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ABSTRACT
2.5D integration technology is gaining popularity in the design
of homogeneous and heterogeneous many-core computing sys-
tems. 2.5D network design, both inter- and intra-chiplet, impacts
overall system performance as well as its manufacturing cost and
thermal feasibility. This paper introduces a cross-layer method-
ology for designing networks in 2.5D systems. We optimize the
network design and chiplet placement jointly across logical, physi-
cal, and circuit layers to achieve an energy-efficient network, while
maximizing system performance, minimizing manufacturing cost,
and adhering to thermal constraints. In the logical layer, our co-
optimization considers eight different network topologies. In the
physical layer, we consider routing, microbump assignment, and mi-
crobump pitch constraints to account for the extra costs associated
with microbump utilization in the inter-chiplet communication. In
the circuit layer, we consider both passive and active links with five
different link types, including a gas station link design. Using our
cross-layer methodology results in more accurate determination of
(superior) inter-chiplet network and 2.5D system designs compared
to prior methods. Compared to 2D systems, our approach achieves
29% better performance with the same manufacturing cost, or 25%
lower cost with the same performance.
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1 INTRODUCTION

The need to sustain the historical performance and cost scal-
ing in computing systems has led to a growing interest in 2.5D
systems [1, 8, 9, 15, 16, 29]. In 2.5D design, multiple chiplets are
placed on a silicon interposer, and the chiplets communicate using
links integrated into the interposer. 2.5D integration technology pro-
vides multiple potential benefits compared to 2D systems, including
greater system performance within thermal constraints [12], het-
erogeneous integration of multiple technologies [1, 6], and reduced
overall system cost [16]. However, 2.5D integration technology also
opens up a number of design challenges, ranging from circuit and
physical challenges (design and routing of inter-chiplet links, place-
ment and floorplanning of chiplets on the interposer, microbump
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assignment, etc.) to architectural and system-level challenges (de-
sign of the inter-chiplet network architecture, partitioning a system
into 2.5D-integrated heterogeneous functional components, etc.).
Many other technical and business challenges, including design for
thermomechanical stress, test strategy, and supply chain structure,
are identified by Radojcic [26].

In this paper, we perform a cross-layer co-optimization of
2.5D inter-chiplet network design and chiplet placement. Our co-
optimization methodology focuses on network topologies, link
circuit options, and microbump pitch- and interconnect RC-aware
routing of links. It maximizes performance and/or minimizes cost
at the system level, while satisfying system power and thermal
constraints. The need for such a cross-layer methodology as ours
can be easily seen by considering the following. If we adopt a top-
down approach, an architecture analysis of network topologies
tells us that high-radix, low-diameter networks should be used
for inter-chiplet networks, as they provide the best overall system
performance (in instructions per cycle). However, in the physical
layer, realization of high-radix, low-diameter networks requires
long wires, which can limit the network performance and, hence,
the overall system performance. Using repeaters on long wires to
improve performance would necessitate active (rather than pas-
sive) interposer technology. Since active interposers are 10× more
expensive than passive interposers [25], the system cost equation
changes and the top-down intuition is flawed. On the other hand, a
bottom-up, cost-centric perspective prompts the use of a passive
interposer, which can only support repeaterless links in the circuit
layer, thus limiting link performance and maximum link length.
This leads to the adoption of low-radix, high-diameter networks at
the inter-chiplet level, which lowers overall system performance.

Our work fills a significant gap in the literature on inter-chiplet
network design and floorplan/placement optimization of 2.5D sys-
tems. No prior work has simultaneously considered thermal be-
havior of chiplets, multiple potential network topologies, multiple
inter-chiplet link options, and physical design constraints asso-
ciated with routing these links. Thus, previous approaches can
incorrectly evaluate cost, performance, power and thermal feasibil-
ity, as well as other important parameters of 2.5D system solutions.
Consequently, there is a risk of identifying suboptimal inter-chiplet
network and 2.5D system floorplan solutions, which can lead to
inefficient architectural decisions. For example, in our recent work
[12], we describe a methodology to place chiplets (connected by a
mesh) that results in thermally-safe, high-performance, and low-
cost 2.5D systems. However, in the logical layer, we only consider a
Unified-Mesh1 network topology. In the physical layer, there is no
accounting of the area overhead associated with the microbumps

1We classify networks either as Unified when we have single-level logical topology
or as Global-Local when we have two-level logical topology with Global as the inter-
chiplet and Local as the intra-chiplet level logical topology. A Unified network logically
treats all cores as if they are on the same die and we connect them as such, while in a
Global-Local network we have a hierarchy of connections.



required for the inter-chiplet links. In the circuit layer, we consider
only one type of link. As elaborated below, the present paper shows
that a careful accounting of microbump overhead, along with con-
sideration of multiple network topology options and link design
options, leads to a solution that can achieve 16% higher perfor-
mance at comparable cost, and/or 18% lower cost at comparable
performance, with respect to our prior best solutions.

