ranging from mobility to deep learn-
ing suggest that the Moore’s-Law scaling of design complexity will
continue [39]. EDA tools are continually challenged to incorporate
new strategies to scale tool capacity without sacrificing quality of re-
sults or overall design schedule. Moreover, despite substantial R&D
investments by the EDA industry, costs of IC design (engineers,
tools, schedule) continue to rise. A recent keynote by Olofsson [27]
asks, “Has EDA failed to keep up with Moore’s Law?”

It is well-known that the ability to predict downstream outcomes
of physical implementation algorithms and tools can enable reduc-
tion of loops (iterations) in the design flow, thus saving runtime and
schedule [20]. The paradigm of physical synthesis is still the major
success story along such lines, but this paradigm is now over two
decades old. The recent DARPA Intelligent Design of Electronic
Assets (IDEA) program [38] highlights the cost crisis of modern IC
design, and seeks to develop a framework capable of performing
the complete RTL-to-GDSII flow without human interaction in 24
hours [27] [38]. New tools that can help avoid future failures (con-
gestion, failed timing, etc.) while still in the early stages of floorplan
definition or RTL planning appear mandatory to achieve the IDEA
program goal.1

In this work, we seek to identify clusters of logic in a given
gate-level netlist that will remain together throughout the physical
implementation flow. (As discussed below, this is a fundamentally
different criterion than the min-cut or Rent-parameter criteria of
previous clustering methods in VLSI CAD). We envision that such
a clustering capability will help enable new predictors of perfor-
mance and congestion during early physical floorplanning and RTL
planning. For example, gates within the same cluster would be
known to have spatial locality, informing synthesis, budgeting and
global interconnect planning optimizations. And, if combined with
“blob placement” of clusters, fast evaluation of netlist and floorplan
viability could be achieved.

Limitations of existing clustering approaches. Clustering
is a universal strategy for problem size reduction and for helping to
enforce “known-correct” structure in solutions. Clustering has been
used for many years in a wide range of EDA applications, includ-
ing placement [29], clock tree synthesis [30] and, more recently,
grouping of instances into different power domains [3]. While many

1This is a long-standing challenge to design productivity and the EDA industry. That
so many commercial RTL planning and “RTL signoff” efforts have been made over the
past 25 years (Tera Systems, Aristo, Silicon Perspective, Atrenta SpyGlass-Physical,
Oasys, etc.) indicates the difficulty of this challenge.
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clustering methods for VLSI have been proposed, they have largely
focused on net cuts (hyperedge min-cut, cluster perimeter, Rent
parameter [41], etc.). Further, existing heuristics typically require
design-dependent tuning and suboptimal heuristics. For instance,
the well-known multilevel Fiduccia-Mattheyses [9] implementa-
tions hMetis [21] and MLPart [4] require a priori the target number
of partitions as an input, and each aims to balance the number of
vertices or total vertex area across the partitions, which conflicts
with the min-cut objective.

Our approach. Among the contributions of this work, we men-
tion two broad aspects. The first aspect is the evaluation and ap-
plication of community detection algorithms within the VLSI CAD
context. Community detection is a comparatively recent class of
graph clustering methods used to find densely-connected nodes in
large networks such as those arising in social media, telecommuni-
cations and bioinformatics [12]. Community detection methods rely
on metrics that help identify natural clusters inside graphs, notably,
the modularity metric [26]. Our study centers on Louvain [2], a
well-known fast and efficient modularity-based graph clustering
algorithm with near-linear runtime in sparse graphs. Louvain can
cluster graphs with up to 700M edges within 12 minutes, using a
single thread. The second aspect is our study of new measures of
the correlation between a netlist clustering method and the actual
placement of netlists. The absence of previous work in this vein
may be due to the fact that previous clustering techniques have
aimed to drive placement algorithms instead of predicting them
(i.e., the final evaluation of a clustering technique was the quality
of the placement itself). We study three classical concepts from
computational geometry to evaluate this correlation: convex hulls
(CH), alpha shapes (AS), and Delaunay triangulations (DT) [25]. The
primary purpose of these techniques is to retrieve the geometric
shape of a set of scattered points, a goal that correlates very closely
to the concept of a cluster. To compare different clustering results,
we apply the Davies–Bouldin index (DBi) [7], which is traditionally
used to evaluate clusters given a “distance function”. For spatial
data, such as placement of standard-cell instances, this function
can be the distance between instances in the placement.

