
Using Machine Learning to Predict Path-Based Slack
from Graph-Based Timing Analysis

Andrew B. Kahng†‡, Uday Mallappa‡, Lawrence Saul†
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA

{abk, umallapp, saul}@ucsd.edu

Abstract—With diminishing margins in advanced technology
nodes, accuracy of timing analysis is a serious concern. Improved
accuracy helps to reduce overdesign, particularly in P&R-based
optimization and timing closure steps, but comes at the cost of
runtime. A major factor in accurate estimation of timing slack,
especially for low-voltage corners, is the propagation of transition
time. In graph-based analysis (GBA), worst-case transition time
is propagated through a given gate, independent of the path
under analysis, and is hence pessimistic. The timing pessimism
results in overdesign and/or inability to fully recover power and
area during optimization. In path-based analysis (PBA), path-
specific transition times are propagated, reducing pessimism.
However, PBA incurs severe (4X or more) runtime overheads
relative to GBA, and is often avoided in the early stages of
physical implementation. With numerous operating corners, use
of PBA is even more burdensome. In this paper, we propose
a machine learning model, based on bigrams of path stages,
to predict expensive PBA results from relatively inexpensive
GBA results. We identify electrical and structural features of
the circuit that affect PBA-GBA divergence with respect to
endpoint arrival times. We use GBA and PBA analysis of a
given testcase design along with artificially generated timing
paths, in combination with a classification and regression tree
(CART) approach, to develop a predictive model for PBA-GBA
divergence. Empirical studies demonstrate that our model has
the potential to substantially reduce pessimism while retaining
the lower turnaround time of GBA analysis. For example, a
model trained on a post-CTS and tested on a post-route database
for the leon3mp design in 28nm FDSOI foundry enablement
reduces divergence from true PBA slack (i.e., model prediction
divergence, versus GBA divergence) from 9.43ps to 6.06ps (mean
absolute error), 26.79ps to 19.72ps (99th percentile error), and
50.78ps to 39.46ps (maximum error).

I. INTRODUCTION

Long runtimes of modern electronic design automation
(EDA) tools for designs with over a million instances and
many multi-corner multi-mode (MCMM) timing scenarios
block quick turnaround time in system-on-chip (SOC) design.
A significant portion of runtime is spent on analysis of
timing across multiple process, voltage and temperature (PVT)
corners. At the same time, accurate, signoff-quality timing
analysis is essential during place-and-route and optimization
steps, to avoid loops in the flow as well as overdesign that
wastes area and power. Tools such as [20] and [21] support
graph-based analysis (GBA) and path-based analysis (PBA)
modes in static timing analysis (STA), enabling a tradeoff of
accuracy versus turnaround time.

In GBA mode, pessimistic transition time is propagated at
each node of the timing graph. Figure 1(a) illustrates transition
propagation from launch flip-flop L2 to capture flip-flop C1.
At instance A1, the worst of its input transition times is
propagated from input to output. However, the worst transition
time occurs on the pin that is not part of the L2-C1 timing path.
Since cell delay estimation is a function of input transition
time, the GBA-mode delay calculation for instance A2 is
performed using a pessimistic transition time. This pessimism
accumulates along the timing path, leading to pessimistic

(a)

(b)

Fig. 1. Transition propagation in (a) GBA mode and (b) PBA mode.

arrival time calculation at the endpoint. Further, the transition
time at the endpoint influences the setup requirement of flip-
flop C1, adding further pessimism to the reported slack of the
timing path.

In PBA mode, path-specific transition time is propagated at
each node of the timing graph. Figure 1(b) illustrates transition
propagation for the L2-C1 timing path in PBA mode. For
instance A1, actual path-specific transition time is propagated,
and is therefore used in the cell delay calculation for A2.
As the number of timing paths to an endpoint increases,
there is an exponential increase in possibilities of transition
propagation and delay calculation at each node.1 The path-
specific transition propagation and arrival time estimation at
each node is runtime-intensive. Figure 2 shows that for public
benchmark designs [16] [17] [19] implemented in a 28nm
FDSOI foundry enablement, a commercial signoff STA tool
exhibits slowdowns (PBA runtime, relative to GBA runtime) as
high as 15X for leon3mp [19] (108K flip-flops, 450K signal
nets), and 150X for megaboom [17] (350K flip-flops, 960K
signal nets).2 The need for faster path-based analysis is called
out in, e.g., Molina [4]; Kahng [5] names prediction of PBA
slacks from GBA analysis as a key near-term challenge for
machine learning in IC implementation.