The main contributions of this paper are as follows:
• We develop a cross-layer co-optimization methodology that
optimizes inter-chiplet network design jointly with chiplet
placement across logical, physical, and circuit layers. Our
methodology optimizes a given 2.5D system for performance,
cost, and wirelength, while ensuring that it is thermally safe.
The outcome of the co-optimization comprises placement
of chiplets on the interposer, logical topology of the inter-
chiplet network, and circuit design and routing of the links
that form the network.
• Our co-optimization considers a rich solution space. (i) In
the logical layer, we consider a variety of Global, Local, and
Unified network topologies. (ii) In the physical layer, we
incorporate well-calibrated microbump overhead models
into our area and cost models. We further consider the fi-
nite density of microbumps per unit die area, and assess
achievable physical wiring distances (hence, achievable link
latencies). (iii) In the circuit layer, we explore repeaterless
non-pipelined, repeaterless pipelined, repeatered pipelined,
and repeatered non-pipelined types of inter-chiplet links. We
further consider a gas station link design to enable pipelining
in passive inter-chiplet links.
• Our heuristic-based cross-layer co-optimization has several
novel elements. (i) For a given chiplet placement and network
topology, we perform routing and microbump assignment
using a flow-based mixed integer-linear program (MILP) to
minimize the maximum link latency. (ii) We use workload-
and network throughput-aware thermal simulation outputs
from HotSpot [32] to assess the thermal feasibility of place-
ment and network topology solutions. (iii) We apply simu-
lated annealing to search over our high-dimensional system
solution space.

2 RELATEDWORK
Related work on design and optimization of networks in 2.5D

systems can be categorized based on the design layer: logical, phys-
ical, and circuit. Unlike our present work, previous approaches are
generally limited in scope to a single layer of design.

In the logical layer, Kannan et al. [16] have evaluated various log-
ical topologies for 2.5D systems, but their work does not consider
microbump area overheads, different inter-chiplet link options, or
physical implementation of the 2.5D layout. Ahmed et al. [2] pro-
pose a hierarchical mesh network for inter-chiplet communication.
Both Kannan et al. [16] and Ahmed et al. [2] assume a “minimally ac-
tive” interposer, which could be unrealistic from a cost perspective
(see Section 3). Akgun et al. [3] evaluate three specialized memory-
to-core network topologies, yet the evaluation is limited to the
logical layer with a static placement of chiplets, and implications
of design choices on physical and circuit layers are not explored.
None of these works take thermal effects into account or perform a
physical design optimization of the 2.5D inter-chiplet network.

In the physical layer, Funke et al. [14] have proposed various
algorithms that exhaustively search for optimal placement and
routing solutions for up to six chiplets. The recent work of Os-
monolovskyi et al. [24] handles up to 11-chiplet design complexity
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Figure 1: The cross-section of a 2.5D system.

using pruning methods. Minz et al. [22] and Fang et al. [13] focus
on routing of inter-chiplet links on an interposer. Liu et al. [20]
aim to reduce the number of metal layers in the interposer. These
works do not consider thermal effects while finding placement and
routing solutions. In our prior work [12], we propose a thermally-
aware chiplet placement solution. However, our prior work does
not perform routing and only computes a placement solution.

In the circuit layer, research has generally focused on per-link
analyses and optimizations, without considering overheads or trade-
offs with respect to network or system throughput. The works of
Stow et al. [28] and Karim et al. [17] explore both repeaterless and
repeatered electrical links, while Shamim et al. [27] and Grani et
al. [15] respectively consider wireless and photonic links. Ehrett
et al. [11] analyze the power and delay overhead of microbumps
and conclude that microbump overheads are small. However, they
overlook electrostatic discharge (ESD) capacitance, which leads to
underestimation network of power and latency.

In contrast to these previous works, our methodology jointly
considers logical, physical, and circuit design of the inter-chiplet
network. We evaluate a variety of logical topologies, while being
aware of the network design feasibility in both the circuit layer
and the physical layer. In the circuit layer, we evaluate various link
design options. In the physical layer, we develop a thermally-aware
placement and routing solution. Our cross-layer methodology, thus,
obtains 2.5D system solutions that, having more complete and
accurate modeling foundations, come closer to defining the true
envelope of 2.5D system performance and cost under power and
thermal constraints.

3 INTER-CHIPLET NETWORK DESIGN
A cross-layer inter-chiplet network design methodology must

comprehend a vast design space that spans the logical, physical
and circuit design layers. In this section, we describe the design
space for each of these three layers, along with key parameters of
interest.

3.1 2.5D System Architecture
Our studies use a 256-core homogeneous (i.e., all cores are of

the same type) system. To enable comparisons against the previous
literature, we specifically adopt the core design used in our prior
work [12]. Cores have the following architectural specifications:
• 16KB I/D L1 Cache
• 256KB Private L2 Cache
• 0.93mm2 Core + L1 Area
• 0.35mm2 L2 Area
• 1.28mm2 (1.13mm × 1.13mm) Total Area [33]
• 18mm × 18mm Total 256-core Chip Area

Each core, together with its L1 and L2 caches, has a square layout.
Following our prior work [12], we study chiplet-based integration of
16 identical chiplets on an interposer, where each chiplet contains 16
cores. Figure 1 illustrates the cross-section view of a 2.5D system.
We assume that the 22nm chiplets are placed on an interposer



that is designed in 65nm process technology. Microbumps connect
the chiplets to the interposer substrate. The system is placed on
a System-in-Package (SiP) substrate, with C4 (“flip chip bumps”)
connecting the interposer to the SiP substrate. We enable direct
comparison of this work with our prior work [12] by designing a
Unified-Mesh network using our cross-layer methodology. It should
be noted that our broader conclusions are agnostic of the specific
core count, core architecture, and technology nodes for the chiplets
and the interposer.

3.2 Logical Layer
In the logical layer, we explore several different network topolo-

gies [35]. We limit the intra-chiplet network to Local-Mesh and
Local-Cmesh topologies. For the inter-chiplet network, we design
and evaluate Global-Butterfly, Global-Butterdonut [16], and Global-
Mesh topologies. For the Unified networks, we evaluate Unified-
Mesh and Unified-Cmesh.