Our contributions are summarized as follows.

(1) We employ modularity-based clustering in conjunction with
VLSI-relevant graph edge-weighting to predict groups of
logic gates that will remain together through the stages of
physical implementation – without the need for user tuning.

(2) We explore the use of convex hulls, alpha shapes, and Delau-
nay triangulations to visualize and measure the correlation
between the netlist clustering and the “ground-truth” actual
placement. We also adopt the Davies–Bouldin index [7] to
compare different clustering results.

(3) We perform experiments showing 20% better clustering qual-
ity on average for Louvain [2] versus the traditional VLSI
netlist clustering tool hMetis [21], with 4× faster runtime
than hMetis for our largest benchmark.

(4) We demonstrate an experimental flow that performs fast
“blob placement” of clusters as a potential basis for future
early-stage netlist and floorplan evaluation. Our flow can
closely predict the actual gate-level placement of the leon3mp
testcase (370K instances) in 200 seconds.

The remainder of this paper is organized as follows. Section 2
gives an overview of the existing literature on VLSI netlist cluster-
ing and discusses several works on modularity-based clustering.
Section 3 formally defines our objective, metrics, and experimental
implementation details, while Section 4 presents our experimen-
tal results. Section 5 introduces the idea of quick floorplan and
placement evaluation using (modularity-based) clusters. Finally,
Section 6 gives conclusions and several directions for our ongoing
and future work.

2 RELATEDWORKS
We now give a brief sampling of relevant works in two literatures:
VLSI netlist partitioning, and community detection.

2.1 VLSI Netlist Partitioning
Netlist partitioning is a fundamental step within a broad spectrum
of EDA tools. Alpert and Kahng [1] give a four-way classification
of techniques according to underlying computational approach, as
follows.

Move-based approaches aim to improve an initial feasible solu-
tion through iterative local perturbations such as pair-swap or shift-
ing a single vertex to another partition. The pass-based heuristic
structure of Kernighan-Lin (KL) [22] along with the vertex-shifting
move structure of Fiduccia-Mattheyses (FM) [9] are at the core of
such methods.

Geometric representation-based approaches exploit geomet-
ric embeddings of circuits to achieve improved cluster quality and
runtime. Hall [15] gives an early spectral approach, achieving multi-
way partitioning solutions through quadratic placement and vertex
orderings induced from eigenvectors of a netlist-derived discrete
Laplacian matrix. Ou and Pedram [28] propose a two-phase min-cut
strategy that comprehends timing constraints. Iterated quadratic
programming is used to find an initial embedding of the design,
and gate replication is subsequently applied if timing constraints
are found to be too strict.

Combinatorial formulations encompass techniques such as
network flows and mixed integer-linear programming that can
capture complex objective functions and constraints. E.g., Yang and
Wong [37] propose an iterated max-flow formulation to address
the balanced bipartition problem. More recently, Blutman et al. [3]
address netlist partitioning for stacked-domain designs, also using
a flow-based framework.

Clustering approaches are often taxonomized as being either
bottom-up or top-down. Bottom-upmethods start with eachmodule
being an individual cluster, with clusters being iteratively merged
until a given condition is satisfied. Top-down methods start with a
single cluster and iteratively split clusters into two or more (smaller)
clusters. Hybrid methods, awareness of timing and other concerns,
etc. abound. E.g., Hagen and Kahng [14] perform clustering by
integrating a random-walk algorithm with iterative FM. Sze and
Wang [34] use a graph contraction technique to maintain delay
information among different lower levels of a performance-driven
clustering flow. Alternatively, Kahng and Xu [19] extend traditional
FM to directly eliminate or minimize “distance-k V-shaped nodes”
in the bipartitioning solution, achieving a tradeoff between cutsize
and path delay.