Modern IC implementation in advanced nodes relies on
MCMM analysis and PBA mode for signoff. Thus, if PBA
were to be “fast” (i.e., without significant runtime or other

1Details of PBA are given in proprietary tool documentation of major EDA
vendors, and analysis outcomes typically have subtle differences across tools.

2This slowdown is seen with “exhaustive” and
“slack_greater_than -1” PBA, which assures accuracy in the
path-based analysis and provides the least pessimistic basis for optimization.
Because runtimes are so long with exhaustive mode, users must typically use
“path” mode in which path-specific timing recalculation is performed only
for some set of timing paths. Analysis using path mode does not guarantee
to report worst possible paths to a given endpoint of interest, but can have as
little as 2X runtime overhead (pba_mode path and nworst 1) versus
GBA.

603

2018 IEEE 36th International Conference on Computer Design

2576-6996/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCD.2018.00096

Fig. 2. Ratio of PBA runtime to GBA runtime on log scale (commercial
signoff STA tool; 28nm FDSOI foundry enablement) for public-domain design
examples (see Table V for details) ranging in size from 4K flip-flops and 40K
instances to 350K flip-flops and 990K instances.

overheads) relative to GBA, then only PBA would be used.
Unfortunately, today’s PBA runtime overheads force the de-
sign methodology to make difficult accuracy-runtime tradeoff
choices. If there is a high timing violation count in early
phases of physical implementation, timing analysis accuracy
may not be a primary concern. Hence, designers will typically
use less-accurate but relatively inexpensive GBA mode in the
early stages of design. Later in the design cycle, as the design
converges towards fewer violations, designers must enable
PBA mode, at a minimum for timing paths which fail in GBA
mode, so as to obtain less-pessimistic, path-specific timing
slacks and prevent over-fixing.3 However, by this time, damage
has already been done to the design’s power and area metrics
as a result of performing GBA-driven optimizations.

Figure 3 illustrates the magnitude of PBA-GBA divergence
using a commercial signoff timer for the megaboom test-
case implemented in 28nm FDSOI. One worst GBA path
is extracted per endpoint (corresponding to “nworst 1” in
commonly-used STA tool Tcl), and the top 15K timing paths
are plotted in decreasing order of PBA-GBA divergence (by
the nature of PBA and GBA, the latter is always pessimistic
with respect to the former). The maximum PBA-GBA diver-
gence of 110ps means that the GBA can be pessimistic by
110ps as compared to PBA, for this testcase.

Fig. 3. PBA-GBA divergence for the megaboom design (350K flip-flops,
990K instances) signed off at 1.2ns clock period in 28nm FDSOI technology.

3The turnaround time overheads of PBA are compounded by having many
MCMM scenarios in timing closure during final stages of implementation,
especially for low-power, high-performance designs in advanced nodes.

We emphasize that PBA-GBA divergence is costly – in
terms of design quality and/or design schedule – in all con-
texts. More specifically:

• if GBA slack is positive and PBA slack is positive, then
divergence of slack values reduces the ability to exploit
available timing slack during power optimization in GBA
mode;

• if GBA slack is negative and PBA slack is positive, then
the divergence in GBA results in fixing of false violations,
with attendant schedule, area and power impacts; and

• if GBA slack is negative and PBA slack is negative, then
the divergence in GBA results in over-fixing of timing
violations, again impacting schedule, power and area.

Thus, predicting PBA without significant runtime overhead can
enable improvement of design quality and schedule, indepen-
dent of timing slack value. This strongly motivates our present
work to develop a fast predictor of PBA from GBA analysis.