3.3 Physical Layer
Physical design of the inter-chiplet network consists of place-

ment of the chiplets, along with a routing solution connecting the
chiplets2 that is consistent with the chosen network topology (see
Section 3.2). The placement of chiplets affects the temperature map
and the length of the links among chiplets, while the routing solu-
tion in turn affects the microbump assignment and circuit choices
for the link. Further, we explicitly account for the area overhead of
microbumps and the associated inter-chiplet drivers and receivers
placed along peripheral regions of the chiplets.

Inter-chiplet links can be routed on a passive or an active in-
terposer. Microbumps and ESD protection are required at the be-
ginning and the end of links that go through interposers, and this
design constraint adds capacitance [17]. Passive interposers cost
less due to their lower manufacturing cost and higher yield [25]. Ac-
tive interposers allow for repeaters and/or flip-flops (for pipelining)
on the interposer. This enables better link bandwidth and latency at
the expense of higher manufacturing cost [25]. We conduct a pre-
liminary study of the performance benefit of an active interposer.
We observe 2× to 3× latency improvements for the same link length
and 50% longer links for the same throughput, but this comes at a
10× cost overhead ($500 per wafer for passive interposer vs. $5000
per wafer for active interposer [25]). Given this cost overhead, we
rule out active interposers as a realistic option in the near term,
and do not consider this option in our present study.

Passive interposers limit the bandwidth of the signal by degrad-
ing rise/fall times. Hence, we use a gas station link, where we can
“refuel” a passive link using repeaters and/or flip-flops that are in-
side other chiplets along the way from the source chiplet to the sink
chiplet. Figure 2 shows two implementation schemes for a chiplet-
to-chiplet link. Figure 2(a) shows the top view of the paths for the
two links connecting Chiplet #1 to Chiplet #3, which are far (e.g.,
> 10mm) from each other. Figure 2(b) shows a cross-sectional view
of the two paths between Chiplet #1 and Chiplet #3. Path 1 uses
Chiplet #2 as a gas station, while Path 2 is a direct connection with-
out any gas station. It is important to note the differences between
an inter-chiplet repeaterless pipelined link and a gas station link. (i)
Pipelining repeaterless links requires an active interposer, while for
gas station links we can use a passive interposer. (ii) Active elements
required for repeaterless pipelined links are designed using the ac-
tive interposer’s technology node, while active elements required

2We aim to minimize the maximum physical link distance, which is our proxy for link
latency.
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Unified Unified Global Global Global Global
Mesh Cmesh Mesh Butterfly Butterdonut Clos

#microbumps 1024 512 256 256 256 2048
h (mm) 0.585 0.315 0.18 0.18 0.18 1.125

Chiplet Size (mm) 5.67 5.13 4.86 4.86 4.86 6.75
Microbump Area Overhead (%) 58.76 29.96 16.64 16.64 16.64 125.0

Table 1: Microbump area overhead for network topologies
with shielding overhead included.

for gas station links are designed using the chiplet’s technology
node. (iii) Using gas station links requires additional microbumps,
and in turn, has an area overhead.

When considering 2.5D inter-chiplet links, recent works have
overlooked the microbump overhead while assessing 2.5D inte-
gration benefits. Generally, the number of required microbumps
will change according to the network topology. An increase in the
number of inter-chiplet links increases the number of required mi-
crobumps. Further, additional microbumps (20% according to Rado-
jcic [26]) must be reserved for power delivery and signal shielding
purposes. Figure 3 shows the chiplet without and with the extra
area required for microbumps. Table 1 presents the overhead due
to microbumps for different network topologies designed using
repeaterless non-pipelined links. The calculations are for the 256-
core system divided across 16 chiplets, with each chiplet having an
area of 4.5mm × 4.5mm, and a microbump pitch of 45um. Here, h
indicates the width of the extra space along the chiplet periphery re-
quired for the microbumps used for the inter-chiplet links [26]. The
use of gas station link design will further increase microbump count.
We do not list the microbump area overhead associated with use of
gas station links since this depends upon the placement solution as
well as the network type.

3.4 Circuit Layer
There are multiple circuit design options for inter-chiplet links.

For passive interposers, the link on the interposer itself is repeater-
less, but with the inclusion of gas stations, the link can use repeaters
and/or flip-flops (for pipelining) in intermediate chiplets to regener-
ate and retime the signal. We limit tr ise/tcycle to less than 0.5, to en-
sure full voltage swing at all nodes in the presence of non-idealities
such as supply noise and jitter. We also explore tr ise/tcycle of 0.8
that allows us to go longer distances without repeaters. Relaxing
the clock period or allowing for multi-cycle bit-periods permits us
to use longer inter-chiplet links.



Technology Node 22nm 65nm
Wire Thickness 300nm 1.5µm
Dielectric Height 300nm 0.9µm [17]
Wire Width 200nm 1µm [26]
Cbump 4.5f F 4.5f F [17]
Cesd 50f F 50f F [17]
Cд_t (Gate Cap) 1.08f F /µm 1.05f F /µm
Cd_t (Drain Cap) 1.5 × Cg 1.5 × Cg
Rt (Inverter resistance) 450Ω · µm 170Ω · µm
Wire Pitch 0.4µm 2µm [26]
Flip-Flop Energy per Bit 14f J /bit [10] 28f J /bit [18]
Flip-Flop tc−q + tsetup 49ps [10] 45ps [18]

Table 2: Technology node parameters.