2.2 Community Detection
The size of hypergraph and graph instances has been steadily in-
creasing not only in VLSI netlists, but also in fields such as data
science, social networks, and bioinformatics. This has led to the
development of new algorithms that can quickly process and cluster
huge graphs. Shiokawa and Onizuka [33] taxonomize such com-
munity detection algorithms into three categories: edge-cut based,
modularity-based, and structural similarity. The edge-cut based cat-
egory comprehends the same techniques as move-based approaches
in the taxonomy of [1], so we do not repeat the discussion of Sec-
tion 2.1.

Modularity-based clustering attempts to overcome a funda-
mental deficiency – namely, lack of any theoretical underpinning
– of the many previous techniques that perform ad hoc minimiza-
tion of the number of edges crossing between clusters, followed by
improvement of clustering solutions with various heuristics. The
seminal modularity metric proposed by Newman and Girvan [26]
measures the quality of the current solution using the difference
between the current solution and a random graph. Moreover, as
noted above, many classical approaches assume or require a pre-
defined and fixed number of clusters. Blondel et al. [2] propose an
effective modularity-based method, called Louvain, which can au-
tomatically cluster a 700M-edge graph into a natural set of clusters,
within 12 minutes. These traits make Louvain an attractive tech-
nique, applied today in many applications such as social media [33].
In [31], Shiokawa et al. describe another fast modularity-based algo-
rithm employing incremental segregation; this method can cluster
a hundred million-node graph in under five minutes.

Structural Similaritymethods address a weakness of modula-
rity-based clustering known as resolution, i.e., thatmodularity-based
clustering may fail to detect small clusters in large graphs. The chal-
lenge of resolutionwas first noted by Fortunato and Barthélemy [11].
Xu et al. [36] propose the structural similaritymetric which enables
finding of densely connected clusters, special role nodes, hubs and
outliers. The SCAN++ [32] algorithm can comprehend these topo-
logical characteristics with runtime that is linear in the number of
graph edges. However, the computational cost of structural similar-
ity is higher than that of modularity [33].

In our present work, we employ the widely-used VLSI clustering
tool hMetis [21], and we apply the fast and effective modularity-
based Louvain algorithm in the EDA context. In applying Louvain, a
key issue is that VLSI netlists are hypergraphs, while community de-
tection methods have been applied to graphs. As we discuss below,
the success of modularity-based clustering for VLSI strongly de-
pends on (i) the hypergraph-to-graph mapping used, and (ii) means
of capturing structural ‘hints’ (I/Os, timing, etc. - cf. [5]) from the
VLSI netlist structure.

3 METHODOLOGY
In this section, we first describe the problem statement and metrics
for clustering evaluation. We then describe Louvain-based cluster-
ing based on a graph model of the netlist hypergraph.

3.1 Problem Definition
In this work, we use the term cluster to refer to a group of densely-
connected instances such that the number of the interconnections

Table 1: Notations.
Term Meaning
DBi Davis-Bouldin metric
n Number of clusters

σi
Average distance from the cluster elements to the
centroid of cluster i

ρi Centroid of cluster i

l (ρi , ρj )
Distance between the centroids of
two clusters i and j

Q Modularity value
Ai j Sum of weights of inter-cluster edges between clusters i and j
ki Sum of all weights of edges connected to cluster i
ci Cluster of index i

δ (ci , cj )
Function that receives as input two clusters
and returns 1 if they are connected, and 0
otherwise

ph Number of pins of net h
wh Weight of net h
wh,1 Clique weight of net h
wh,2 Topological depth weight of net h
d (I ) Topological distance to the closest input
d (O ) Topological distance to the closest output

among elements inside the group is much higher than the number
of connections spanning different groups. The process of finding
the clusters of a netlist is called clustering. Our goal may be stated
as follows: Given (i) a mapped netlist and (ii) information about
the standard cell library, find clusters containing instances that
are expected to remain close to each other along the stages of the
implementation flow. Since there is no formal definition of what is
the nature of a good clustering to predict placement, we propose
and discuss metrics below. The notations used in this section are
summarized in Table 1.

3.2 Metrics for Clustering Evaluation
In this subsection, we describe approaches to define cluster shapes,
as well as clustering evaluation metrics.