In the following, we define PBA-GBA path arrival time
divergence as the arrival time change at the endpoint of a
timing path in PBA mode as compared to GBA mode. We
can think of this as a path-consistent juxtaposition of the
two analyses. Similarly, we define PBA-GBA transition time
divergence for an arc of a timing path as the delta between
transition time in PBA mode as compared to GBA mode. An
endpoint-consistent definition of divergence is also possible:
for endpoint consistency, we define PBA-GBA endpoint arrival
time divergence as the arrival time difference at a given
endpoint between the worst timing path reported by PBA, and
the worst timing path reported by GBA. Our work assumes
that the clock path does not undergo a significant change
in PBA mode as compared to GBA mode. A clock network
is primarily comprised of single-input cells, which results in
fewer transition propagation conflicts except for rise and fall
conflicts. In addition, the sharper (smaller) transition times
required in the clock network are more resistant to PBA-
GBA variation.4 With this assumption, we approximate PBA-
GBA endpoint slack divergence as PBA-GBA endpoint arrival
time divergence. Unless specified, we use the term “PBA-
GBA divergence” to indicate PBA-GBA path arrival time
divergence.
The major contributions of our work include the following.

• To our knowledge, we are the first to develop a predictor
of PBA from GBA, addressing a challenge noted in [4]
and [5] and potentially reducing overdesign as well as
design schedule.

• We propose a novel combination of bigram-based path
modeling, classification and regression trees, and selec-
tion of model features available from GBA.

• We perform studies in a 28nm FDSOI foundry enable-
ment with a range of open benchmark designs, and
demonstrate significant reductions of pessimism, without
significant runtime overhead.

The remainder of our paper is organized as follows. In Sec-
tion II, we introduce terminologies, then elaborate on the back-
ground of the PBA-GBA divergence problem before formally
defining our problem statement. In Section III, we describe
our modeling methodology and model feature selection. In

4Our background studies confirm that the change in clock skew in PBA
mode is insignificant.

604

Section IV, we describe our experimental validation setup and
results, along with challenges yet unaddressed by our modeling
approach. Section V concludes with directions for ongoing and
future research.

II. BACKGROUND

Table I introduces the terminologies and definitions we use
in our work.

TABLE I
TERMS AND DEFINITIONS.

Term Definition
Bigram or bigram unit Two consecutive (cell) stages in a timing path
AT Arrival time
TR Transition time
PD Propagation delay
SL Timing slack
CL[j] Load capacitance of a driving instance (cell) j
FO[j] Fanout of driver cell j
DR[j] Drive strength of instance j
Nm Number of stages in a timing path
Ns[j] Stage depth of instance j relative to launch flop
Nbg Number of bigrams in a timing path
G[j] (Logical) functionality of an instance j
ATgba[i, j] (ATpba[i, j]) AT of instance j, pin i in GBA (PBA) mode
TRgba[i, j] (TRpba[i, j]) TR of instance j, pin i in GBA (PBA) mode
TR MAXgba[j] maxi{TRgba[i, j]}
ΔTR[i, j] TRgba[i, j] − TRpba[i, j]

TR ratgba[i, j] 1 − TRgba[i,j]

TR MAXgba[i,j]
(TR ratio)

Acc TR ratgba[i, j]
∑Ns[j]

0 TR ratgba[i, j] (accum. TR ratio)
PDgba[j] (PDpba[j]) PD of an instance j in GBA (PBA) mode
SLgba[j] (SLpba[j]) SL of an endpoint j in GBA (PBA) mode
ΔPD[j] PDgba[j] − PDpba[j]
ΔAT [i, j] ATgba[i, j] − ATpba[i, j]
ΔSL[j] SLgba[j] − SLpba[j]

Figures 4(a) and (b) show a timing path trace with endpoint
arrival times of 1.803ns and 1.693ns in GBA and PBA modes,
respectively.5 The PBA-GBA divergence of this timing path is
110ps. Pin U1245606/B has a transition time difference of
38ps and pin U1245606/Z has an arrival time difference of
16ps; these are manifestations of (i) arrival time differences
from previous stages and (ii) transition time difference in the
current stage due to imbalance in the fanin cone of U1245606.
This example highlights the challenge of deciphering graph-
based timing analysis reports to estimate hidden path-specific
transition time and arrival time information. Section II-C
below discusses electrical and physical features that influence
the PBA-GBA divergence.

Speed, accuracy and scalability of STA has for decades been
a focus of industry R&D attention; see, e.g., TAU Workshop
[18] presentations. However, there are few prior works on
the use of machine learning for prediction of STA outcomes.
Methods to reduce miscorrelation between STA engines or
long optimization runtimes are given by [2] and [3], and
[6] seeks to reduce STA runtime itself through distributed
computing. Kahng et al. [1] provide methodology to model
signal integrity (SI) effects on path arrival time, using machine
learning. Since their model [1] predicts SI from non-SI, the
degree of pessimism in SI prediction is not a primary concern.
However, as noted above, model optimism could be a serious
concern when predicting PBA from GBA, since an optimistic
PBA prediction might mask a real timing violation.