Figure 4: Distributed inter-chiplet link models:
(a) repeaterless link and (b) gas station link, in a passive

interposer.
Figure 4 shows distributed circuit models for link types; (a) re-

peaterless link in passive interposer, and (b) gas station link in
passive interposer. We model wire parasitics using a distributed,
multi-segment π model. We use 22nm technology parameters for
intra-chiplet components (drivers, receivers, repeaters, and flip-
flops of the links), while we use 65nm parameters for the inter-
chiplet components of the links. Table 2 shows technology parame-
ter values used in our experiments. We calculate capacitance and
resistance based on the model in Wong et al. [30], and we calibrate
our stage and path delay estimates based on extraction from layout
and Synopsys PrimeTime timing reports.

4 CROSS-LAYER CO-OPTIMIZATION
In this section, we describe how we optimize the network de-

sign across the layers described in Section 3, using a cross-layer
approach. We show our evaluation framework in Figure 5. We first
construct oracles for system performance, cost, and interconnect
performance. Each of these oracles gives us an element (perfor-
mance, cost, and latency) of the co-optimization function. Our
method for finding a placement solution of chiplets uses a sim-
ulated annealing algorithm. We build a search and sort engine that
places the oracles and the placement algorithm in a loop to search
for a solution across the logical, physical and circuit layers. Table
4 shows the notations we use in the various steps of our cross-
layer co-optimization methodology. The placement algorithm uses
HotSpot to determine the thermal profile and an MILP is used to
find the optimal routing solution. Thus, we determine the feasi-
bility of each placement using HotSpot simulations and the MILP
solution.

4.1 System Performance Oracle
We build a system performance oracle that tells us the over-

all system performance and total core power for a given network
topology, voltage-frequency setting, and link latency. To create the
oracle, we use Sniper [7] to precompute system performance for
a variety of network topologies, voltage-frequency settings, and
link latencies. Our system architecture is the 256-core architecture
described in Section 3.1. Eight memory controllers are placed next
to the top and bottom rows of cores. We implement the inter-chiplet
and intra-chiplet network models discussed in Section 3.2 using
either passive links or gas station links (see Section 3.3). For passive
links without gas stations, we vary inter-chiplet latency values from
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Figure 5: Cross-layer co-optimization flow.

1 to 5 cycles, and for gas station links we consider 2- or 3-stage
pipelined links. We apply three voltage-frequency settings, (0.9V,
1000MHz), (0.89V, 800MHz) and (0.71V, 533MHz). We fast-forward
sequential initialization regions and simulate up to 10 billion in-
structions in the region of interest using Sniper, with all 256 cores
active, to collect performance statistics for five benchmarks. This
takes 1.7k CPU hours. We use McPAT [19] to convert the perfor-
mance results to power traces needed for generating the thermal
profile.

4.2 Cost Oracle
We build a cost oracle that tells us the manufacturing cost of

2.5D systems for a given interposer size, network topology and gas
station stage count. We adopt the 2.5D cost model proposed by Stow
et al. [28], which takes the cost and yield of chiplets, interposer, and
microbump bonding into account, assuming known good dies. We
compute the cost of various interposer sizes from 20mm × 20mm
to 50mm × 50mm. To estimate the chiplet cost, we compute the
number of microbumps required for different network topologies
and gas station stages, determine the corresponding chiplet area
overhead, and from all these we then calculate the manufacturing
cost.3

4.3 Interconnect Performance Oracle
We construct an interconnect performance oracle that tells

us the maximum length a signal can travel for a given volt-
age-frequency setting, rise time constraint, and number of cy-
cles. The link models discussed in Section 3.4 are simulated in
HSPICE [21]. For the wire dimensions in the 65nm interposer,
i.e., 1µm wire width, 2µm wire pitch, and 1.5µm wire height, the
wire resistance is 14.666 × 10−3Ω/µm and the wire capacitance is
114.726 × 10−3 f F/µm. We use a maximum driver size of 100× the
minimum size because the wire latency is largely wire dominated
and increasing the driver size beyond 100× does not give latency
improvements. We then use these values with our MILP placement
solutions to check for placement feasibility. In Table 3, we provide
the maximum link lengths we are capable of driving for different cy-
cle numbers, voltage-frequency settings, and rise time constraints.
We use power values from HSPICE, along with utilization values
from the system performance oracle, to find the total power of the
network.
3For details and justifications related to the comparison between the manufacturing
cost of 2.5D systems and 2D systems, we refer the readers to our prior work [12].



(v (V), f (MHz)) tr ise /tcycle = 0.5 tr ise /tcycle = 0.8
(0.9, 1000) (0.89, 800) (0.71, 533) (0.9, 1000) (0.89, 800) (0.71, 533)

1 Cycle 9 11 13 12 15 18
2 Cycles 16 18 23 19 25 30
3 Cycles 21 23 30 25 32 38
4 Cycles 25 27 35 30 38 45
5 Cycles 28 32 41 33 43 52
6+ Cycles >32 >36 >45 >37 >48 >57

Table 3: Maximum link lengths (inmm) for a given network
latency (in cycles), voltage-frequency setting, and rise time

constraint.

4.4 Placement Optimization
We use simulated annealing to find a placement that meets the

thermal constraint and the maximum link length constraint as eval-
uated by HotSpot and the routing MILP (with the maximum values
provided by the interconnect performance oracle), respectively. We
assume a symmetric layout similar to that used in our prior work
[12]. As shown in Figure 3(c), we use {s1, s2, s3} as the spacings be-
tween chiplets. Simulated annealing searches the solution space in
the manner shown in Figure 5. The placement optimization also es-
timates the microbump area overhead based on the routing solution,
link type, and network choice.