Cluster shapes. One intuitive approach to measure the correla-
tion between the clusters and their actual placement is to retrieve
their shapes for visualization and density measurement. In compu-
tational geometry, many applications need to restore the geometry
from a set of scattered points. If we consider each cell as a sin-
gular point, the problems become very similar. We can represent
the geometry of a given cluster using its convex hull [25], i.e., the
minimum convex polygon that contains the center of all cells. Once
the convex hull is computed, we calculate its utilization as the total
cell area divided by the hull area. If the utilization is lower than a
threshold, we remove the points comprising the hull and recom-
pute the hull. In this work, we define a threshold of 64% utilization
and set the maximum number of times the process can repeat as
25. We call this process “shelling” and depict an example in Fig-
ure 1. Figure 2(a) depicts a “ground-truth” placement along with
a cluster, with cells colored according to their clusters. Figure 2(b)
draws the corresponding convex hulls. However, if we examine the
highlighted blue cluster in Figure 2(b), we see that convex hulls do
not offer a compelling prospect. The hull fails to convey the bad
clustering outcome and has a low utilization of 38%.

Alpha shapes [40] [8], examples of which are shown in Fig-
ure 2(c), are a type of “shape formed by a pointset” wherein a
parameter alpha defines the squared radius of a circle that is used
to carve away space around the given points. The remaining space



(a) (b)

Figure 1: The process of “shelling” the cluster shape. Figure
(a) shows a cluster with total cell area equal to 24.2 × 106µm2

and shape area equal to 39.8×106µm2. Thus, the utilization of
the cluster is equal to 60.7%. The cluster’s “shell” is the set
of points that compose the shape. In (b), the cluster shape
is recomputed after removing the shell from (a). The final
shape has area equal to 36 × 106µm2 and utilization equal to
66.7%.

(a) (b)

(c) (d)

Figure 2: Different approaches to correlate clusters with the
placement for the circuit ispd18_test2 [24]: (a) the placement
with each instance colored according to its cluster, followed
by (b) the convex hulls; (c) the alpha shapes; and (d) the De-
launay triangulations of the clusters.

comprises the alpha shape of the pointset.2 Alpha shapes are ap-
pealing in that – for appropriately chosen alpha – they provide
more accurate representations of pointsets than do convex hulls.
In the following, for the testcases we study, where dimensions of
layout regions are in the 150µm to 500µm range, we empirically
use alpha = 2500µm2. In Figure 2(c), we see that the alpha shape
reveals how the blue cluster discussed earlier is clearly divided into
two pieces, each of which is dense with utilization of ∼66%.

Solution Evaluation. Convex hulls and alpha shapes are useful
for visual and manual debugging. For solution evaluation, we pro-
pose two criteria. The first criterion is derived from the Delaunay
triangulation (DT), depicted in Figure 2(d). The DT is the geometric

2When alpha =∞, the alpha shape is the convex hull of the pointset (i.e., the convex
hull is a special case of alpha shape). When alpha = 0, the alpha shape is the set of
points of the pointset.

(a) DBi = 7.84 (b) DBi = 12.60

(c) DBi = 35.86 (d) DBi = 2.29

Figure 3: Visual comparison of different clustering solu-
tions, with and their DBi values indicated.

dual of the Voronoi diagram over a given pointset. From the DT,
we extract statistical data from the distribution of edge sizes. For
our second criterion, recall that the main goal of this work is to
predict groups of logic gates that will remain together through the
stages of physical implementation. This goal correlates well with
the goal of spatial clustering techniques. Therefore, we adopt the
the Davies–Bouldin index (DBi) [7], traditionally used for spatial
clustering evaluation, as a second indicator of cluster quality. The
DBi is defined as:

DBi =
1
n

n∑
i=1

arдmaxi,j

(
σi + σj

l(ρi , ρ j )

)
(1)

The DBi consists of a numerical value that indicates how well-
clustered is a given set of elements in a spatial region. A smaller
value of DBi indicates a better clustering.