5The path report format shown, as well as certain timing analysis option
names from tool Tcl mentioned in our discussion, are copyrighted by one or
more EDA companies.

A. Problem Statement

Formally, our problem is: Given a training set Ptrain of
(PBA-GBA) path-consistent path analysis pairs, such as the
pair shown in Figure 4, use Ptrain to train a learning model
that predicts PBA-GBA divergence for a testing set Ptest

(where Ptest ∩ Ptrain = ∅) of paths that are analyzed in
only GBA mode. Metrics for evaluation of model quality are
described in Section III-A. Experiments used to validate our
model are described in Section IV.

B. Intuition for Bigram-Based Modeling

PBA-GBA divergence of a timing path can be estimated
either stage-wise or path-wise. We refer to the latter approach
as lumped path modeling. For stage-wise modeling, n ≥ 1
consecutive stages in a timing path are termed an n-gram
or n-gram unit within the path. As n increases, stage-wise
modeling (by n-gram units) approaches lumped modeling. The
definitions of PBA-GBA divergence in Section I straightfor-
wardly extend to stage-wise modeling. The accumulation of
PBA-GBA divergence over the n-grams in a path leads to a
path-specific PBA-GBA divergence. Figure 5 shows a bigram-
based (n = 2) representation of a timing path from launch
flip-flop L1 to capture flip-flop C1.

Based on numerous preliminary studies, we have chosen
stage bigrams as the fundamental unit for our modeling
approach. We observe that lumped modeling shields stage-
specific details and inter-stage variations, and in our attempts
is prone to large optimistic errors. The lumped approach also
has a very large space of features (which in general grows with
the number of stages) available to characterize a given path.
Furthermore, it is difficult to identify outlier stages that are
the “root causes” of misprediction. By contrast, stage-based
modeling ensures a fine-grain modeling for each stage and
accounts for inter-stage variation of circuit features. Since path
prediction is an accumulation of stage predictions, bounding
stage-wise errors helps limit path mispredictions. (Practically,
we find that it is also easier to identify and diagnose outliers
in a stage-based model, and to improve the model by adding
features that reduce mispredictions for these outliers.)

We also observe that PBA-GBA divergence arises from the
existence of ‘competing’ transition values at inputs of a cell.
However, this will be translated into arrival time divergence
only for the next stage in a given timing path. This naturally
motivates use of a bigram as the basic modeling unit to capture
PBA-GBA divergence. We find that the training of n-gram
models for n > 2 is hampered by the combinatorial explosion
of possible n-grams (e.g., over a given cell library), while
training of bigram models to achieve accurate prediction is
computationally more tractable.

C. Selection of Features

We have evaluated a comprehensive set of electrical and
physical features of a bigram unit that can affect PBA-
GBA divergence. Our analyses indicate that transition time
in GBA mode TRgba at the primary input of a bigram unit,
and transition time ratio in GBA mode TR ratgba, are two
mandatory features that strongly impact PBA-GBA divergence
of the bigram unit. However, these two features alone are
insufficient for accurate prediction of PBA-GBA divergence.
Features such as cell drive strength and gate type influence the

605

(a) (b)

Fig. 4. PBA-GBA divergence for the megaboom design (990K instances) signed off at 1.2ns in 28nm FDSOI technology. Shown: timing analysis for the
same path in (a) GBA mode and (b) PBA mode.

Fig. 5. Bigram-based model of a timing path. The timing path is represented
as a series of four bigram units.

transition time variation at the input cell which is reflected
at the bigram output pin. In addition, arrival time of the
bigram unit is an indicator of the positioning of the bigram
unit along the timing path: the arrival time reflects topological
distance from the launch flip-flop, as well as parametric on-
chip variation (POCV) derating and error propagation along
the timing path. Other layout-dependent electrical features
such as output load capacitance and fanouts of the cells in the
bigram unit are also found to be useful in predicting PBA-GBA
divergence. In total, the bigram-based model for which we
report results below uses the following 13 features extracted
from GBA analysis:

1) transition time of the first cell in the bigram unit;
2) transition time of the second cell in the bigram unit;
3) arrival time of first cell in bigram unit;
4) transition time ratio (TR) of first cell in bigram unit;
5) arrival time of second cell in bigram unit;
6) drive strength of first cell in bigram unit;
7) drive strength of second cell in bigram unit;
8) functionality of first cell in bigram unit;
9) functionality of second cell in bigram unit;

10) fanout of first cell in bigram unit;
11) load capacitance of first cell in bigram unit;
12) accumulated transition time ratio of first cell in bigram

unit;
13) propagation delay of second cell in bigram unit.