4.4.1 Thermal Analysis.
We model the 2.5D system in HotSpot using the heterogeneous

detailed 3D modeling features [34]. In our thermal model, we use
the 2.5D system properties (layer thickness, materials, dimensions
of bumps and TSVs, etc.) given in recent work [9, 23]. We use a
method similar to our prior work [12], and model each layer of
material with separate floorplans on a 64 × 64 grid with ambient
temperature at 45◦C with default HotSpot sizing convention of
the heat sink and spreader. We model leakage as a linear model
and assume it to be 30% of the total power at 60◦C [33] and rerun
HotSpot until temperature convergence is achieved.

4.4.2 Routing Optimization.
We build an MILP that takes the placement of chiplets and the

logical network connections as input, and provides the optimal
routing solution, including microbump assignment, as an output.
The routing optimization is performed internally in the placement
optimization as seen in Figure 5. The objective of the MILP is a
weighted function of the maximum length of a route on the inter-
poser and the total routing area overhead. We frame the delivery of
required numbers of wires between chiplets as multi-commodity
flow, and formulate an MILP to find optimal routing solutions that
comprehend the finite availability of microbumps in regions of the
chiplet periphery.

Table 4 describes the notations used in the MILP. We use ILOG
CPLEX v12.5.1 to implement and run the MILP. The number of
variables and the number of constraints in the MILP instance are
both bounded by O ( |C |2 · |P |2 · |N |). The outputs of our MILP
implementation are the optimal value of the objective function
and the values of the variables f nihjk , which describe the routing
solution and microbump assignment to pin clumps.

Based on the inputs to the routing optimization step (see Table 5),
we precompute dihjk , the routing distance (assuming Manhattan
routing) from pin clump h on chiplet i to pin clump k on chiplet
j, using Equation (1). Equation (2) is the objective function for the
MILP that includes the maximum length L, and the total length
of the routes. In all reported experiments, we set α = 1 and β =
0. Equation (3) imposes an upper bound on L, ensuring that the
solution has routes satisfying the input maximum-length constraint

Notation Meaning
C Set of chiplets.
P Set of pin clumps.
N Set of nets.

c, i, j Index of a chiplet ∈ C .
p, h, k Index of a pin clump ∈ P .
n A net ∈ N .
sn Source chiplet of net n.
tn Sink chiplet of net n.
Xc Left bottom x-coordinate for chiplet c .
Yc Left bottom y-coordinate for chiplet c .
xp x-offset from left bottom (within chiplet instance) for pin clump p .
yp y-offset from left bottom (within chiplet instance) for pin clump p .

dihjk Distance from pin clump h on chiplet i to pin clump k on chiplet j .
λnihjk

Binary indicator for a route between pin clump h on chiplet i to pin clump
k on chiplet j belonging to net n.

Ri j Input requirement on the number of wires between chiplet i and chiplet j .
Pmax
ih Pin capacity for a pin clump h on chiplet i .
f nihjk

Flow variable. Number of wires from pin clump h of chiplet i to pin clump
k of chiplet j that belong to net n.

Dmax Maximum permissible length for any route.

Smax

Maximum permissible number of segments allowed for any route; a
segment is defined as a route between chiplets. For the case where no gas
stations are permitted, Smax = 1. Permitted values of Smax include 1, 2

or 3.
α , β Coefficients for the objective function.

Gas Station The MILP treats a gas station as a chiplet other than the source (sn ) or sink
(tn ) that is used to route wires of net n.

NW

Set of logical networks: {Unified-Mesh, Unified- Cmesh,
Global-Mesh-Local-Mesh, Global-Mesh-Local-Cmesh,

Global-Butterfly-Local-Mesh, Global-Butterfly-Local-Cmesh, Global-
Butterdonut-Local-Mesh, Global- Butterdonut-Local-Cmesh}.

(V , F ) Set of voltage-frequency settings:
{(0.9V , 1000MHz ), (0.89V , 800MHz ), (0.71V , 533MHz ) }.

lwire Wirelength ∈ {1 − 40mm}.
Nw A network ∈ NW .
(v, f ) A voltage-frequency setting ∈ (V , F ).
wint An interposer width ∈ {20 − 50mm}.
w2D Width of the 2D chip: 18mm.
wд Width of the guardband along the interposer periphery: 1mm.

s1, s2, s3 Spacing between chiplets.

L Maximum route length among all routes in the routing solution for a given
s1, s2, s3, Nw .

Lth Maximum route length threshold given a (v, f ) and τ tarдet .
τ tarдet Target link latency value.

T Peak temperature in the system for a given s1, s2, s3, Nw and (v, f ).
Tth Peak temperature threshold set at 85°C .
I PS Instructions per second (IPS) for a given (v, f ) and Nw .

I PS0
Instructions per second (IPS) of Global-Butterdonut-Local-Cmesh topology

baseline.
Abump Microbump area overhead for a given network and gas station stage count.
Cost Manufacturing cost of 2.5D systems for a givenwint , Nw , and Abump .
Cost 0 Cost of Global-Butterdonut-Local-Cmesh topology baseline.
τ Latency.
τ0 Latency of Global-Butterdonut-Local-Cmesh topology baseline.

γ , θ, ϕ Coefficients for the cross-layer objective function.
K Annealing factor.
ϵ Annealing threshold.
AP Acceptance probability.

Table 4: Notations used in the various steps of our
cross-layer co-optimization methodology.

Input Properties

Chiplets |C | Chiplet instances, at {Xc , Yc } left bottom, c ∈ C . The locations
provided for the chiplets are assumed to be legal.

Pin Clumps
|P | Pin clump instances of pin capacity Pmax

ih each. Each pin clump p has
a predetermined location {xp , yp } relative to the left bottom of the chiplet.