We illustrate the DT and DBi quality criteria using the four clus-
tering solutions in Figure 3 with 18 clusters each. The distributions
of DT edges are shown in Figure 4. Following its premise, DT en-
ables a good way to analyze the edge length distribution of the
clusters but fails to capture the gap in partition sizes from Fig-
ure 3(c). The largest partition in Figure 3(c) has 22K cells in contrast
to the average of 5K in the other solutions. The values of DBi are as
expected from the visualization perspective, where a smaller value
of DBi indicates more distinct clusters as shown in Figure 3(d).

3.3 Modularity-based Clustering
The modularity metric [26] measures the quality of a clustering
solution given a network graph and the set of clusters. It consists
of a scalar value ranging from -1 to 1; higher values imply better
clustering quality. The modularity metric is formally expressed as

Q =
1
2m

∑
i, j

[
Ai j −

kikj

2m

]
δ (ci , c j ) (2)
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Figure 4: The boxplot of edge sizes from the DT of the clus-
tering solutions from Figure 3.

where the value ofm is computed asm = 1
2
∑
i j Ai j .

Many methods, such as the Louvain algorithm, apply modularity
as an objective function. As previously mentioned, our present
work applies Louvain to perform modularity-based clustering of
netlists.3 This is in contrast to the existing VLSI clustering literature
of essentially because of two features:

• The user does not need to calibrate the number of clusters,
nor define any stopping criteria for clustering, since these
are automatically captured by the modularity metric; and

• The Louvain algorithm does not impose, nor require, any
area/edge balancing constraints.

3.4 Graph Model of Netlist
In most of the optimization steps, the netlist is expressed as a direct
hypergraphG = (V ,E), whereV is the set of vertices that represent
the instances and E is the set of the direct hyperedges that represent
the nets. Some techniques, such as Louvain, cannot handle the
notion of hyperedges. Consequently, a translation method to a
given netlist representing a hypergraph by a weighted graph is
needed. The clique model is often used in a variety of applications.
The clique model replaces the hyperedge by a complete graph, i.e.,
every pair of vertices is connected by a single edge. To “correctly
represent” nets of different sizes, edge weighting techniques are
required. Ihler et al. [17] prove that there is no perfect weighting for
the clique model, but previous works frequently use edge weights
as wh = 1/(ph − 1), where ph is the number of pins in the net.
However, using the traditional clique decomposition is usually not
enough to capture all the nuances necessary to match the clustering
with actual placement. Our experiments show that giving higher
weights to edges closer to I/O pins improves the quality of the
clustering. Therefore, we also add a weighting scheme based on
topological depth aiming to keep cells closer to I/Os in the same
cluster. Specifically, we define the edge weights as:

wh,1 =
1

ph − 1
(3)

wh,2 = arдmin((d(I )), (d(O))) (4)
3We note that applying the modularity metric within classic VLSI partitioning methods
would lose the “automatic” qualities inherent in the Louvain algorithm. In this sense,
our work separately benefits from use of the modularity metric and use of the Louvain
algorithm.
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Figure 5: Netlist modeling.

Table 2: Benchmarks and attributes.
Benchmark Insts Nets I/Os
jpeg_encoder 42293 46402 49

ldpc 43965 46741 4100
netcard 251306 253145 333
leon3mp 371549 370706 1849

wh =
1

wh,1(wh,2 + 1)
(5)

Figure 5(a) depicts a netlist with two input ports, four instances,
and one output port. The number above each instance represents the
topological distance to the closest I/O. Figure 5(b) shows the equiva-
lent graph using the traditional clique model, in which the number
related to each edge represents its weight. Finally, Figure 5(c) in-
tegrates the notion of I/O proximity according to Equation (5). In
Subsection 4.1 we present experiments discussing the impact of
adding netlist information. In future works, we also plan to explore
timing information in the graph modeling.

4 EXPERIMENTAL RESULTS
We implement our modularity-based clustering approach using
Rsyn [10] [44] and run all experiments on an Intel Xeon E5-2695
dual-CPU server at 2.1GHz with 256GB RAM. Our analyses are
performed in a set of open design blocks [42] synthesized using a
standard industrial tool flow and a commercial 14nm enablement.
Table 2 presents the number of instances, nets, and I/Os of each
testcase. We first show how the Louvain algorithm has been en-
hanced to cope with our problem through the addition of design
information in the netlist graph. Next, we compare the efficiency of
our methodology to an existing VLSI clustering technique. Finally,
we perform experiments to study the robustness of our formulation
for different design floorplans.