Our studies indicate that dropping any one of these features
reduces absolute model accuracy by at least 2%, and dropping
any two features at a time reduces the model accuracy by at
least 4%. Here, we define the mean initial accuracy as the
mean of absolute (Predicted − Actual) arrival times, with all

13 features used. The mean reduced accuracy is the mean of
absolute (Predicted New − Actual) arrival times, with reduced
features. Then, we define the model accuracy reduction (%)
as (mean reduced − mean initial) × 100 / (mean initial).
Figures 6(a) and (b) illustrate the sensitivity of accuracy
reduction to particular features. Accuracy with none of the
features dropped is used as baseline for comparison. Drop-
ping TR ratgba alone reduces the model accuracy by 27%,
and dropping any pair combination that includes TR ratgba
corresponds to the largest accuracy reductions in Figure 6(b).

(a)

(b)

Fig. 6. Impact of dropping any of the 13 features on model accuracy. (a)
Dropping any single one of the 13 features (indexed as above); the peak
loss of accuracy corresponds to TR retgba. (b) Dropping any pair of the
13 features at a time; the x-axis gives, from left to right, C(13,2) = 78 pairs
(1,2), (1,3), ..., (12,13).

Last, since PBA-GBA divergence depends on the incre-
mental transition time for each bigram unit, we find that it
is necessary to implement a two-phase modeling strategy:
(i) Phase 1 predicts incremental transition time gain in PBA
mode, and (ii) Phase 2 uses predictions from Phase 1 along
with other features from GBA mode analysis to predict PBA-
GBA divergence for the bigram unit. We give more details of
this two-phase strategy in the next section.

606

III. MODELING METHODOLOGY

After selection of features, our modeling methodology in-
cludes application of machine learning techniques that capture
complex interactions of the features and their impact on PBA-
GBA divergence. We find that linear regression techniques fail
to capture nonlinearity of predictions and complex interactions
between features. For example, interaction of features such
as input transition, output load and cell drive strength influ-
ence PBA-GBA divergence. We have also evaluated nonlinear
modeling techniques such as multivariate adaptive regression
splines (MARS) [10] which suffer from two-sided distribution
of error. Since PBA is always optimistic as compared to GBA,
a pessimistic prediction (i.e., prediction of less timing slack
than the given GBA slack) is incorrect. With bigram-based
modeling, as the number of data points used for modeling
increases (1M+), our results indicate that MARS is not scal-
able when higher-order effects are introduced. Ultimately, for
improved accuracy, reduced variance and faster runtimes, we
have focused our efforts on tree ensemble methods. Random
forests of classification and regression trees give the best
results so far, and Figure 7 illustrates the visual aid inherent in
tree-based modeling, which helps to better understand feature
importance and classification criteria. We discuss more about
classification and regression trees in Section III-B.

Fig. 7. Tree-based classification with 1.7M training samples and 13 features.
Feature X[4], which corresponds to TR ratgba, splits the data space into
75% and 25% with a split value of 0.493, indicating its importance in
classifying input data.

A. Reporting Metrics

PBA-GBA divergence signifies the pessimism in GBA
mode. Therefore, reduction in this pessimism is an appropriate
metric to evaluate the predictive model. Figure 9 shows a path-
consistent plot of actual GBA versus PBA path arrival times.
The maximum PBA-GBA divergence is 110ps. The blue band
signifies the pessimism in GBA mode as compared to PBA
mode. The intent of machine learning-based PBA prediction
is to reduce width of the blue band in a predicted PBA versus
actual PBA plot. Ideally, the plot of predicted PBA versus
actual PBA would be the straight orange line Y = X , i.e.,
zero pessimism in the prediction.

Table II shows actual PBA-GBA divergence metrics from
a commercial signoff timer that we use as the reference to
quantify the accuracy of our predictive model.