Required
Connections

Ri j between every pair of chiplets {i, j } indicating the number of wires
that need to go between the pair of chiplets. If Ri j > 0 then a net n exists

between chiplet i and chiplet j with source sn = i and sink tn = j .
Routing Rules Maximum length of a route, Dmax . Maximum number of segments,

Smax equal to 1, 2 or 3. Smax ≤ 3 to limit impact on latency.

Table 5: Inputs to the routing optimization.

Dmax . Equation (4) ensures that the flow variable f nihjk is a non-
negative number. Equation (5) is the flow constraint governing
the flow variables f nihjk . It ensures the sum of all flows for a net
n, over all pin clumps from chiplet sn to chiplet tn , meets the Ri j
requirement. It also ensures that net flow is 0 for all other (non-
source, non-sink) chiplets for the given net. Equation (6) ensures
that there is no input flow (for net n) for the source chiplet of net n.



Similarly, Equation (7) ensures that there is no output flow from the
sink chiplet of net n. Equation (8) ensures that the sum of input and
output flows from a given pin clump is always less than or equal
to the capacity of the pin clump. This ensures that all routes have
available pins. Equation (9) defines λnihjk as a boolean value based
on f nihjk . This helps identify the maximum route length L, as shown
in Equation (10). Equation (11) constrains the maximum number of
segments (Smax ) to be either 1, 2 or 3. If Smax = 1, no gas stations
are permitted, while if Smax = 2 or Smax = 3, then gas stations are
permitted, allowing for 1 or 2 gas station hops, respectively.

dihjk =
���Xi + xh − X j − xk

��� +
���Yi + yh − Yj − yk

��� (1)

We solve:
Minimize: α · L + β ·

∑
i∈C,h∈P, j∈C,k∈P,n∈N

dihjk · f nihjk (2)

Subject to:

L ≤ Dmax (3)

f nihjk ≥ 0, ∀i ∈ C , h ∈ P , j ∈ C , k ∈ P, n ∈ N (4)

∑
h∈P, j∈C,k∈P

f nihjk −
∑

h∈P, j∈C,k∈P

f njkih =



Rsn tn , if i = sn, ∀n ∈ N
−Rsn tn , if i = tn, ∀n ∈ N
0 otherwise, ∀n ∈ N

(5)

∑
h∈P, j∈C,k∈P

f njksnh = 0, ∀n ∈ N (6)

∑
h∈P, j∈C,k∈P

f ntnhjk = 0, ∀n ∈ N (7)

∑
j∈C,k∈P,n∈N

f nihjk +
∑

j∈C,k∈P,n∈N

f njkih ≤ Pmax
ih , ∀i ∈ C, h ∈ P (8)

λnihjk =
{
1 if f nihjk > 0, ∀i ∈ C, h ∈ P, j ∈ C, k ∈ P, n ∈ N
0 otherwise, ∀i ∈ C, h ∈ P, j ∈ C, k ∈ P, n ∈ N (9)

L ≥ dihjk · λnihjk , ∀i ∈ C , h ∈ P , j ∈ C , k ∈ P , n ∈ N (10)

∑
i∈C,h∈P, j∈C,k∈P

f nihjk ≤




Rsn tn , if Smax = 1
2 · Rsn tn −

∑
h∈P,k∈P f nsnhtnk , if Smax = 2

3 · Rsn tn − 2 ·
∑
h∈P,k∈P f nsnhtnk−∑

i∈C |i,sn | |tn min (
∑
h∈P,k∈P f nsnhik ,∑

h∈P,k∈P f niktnh ), if Smax = 3
(11)

4.5 Cross-Layer Co-Optimization Flow
To design the inter-chiplet network in the 2.5D system, we for-

mulate a cross-layer co-optimization problem to maximize perfor-
mance while minimizing manufacturing cost and latency, as shown
in Equations (12) - (17). Equation (12) is the objective function,
where (γ , θ , and ϕ) are the weight factors of performance, cost, and
latency of our target 2.5D system. We normalize the performance,
cost, and latency to the baseline 2.5D system described in Kannan
et al. [16], where Global-Butterdonut-Local-Cmesh network with a
4-stage pipelined link is used for communication, and the chiplets
are separated with minimal spacing of 0.5mm. The objective func-
tion is subject to a peak temperature constraint of 85◦C (Equation
(13)), a maximum wirelength constraint for a given link type and
target latency (Equation (14)), and a maximum interposer size con-
straint of 50mm × 50mm (Equation (15)). Equation (16) computes
the interposer size based on spacing variables {s1, s2, s3} as defined
in Figure 3(c), with a fixed guardband of 1mm along the periphery

of the interposer. Equation (17) makes sure there is no overlap be-
tween the center chiplets. {s1, s2, s3} > 0 guarantees that there is
no overlap between periphery chiplets.

Minimize:

γ ×
I PS0

I PS ((v, f ), Nw )
+ θ ×

Cost (wint , Abump, Nw )

Cost0
+ ϕ ×

τ
τ 0

(12)

Subject to:
T ((v, f ), Nw, s1, s2, s3) ≤ Tth (13)

L(Nw, s1, s2, s3) ≤ Lth ((v, f ), τ tarдet ) (14)
wint ≤ 50 (15)

wint = w2D + 2 × s1 + s3 + 2 ×wд (16)
2 × s1 + s3 − 2 × s2 > 0 (17)