4.1 Experiment 1: Evaluation of different
Graph Models

In our first experiment, we compare the edge-weighting model
from [23] with [16][35][13], described in Table 4, as replacement
alternatives for Equation (3). Table 4 shows the values of DBi for
each approach alone (column A) and with I/O proximity informa-
tion (column I/O) of Equation (5). Tsay-Kuh is the most promising
alternative alone, followed by Lengauer. We find that the addition
of higher weights to nets closer to I/Os improves the quality of the
solutions by 28% on average. Lengauer is the most promising of



Table 3: Description of net weighting alternatives.
Name Weight per edge Rationale

Lengauer [23] 1/(pi − 1) The total weight of the net
cut to be at least one.

Huang [16] 4/(pi (pi − 1)) The expected weight of a
net cut to be one.

Tsay-Kuh [35] 2/pi
Minimizes the squared
wirelength of the net.

Frankle-Karp [13] 2/p1.5i

Minimizes the worst
deviation from the square
of the spanning tree.

Table 4: Netlist tuning.
Design [23] [16] [35] [13]

A I/O A I/O A I/O A I/O
jpeg_encoder 2.1 1.9 6.7 6.4 2.9 2.2 2.2 1.3

ldpc 3.0 2.3 44.5 47.2 2.7 2.3 17.3 3.0
netcard 4.6 2.0 11.1 2.3 1.9 2.7 8.3 3.7
leon3mp 1.2 1.0 68.0 63.8 1.1 1.0 1.4 1.2
Avg 2.7 1.8 32.6 29.9 2.1 2.1 7.3 2.3

these approaches with I/Os proximity information, outperforming
Tsay-Kuh by 14%.

4.2 Experiment 2: Comparison with
Traditional VLSI Clustering Methods

Here we discuss the correlation between our clustering formulation
and the actual cell placement compared with the traditional min-cut
clustering tool hMetis. As mentioned, one of the key advantages
of modularity-based clustering is the absence of input parameters,
so now we reveal details of how we run the other tool in order
to have a fair comparison. hMetis requires two parameters: (i) the
number of clusters and (ii) the unbalance factor.4 First, we run
hMetis targeting 16, 32, and 64 clusters using 2-way partitioning
with unbalance factors of 10%, 20% and 40%. For each benchmark,
we pick the runs with closest number of clusters to the Louvain
result and compare with all unbalance factors. Second, we use
hMetis k-way partitioning to find the same number of clusters as
Louvain with unbalance factors of 10%, 20% and 40%.

We first analyze the values of DBi for both tools. Table 5 compares
the number of clusters and values of DBi for Louvain and each run
of hMetis. While Louvain presents an automatic behavior, hMetis
shows a large gap in DBi depending on user tuning. For instance,
in leon3mp there is a gap of 4× in DBi between unbalance 20% and
40% using 2-way partitioning. Louvain outperforms the best runs of
hMetis in ldpc and leon3mp by 48% and 30%, respectively. The best
runs of hMetis, in netcard and jpeg_encoder, outperform Louvain
by 51% and 28%. On average, Louvain shows 20% better results for
DBi.

One of the key advantages of Louvain is its almost linear runtime
in sparse graphs. In Table 6, we present the runtimes of the exper-
iments of Table 5. Louvain is 5.6× faster than the fastest hMetis
run for the smallest benchmark, jpeg_encoder (13.5s). In the largest
benchmark, leon3mp, Louvain is 4.1× faster than the fastest hMetis
run (302.5s). On average, Louvain is 6× faster than hMetis.

4In hMetis, the unbalance factor is an integer value ranging from 1 to 49 and represents
the percentage of difference allowed among its partitions in terms of number of vertices.