Table III explains path-consistent and endpoint-consistent
divergence metrics that we define for model predictions.

TABLE II
PBA-GBA DIVERGENCE METRICS.

Notation Meaning
actual maxpath Upper bound of actual PBA-GBA divergence

actual 99ppath 99th percentile value of sorted PBA-GBA divergence
(in ascending order)

actual meanpath Mean absolute value of actual PBA-GBA divergence

These “model *” metrics help assess the divergence of model-
predicted PBA timing from actual PBA timing. Metrics that
indicate our model accuracy are 99th percentile value of
divergence, mean absolute value of divergence, and worst-
case prediction divergence. Reduction of “model *” metrics,
as compared to reference PBA-GBA divergence “actual *”
metrics, shows reduction of pessimism. This is conceptually
portrayed in Figure 8.

Fig. 8. Reduction of model * metrics as compared to actual * divergence
metrics signifies reduction of pessimism.

TABLE III
MODEL PREDICTION-BASED DIVERGENCE METRICS.

Notation Meaning
Path-consistent prediction metrics

model maxpath Worst-case pessimistic prediction divergence
model optpath Worst-case optimistic prediction divergence

model 99ppath 99th percentile value of absolute prediction divergence
values (in ascending order)

model meanpath Mean absolute value of prediction divergence values
Endpoint-consistent prediction metrics

model maxend Worst-case pessimistic prediction divergence
model optend Worst-case optimistic prediction divergence

model 99pend 99th percentile value of absolute prediction divergence
values (in ascending order)

model meanend Mean absolute value of prediction divergence values

Fig. 9. PBA versus GBA path-consistent arrival times (with a maximum PBA-
GBA divergence of 110ps) reported by a commercial timer for the megaboom
testcase in 28nm FDSOI technology.

607

B. Classification and regression trees
Classification and regression trees (CART) [8] are nonlinear

techniques for constructing predictive models from data. The
models are obtained by recursively partitioning the data space
into feature space and fitting a simple predictive model within
each partition. This recursive partitioning can model a data
set with complex feature interactions. In the context of PBA-
GBA prediction, regression trees can be used to predict PBA
arrival time for each bigram unit, i.e., we use features of the
test data (GBA analysis results) to predict PBA arrival time
for each data point. Classification trees can predict PBA-GBA
divergence (incremental arrival time gain) where the model
uses features of the test data to predict PBA-GBA divergence
for each data point.

An important realization is that since regression tree-based
modeling is limited by the span of PBA arrival time values in
the training data, testing is always constrained by the range
of arrival time values covered in the training phase. On the
other hand, classification tree-based modeling is limited by the
range of PBA-GBA arrival time increments used in training
data. During testing, if a data point exceeds the class value
used in training data, the model is constrained by the span of
increments in the training data.

As an example, consider a training data set with GBA and
PBA arrival time ranges of 24ps to 345ps, and 14ps to 326ps,
respectively, along with PBA-GBA divergence range of 0ps
to 40ps. In regression-based modeling, a test data point with
GBA arrival time of 560ps is constrained by the span of
training data, which is 345ps in this case. In classification-
based modeling, predicted PBA-GBA divergence will be from
one of the values in the range of 0ps to 40ps. If we ensure
that the span of possible PBA-GBA divergence values are
covered in the training data, mispredictions can be reduced.
In addition, having positive class values gives us “sensibility
by construction” in our predictions, since actual PBA-GBA
divergence can never be negative.

Our preliminary studies, summarized in Table IV for the
netcard testcase, lead us to use the classification tree approach
for PBA-GBA divergence prediction.

TABLE IV
REGRESSION VERSUS CLASSIFICATION TREES (NETCARD).

Metric Regression Classification
model optpath 18.65ps 8.21ps
model 99ppath 12.96ps 6.44ps

C. Model Definition
For Phase 1 and Phase 2 of our modeling, Equations (1)

and (2) capture PBA-GBA divergence in transition time and
arrival time respectively, for each bigram unit.

ΔTRbg = f(CL, DR,G, FO, TRgba, ATgba,

TR ratgba, Acc TR ratgba)
(1)

ΔATbg = f(CL, DR,G, FO, TRgba, ATgba,

TR ratgba, Acc TR ratgba,ΔTRbg)
(2)

PBA-GBA divergence for a timing path is estimated by
cumulative addition of bigram PBA-GBA divergence values
in the timing path. This is explained in Equation (3).