Our flow to solve the cross-layer co-optimization problem is shown
in Figure 5. The co-optimization flow has the following three steps:
Precompute.We use the system performance, cost, and intercon-
nect performance oracles to precompute a table of all possible 8800
combinations of the system performance, cost and maximum inter-
connect length.
Sort. For a given set of co-optimization function coefficients (γ , θ ,
and ϕ) in Equation (12), we compute the objective function values
for each entry in the table of 8800 combinations and sort the table
entries from low to high objective function values. We normalize
all three components (system performance, cost, and interconnect
latency) to Global-Butterdonut-Local-Mesh [16].
Search. For each entry in the sorted table, we use simulated anneal-
ing to search for a valid chiplet placement, {s1, s2, s3} that meets
both the temperature (Equation (13)) and wirelength (Equation
(14)) constraints. The search space for each entry cannot be rapidly
traversed using exhaustive search due to large simulation times
in HotSpot. In our prior work [12] we had used greedy search to
search for thermally valid solutions. Given the dual constrained
nature of the problem in the current work, we choose simulated
annealing over greedy search. For all interposer sizes and chiplet
sizes, the total solution space has more than 17000 combinations
of {s1, s2, s3}. We would like to note that between the 17000 com-
binations of {s1, s2, s3} and the 8800 combinations of the oracles,
there is a many-to-many mapping. In other words, each of the 8800
combinations can have one or more combinations of {s1, s2, s3} that
give the same minimum value for the objective function. The same
one-to-many mapping exists in the reverse direction. We set an
initial annealing factor K to 1, a stopping factor to 0.01, and a decay
factor to 0.9. The annealing factor decays every i iterations, where
i is set proportional to the interposer size. A neighbor placement
(denoted as S ′) of current {s1, s2, s3} (denoted as S) is randomly
generated by varying one of the {s1, s2, s3} by ±0.5mm. We evaluate
the probability of accepting a neighbor placement by comparing
peak temperature and maximum wirelength of the neighbor and
the current placement using the function e

T (S )−T (S′)
K × e

L (S )−L (S′)
K .

We accept the neighbor placement if the probability is greater than
a random number between 0 and 1. If the neighbor placement is
a better solution with lower peak temperature and/or lower maxi-
mum wirelength, the probability function is greater than 1 to force
the acceptance. If the neighbor placement is worse than the cur-
rent placement, there is still a nonzero probability of accepting the
neighbor placement to avoid being trapped in a local minimum. As
the annealing factor K decays, the probability of accepting a worse
neighbor goes down. During the search, if there is a placement that
meets both peak temperature and maximumwirelength constraints,
we stop the search and output this placement as our solution. If
there is no valid placement after finishing simulated annealing, we
move down to the next entry in the sorted table.



Figure 6: Maximum performance and corresponding cost
for tr ise/tcycle = 0.5.

With our simulated annealing parameters, the algorithm explores
between 1000 to 2200 moves, depending on the design space for a
given interposer size. Among themoves, 30% to 45% of themoves are
accepted. There is almost no acceptance of a neighbor placement in
the last few hundreds of moves, and thus, our simulated annealing
algorithm converges.

5 EVALUATION RESULTS
In this section, we discuss the results of application of our pro-

posed cross-layer co-optimization methodology. We run multi-
threaded workloads from SPLASH-2 (cholesky, lu.cont) [31], PAR-
SEC (blackscholes, streamcluster) [4], and UHPC (shock) [5] to get a
variety of power and performance profiles. For each benchmark,
we determine the chiplet placement solution, network routing solu-
tion, link type, voltage-frequency setting and network topology. In
Figure 6, we show the maximum achievable performance and the
corresponding cost of all networks across the five benchmarks for
tr ise/tcycle = 0.5. We show results with and without gas stations.

If we do not use gas station links, Unified-Mesh outperforms
other networks when running cholesky and streamcluster by 1%
to 39%. Unified-Cmesh outperforms all other networks for the re-
maining benchmarks by <1% to 85%. The higher performance of
Unified-Mesh/Cmesh is because they have shorter inter-chiplet links
and so they easily achieve single-cycle latency even without gas
stations. The latency penalty of long links in Global-Butterfly-Local-
Mesh/Cmesh and Global-Butterdonut-Local-Mesh/Cmesh leads to
lower performance. On average Unified-Cmesh network has the best
performance among all networks. It has more inter-chiplet channels
compared to Global networks that results in less contention in the
inter-chiplet links, and at the same time it has lower hop count than
Unified-Mesh that results in lower latency. The higher performance
of Unified-Mesh/Cmesh comes at a cost. Unified-Mesh network is
the most expensive and has a manufacturing cost that is 6% to 90%
higher than other networks.

With gas stations, we can pipeline longer links to improve net-
work throughput. As a result, Global-Butterfly-Local-Mesh/Cmesh
and Global-Butterdonut-Local-Mesh/Cmesh networks can achieve
better performance with gas stations. Across all benchmarks we
see Unified-Cmesh outperforms all other networks by <1% to 21%.
However, Unified-Mesh has 1% to 60% higher manufacturing cost
compared to all other networks for all benchmarks, except shock.
For shock, Global-Butterdonut-Local-Mesh/Cmesh has the highest
cost, which is 1% to 20% higher than all remaining networks.

To better understand the design space, we also evaluate max-
imum performance and corresponding cost for networks with
and without gas station links when tr ise/tcycle is 0.8. With this
tr ise/tcycle , longer inter-chiplet link lengths without gas stations
are feasible. The relaxed length constraint also reduces the mi-
crobump and pipeline stage count, which reduces the cost. For
tr ise/tcycle of 0.8, without gas stations, Unified-Cmesh outperforms
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Figure 7: Floorplan examples for cholesky benchmark.