4.3 Experiment 3: Robustness With Respect to
Design Floorplan

In this subsection, we show the robustness of Louvain using dif-
ferent floorplan configurations. We run the P&R flow with 1:1 and
2:1 floorplan aspect ratios and measure the difference in DBi. Note
that different shapes lead to different clustering results since it af-
fects buffering and logic restructuring. Furthermore, the DBi metric
relies on the distance of the clusters, so an increased DBi in 2:1
floorplans is expected. Table 7 shows the increase in values of DBi
for Louvain and hMetis in the 2:1 floorplan for the different floor-
plans. Furthermore, 2:1 floorplans present an average increase of
44% and 27% in DBi for Louvain and hMetis, respectively, showing
that hMetis is 17% more stable. Figure 6 shows clustering results
for Louvain with the different aspect ratios. Despite the increase in
DBi, the number and shapes of the clusters for both aspect ratios
are visually similar.

5 CLOSING THE LOOP: POTENTIAL
INTEGRATIONWITH ‘BLOB PLACEMENT’
FOR EARLY PLANNING

The results of the previous section suggest that modularity-based
clustering can achieve stronger correlation with the eventual netlist
placement, when compared to a traditional VLSI netlist clustering
approach. In this section, we “close the loop” with placement: we
demonstrate how the modularity-based clustering is a promising
foundation for extremely fast placement and potential assessment
of netlist and floorplan early in the physical implementation flow.

We have developed a simple experimental flow to predict final
placement using (i) modularity-based clustering without any user
configuration or tuning, and (ii) a “blob placement” step that per-
forms cluster placement and shaping. The first step of our flow
maps the flat gate-level netlist to a graph representation as de-
scribed above, and then feeds this graph to Louvain. The output of
Louvain is an initial set of clusters determined naturally according
to the modularity criterion; we call these initial clusters root blobs.

The next step of our flow is to hierarchically break down the
root blobs into smaller blobs (i.e., clusters), also using Louvain for
modularity-based clustering. When the granularity is sufficiently
small (in our implementation, we continue to break down the largest
blobs until every blob has < 5K instances), we create a new netlist,
consisting of the current set of blobs, which we refer to as leaf blobs.
The nets of the new netlist are induced based on the cell instances
that belong to each leaf blob. We assign higher weights to intra-root
blob nets, i.e., nets that connect leaf blobs that originate from the
same root blob. We also assign higher weights to nets that connect
leaf blobs to I/Os. In our experiments, nets connecting inter-root
blobs have weight = 1, nets connecting intra-root blobs have weight
= 4, and nets that connect to I/Os have weight = 400. These values
have been empirically determined.

Figure 7 depicts the outcome of our proposed flow for the two
large testcases netcard and leon3mp. Netcard and leon3mp have 21
and 30 root blobs, and 187 and 405 leaf blobs, respectively. With
both cases, root blobs contain an average of 12K cell instances,
and leaf blobs contain an average of 850 cell instances. We adapt
the open-source academic tool RePlAce [6] [43] to perform the



Table 5: Comparison among values of DBi for Louvain and hMetis.
Design Louvain hMetis (2-way part) hMetis (k-way part)

# clusters DBi # clusters 10% 20% 40% # clusters 10% 20% 40%
jpeg_encoder 52 1.94 64 2.39 1.71 2.81 52 2.18 1.51 2.17

ldpc 18 2.29 16 9.27 4.36 12.94 18 7.84 12.60 35.86
netcard 21 1.95 16 1.39 1.32 2.46 21 1.29 1.72 2.38
leon3mp 30 1.04 32 2.61 1.47 3.51 30 2.33 1.55 3.80

Avg 1.81 3.91 2.22 5.43 3.41 4.34 11.05

Table 6: Runtimes (s) of the experiments in Table 5.
Design Louvain hMetis (2-way part) hMetis (k-way part)

10% 20% 40% 10% 20% 40%
jpeg_encoder 2.4 13.5 13.6 14.3 13.9 14.2 14.4

ldpc 2.7 33.6 28.7 35.3 30.9 28.3 43.7
netcard 54.9 208.2 227.4 227.2 207.6 215.6 232.3
leon3mp 72.9 392.6 302.5 321.1 314.4 310.4 325.7

Table 7: Increase in DBi for Louvain and hMetis with a 2:1
floorplan.