ΔATpath =

Nbg∑

1

ΔATbg (3)

Our model is an ensemble of 50 regression trees.6 We use
mean squared error as our criterion for tree splitting, and all
13 input features are used in determining a given split point.
We do not set any bound on the depth of regression tree, or
on the number of leaf nodes for each tree in the ensemble.

D. Modeling Flow

We propose a modeling flow as illustrated in Figure 10.
During the model training, both GBA and PBA path-consistent
timing reports are used as inputs. We then extract features
required to model PBA-GBA divergence for each bigram
pair. During the model testing, the model predicts PBA-
GBA divergence for any unseen (i.e., new) GBA timing path.
Predicted PBA timing results that are output by our model can
subsequently serve as, e.g., inputs to optimization and sizing
steps of the physical implementation flow.

Fig. 10. Our modeling flow.

IV. EXPERIMENTAL VALIDATION

We now describe our design of experiments to validate the
predictive model. For each of these experiments, we discuss
our modeling results.

A. Design of Experiments

Our experiments use in-house developed artificial designs
and five real designs as listed in Table V. Artificial designs are
created for potential availability during an initial, “bootstrap”
training phase of modeling. We use 28nm FDSOI foundry
technology libraries for all our experiments. Training and
test data is split using a random number generator. In our
experience, the choice of random seed does not significantly
impact model accuracy. Runtimes on a single thread on an
Intel Xeon 2.6 GHz server are as follows. For a training
data set with 2.44M bigrams, data preparation time is 362
seconds, and model training time is 219 seconds; this is a one-
time overhead for realistic use cases. After a trained model is
available, data preparation time for a test data set with 1.04M
bigrams is 178 seconds, and model inference runtime is 17
seconds. For the same testcase, GBA runtime on test data
is 156 seconds, whereas PBA runtime is 1080 seconds. For
a design going through optimization phases, recurrent PBA

608

TABLE V
DESIGN DATA USED FOR EXPERIMENTS.

Design # Instances # Flip-Flops # Bigrams
artificial 2.4M 400K 1.3M
megaboom 990K 350K 3.4M
leon3mp 450K 100K 1.8M
netcard 303K 66K 856K
dec viterbi 61K 26K 200K
jpeg encoder 40K 4K 60K

runtime costs can be avoided, with additional time invested
only for GBA analysis, data preparation, and model inference.

We conduct three experiments to demonstrate accuracy
and robustness of our predictive model. We also propose a
fourth experiment to generate endpoint-consistent PBA-GBA
divergence.

• Experiment 1 (Accuracy): The goal of this experiment is
to validate our modeling accuracy. Model is trained with
70% data points of a real design, and tested on unseen
30% data points of the same design.

• Experiment 2 (Robustness): The goal of this experiment
is to validate our modeling robustness. Model is trained
with data points from the post-CTS database of a real de-
sign, and tested on an unseen post-routed implementation
of the same design.

• Experiment 3 (Robustness): The goal of this experiment
is to validate the span of our artificial testcase devel-
opment methodology. Model is trained with artificially
generated testcases along with a sample of data points
(30%) from a real design, and tested on unseen 70% data
points of the same design.

• Experiment 4 (Endpoint Slack): The goal of this experi-
ment is to translate path-consistent PBA-GBA divergence
predictions to endpoint-consistent PBA-GBA divergence
values.

B. Results
In our results, we first compare model-predicted PBA arrival

time values with reference PBA results using a commercial
timer, while maintaining path consistency. Reduction of
model prediction divergence metrics as compared to reference
divergence metrics signifies the reduction of PBA-GBA
divergence and availability of timing slack for design
optimization.

Results of Experiment 1. We use 70% of the timing paths
for training and test on 30% of the timing paths of the same
design. Figure 12 illustrates the results for Experiment 1. For
this and other experiments, we see that our modeling offers
larger benefits for larger designs. The data in Table VI shows
that for the three largest testcases, the mean, 99th percentile
and max divergence metrics reduce by at least 61.7%, 15.9%
and 47.5%, respectively, as compared to reference divergence
metrics.
Results of Experiment 2. We use timing reports from a
post-CTS database as input for training, and test the model
on a post-routed database of the same design. This model is

6We have evaluated modeling with various numbers of regression trees (1,
10, 25, 50, 75), and find the value of 50 to provide the best tradeoff between
accuracy, robustness and runtime.