Figure 8: Network designs up to 35th cost percentile.

other networks by <1% to 47%. Unified-Mesh has the highest cost
and it is 4% to 52% greater than that of other networks. With gas sta-
tions, the performance of Unified-Cmesh is <1% to 11% greater than
other networks. Unified-Mesh has the highest cost for all bench-
marks except blackscholes and shock, and it is 8% to 60% higher
than the cost of the remaining networks. For blackscholes, Global-
Butterfly-Local-Cmesh has the highest cost. Here the cost is 2%
to 18% higher than the remaining networks. For shock, Global-
Butterdonut-Local-Cmesh has the highest cost and it is 2% to 20%
higher than the remaining networks.

We now highlight differences between outcomes of our previous
approach [12] and our present approach. Figure 7(a) shows the
placement solution for the cholesky benchmark using our previ-
ous approach [12]. That work had predicted a performance boost
of 80% with cost comparable to a 2D baseline, while optimizing
performance. To make a fair comparison, we apply our cross-layer
co-optimization algorithm, running the same benchmark and using
the same Unified-Mesh network. Figure 7(b) shows the placement
solution from our cross-layer co-optimization. Cost is almost 1.7×
higher than that predicted previously [12], while achieving the
same (80%) improvement over the 2D baseline system. Figure 7(c)
shows the system organization when using our cross-layer co-
optimization such that the cost does not exceed the cost of the
optimal system organization in Figure 7(a) [12]. Here, we obtain
substantially muted performance benefits: rather than 80% perfor-
mance boost, we achieve a performance boost of 25% compared
to the 2D baseline system. Figure 7(d) shows the solution when
considering different network topology options while using the
cross-layer co-optimization approach to minimize manufacturing
cost at equal or higher performance than that of the solution in
Figure 7(a). The cost of the solution shown in Figure 7(d) is 1.4×
higher than that of the solution in Figure 7(a), but it is 20% lower
compared to the solution in Figure 7(b). This 20% cost improve-
ment is achieved due to the choice of Global-Mesh-Local-Cmesh in
place of Unified-Mesh. Finally, in Figure 7(e), we show the solution
using our cross-layer co-optimization methodology when using
all possible design knobs. With Unified-Cmesh, (0.9V, 1000MHz)
voltage-frequency setting, and 48mm interposer width, (i) we ob-
tain 90% performance improvement compared to the 2D system,
which is 60% better than the performance improvement determined
by our prior work; and (ii) we obtain this performance improvement
at 16% lower cost compared to our prior work.



Figure 8 provides insights regarding the maximum performance
possible in a low-cost regime. We sort the 8800 table entries men-
tioned earlier by manufacturing cost from low to high. We then
pick the first 35% of the table entries and identify the placement and
routing solution for each network that gives highest performance.
With low cost budgets, we see that the higher-performance configu-
rations are dominated by Global-Mesh-Local-Mesh/Cmesh networks.
Global-Mesh-Local-Cmesh performs the best in cholesky, lu.cont,
and shock, with 1% to 42% better performance than other networks.
Global-Mesh-Local-Mesh performs 7% to 50% better than other net-
works for blackscholes, while Global-Butterfly-Local-Cmesh gives
between 1% to 29% better performance than other networks for
streamcluster. This is expected, as mesh-like networks have shorter
links and can achieve relatively high performance without having
to utilize expensive gas station links. Further, in the low-cost regime,
we see that Unified-Mesh is not feasible to implement due to the
large number of links, which need a large number of microbumps
and consequently have a high cost. Since our prior work [12] only
considers Unified-Mesh topology, this result shows that it is not a vi-
able solution for low-cost budgets. When we include solutions with
up to the 65th cost percentile, we see that Global-Butterdonut-Local-
Mesh/Cmesh and Global-Butterfly-Local-Mesh/Cmesh topologies be-
gin to catch up in performancewithGlobal-Mesh-Local-Mesh/Cmesh
networks. This is because we can utilize gas station links for the
Global-Butterdonut-Local-Mesh/Cmesh and Global-Butterfly-Local-
Mesh/Cmesh networks. Global-Mesh-Local-Mesh/Cmesh networks
do not benefit as much from the relaxed cost constraint.

Finally, we discuss the power of the inter-chiplet network. We
see that the highest inter-chiplet network utilization is seen when
we run shock on a Unified-Cmesh network. While running shock
on Unified-Cmesh, inter-chiplet network power is at most 2% of
the overall system power.4 Theoretically, in very highly threaded
applications of the future, we could get much higher network uti-
lizations and then the power of the inter-chiplet network would
become a concern.

6 CONCLUSION AND FUTUREWORK
In this paper, we have introduced a cross-layer co-optimization

methodology for inter-chiplet network design and chiplet place-
ment in 2.5D systems. We have jointly considered network design
in the logical, physical, and circuit layers to determine the optimal
network choices, link choices, chiplet placements, and link routes
to achieve a multi-objective co-optimization goal. We have also
proposed to use a gas station link design to enable pipelined inter-
chiplet links when using a passive cost-effective interposer. Our
optimization has leveraged well-calibrated models of prior work.
We have demonstrated that, compared to 2D systems, our optimized
2.5D systems can achieve 29% better performance with the same
manufacturing cost, or 25% lower cost with the same performance.

Throughout this work, we have focused on running a single par-
allel application at a time and have shown the co-optimization
outcomes for a variety of benchmarks. Based on these results,
a 2.5D system can be further optimized in an application-aware
manner (e.g., based on specific applications or worst-/average-case
results). Interesting open problems include co-optimization with
multi-application scenarios, allocation of threads in a network-
aware manner, co-optimization with heterogeneous chiplets, and
exploration of active interposer. Also, while we have designed our

4If we include the power of the intra-chiplet networks (which have more links/routers),
the contribution of the overall network to the total system power will be larger.

system for the worst-case link latencies under a global latency con-
straint, future work involves designing networks with variable link
latencies.
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