Design Louvain hMetis
jpeg_encoder 1.46 1.35

ldpc 1.03 1.44
netcard 2.25 1.15
leon3mp 1.04 1.15
Avg 1.44 1.27

blob placement. In doing so, we inflate the blob dimensions by
20% and 30% for netcard and leon3mp, respectively, to simulate the
utilization settings from the original placement. The total runtime
for the hierarchical breakdown of the gate-level netlist into leaf
blobs, plus RePlAce placement, is 143s for netcard (250K instances)
and 200s for leon3mp (370K instances) using a single thread of a
2.1GHz Xeon server.5 Despite the intrinsic noise from the change
of placement tool, one can easily notice the similarity between the
original placements (Figures 6(c) and (d)) and our predictive blob
placements. Accordingly, we believe that our newmodularity-based
clustering has promise as the basis of early planning steps that can
improve efficiency of physical implementation.

6 CONCLUSIONS AND ONGOINGWORK
In this paper, we study netlist clustering in the context of enabling
early feedback at physical floorplanning and RTL planning stages
of design. Our new criterion for clustering assesses whether netlist
clusters “stay together” through final physical implementation. We
support evaluation of this criterion via several methods, including
the use of alpha shapes, Delaunay triangulation of a cluster’s placed
locations, and the Davies-Bouldin index. For the purpose of pre-
dicting cohesion in final layouts, we find that modularity-driven
clustering, as exemplified by the Louvain [2] algorithm, is clearly
superior to mincut- or Rent parameter-driven methods [21] [4] [41]
that have dominated the VLSI CAD literature. Importantly, the mod-
ularity metric allows identification of “natural” clusters in a given
graph without parameter tuning, and without imposition of balanc-
ing constraints; yet, it may also be applied hierarchically as needed.
We also show that the hypergraph-to-graph mapping is critical to
successful application of modularity-based clustering: our initial
study of mapping techniques suggests that (i) a weighting approach
of Lengauer [23] is effective in conjunction with Louvain, and
(ii) encoding topological proximity to I/Os significantly increases

5The hierarchical use of Louvain could be modified to trivially exploit availability of
multiple threads.

(a) jpeg_encoder 1:1 (b) ldpc 1:1

(c) netcard 1:1 (d) leon3mp 1:1

(e) jpeg_encoder 2:1 (f) ldpc 2:1 (g) netcard 2:1

(h) leon3mp 2:1

Figure 6: Visual comparison of Louvain clusters in floor-
plans with different aspect ratios.



(a) (b)

Figure 7: Blob placement of (a) netcard and (b) leon3mp.
Compare with Figures 6(c) and (d).

clustering quality. Comparisons with traditional hMetis-based clus-
tering [21] show that our Louvain-based approach achieves on
average 20% better correlation to actual netlist placements, as well
as 4× faster runtimes for our largest testcases. Last, we demonstrate
the potential of using modularity-based clustering with fast “blob
placement” of clusters to efficiently evaluate netlist and floorplan
viability in early stages of design.

Our ongoing work is in several directions. First, we believe that
our studies of the impact of hypergraph-to-graph mapping choices
(Section 4.1) point out the potential value of improved mappings.
We are exploring the use of machine learning to improve such map-
pings, potentially leading to localized variation of graph mapping
strategy in the netlist. Second, we are pursuing various extensions
of the “blob placement” flow described in Section 5. For example,
it is necessary to be able to handle large amounts of whitespace
in the given block floorplan. And, the clustering must ultimately
be sensitive to details of a floorplan with embedded macro blocks:
determining clusters that cohere in final placement may entail
dynamic fragmentation of “blobs” (into sub-blobs that will each
stay together) during the global placement iteration. Ultimately,
improved cluster placement could open the door to research on pre-
dicting timing and congestion from blob placement results. Finally,
we observe that the use of fast prediction of final placement – e.g.,
to drive floorplan changes or early (RT-level) physically-aware syn-
thesis – would likely lead to different final placements than those
we currently predict. How to manage this inherent chicken-egg
loop is an open question.
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