TABLE VI
MODEL DIVERGENCE IMPROVEMENT IN EXPERIMENT 1.

Mean 99p Max
Design actual model actual model actual model
megaboom 2.59ps 0.99ps 43.95ps 23.05ps 110ps 78ps
leon3mp 10.55ps 2.14ps 30.29ps 7.45ps 50.78ps 42.70ps
netcard 6.70ps 1.52ps 22.62ps 8.52ps 39.59ps 19.90ps
dec viterbi 0.09ps 0.05ps 3.02ps 1.09ps 21.46ps 20.96ps
jpeg encoder 3.35ps 2.01ps 16.35ps 12.79ps 27.29ps 26.79ps

particularly helpful to set realistic optimization criteria during
routing.

Figure 13 illustrates the results for Experiment 2. The data
in Table VII show that for the three largest testcases, the mean,
99th percentile and max model divergence metrics reduce by
at least 26.6%, 11.7% and 26.3%, respectively, as compared
to reference divergence metrics.

TABLE VII
MODEL DIVERGENCE IMPROVEMENT IN EXPERIMENT 2.

Mean 99p Max
Design actual model actual model actual model
megaboom 4.51ps 3.31ps 53ps 36.62ps 119.24ps 89.65ps
leon3mp 9.43ps 6.06ps 26.79ps 19.72ps 50.78ps 39.46ps
netcard 4.29ps 2.49ps 17.20ps 9.78ps 33.56ps 29.63ps
dec viterbi 0.39ps 0.29ps 10.53ps 8.65ps 22.97ps 21.46ps
jpeg encoder 2.99ps 1.90ps 17.70ps 12.34ps 27.11ps 21.59ps

Results of Experiment 3.
We use in-house developed artificial designs and a sample

from a real design (30% data points) for training, and predict
PBA-GBA divergence on the same real design (70% data
points). This reflects a hypothetical “ideal scenario”, wherein
we have the capability to produce artificial testcases that span
the entire space of real designs (see Subsection IV-C below).
Figure 14 illustrates results from Experiment 3. The data in
Table VIII show that for the three largest testcases, the mean,
99th percentile and max model divergence metrics reduce by
at least 27.1%, 13.4% and 13.5%, respectively, as compared
to reference divergence metrics.

TABLE VIII
MODEL DIVERGENCE IMPROVEMENT IN EXPERIMENT 3.

Mean 99p Max
Design actual model actual model actual model
megaboom 3.06ps 2.23ps 41.14ps 31.04ps 119.24ps 103.21ps
leon3mp 9.07ps 4.50ps 22.59ps 19.55ps 46.46ps 33.96ps
netcard 7.21ps 2.78ps 21.84ps 9.58ps 46.25ps 31.24ps
dec viterbi 0.41ps 0.29ps 9.98ps 8.09ps 19.74ps 18.67ps
jpeg encoder 4.75ps 3.98ps 16.51ps 14.63ps 26.47ps 24.54ps

Results of Experiment 4. The goal of this experiment is
to translate path-consistent predictions from the model to
endpoint-consistent predictions. This is done by choosing
nworst arrival time predictions for each endpoint. We then
compare these endpoint-consistent PBA-GBA divergence val-
ues to actual endpoint-consistent PBA-GBA divergence values.
Figure 11 demonstrates the effect of nworst on endpoint-
based divergence metrics. As evident from the plots, though
the model divergence metrics drop slightly for initial increase
of nworst value, divergence metrics rise and saturate with
further increase of nworst. The initial drop in divergence
is due to broader coverage of timing paths to an endpoint.
However, model error effects increase with inclusion of more

609

Fig. 11. Plots of prediction error with nworst of endpoints.

data points (i.e., worst GBA paths) per endpoint, and the
endpoint-consistent accuracy metric saturates with increase in
nworst. Potentially, nworst 3 could be a point of interest
to derive endpoint-based arrival time or slack predictions. At
the same time, achieving better use of, say, nworst 20 GBA
analysis is an important direction for future work.

C. Challenges

Two important remaining challenges for our modeling
approach are (i) the reduction or elimination of remaining
optimism in PBA slack prediction, and (ii) endpoint-consistent
pessimism reduction. In this subsection, we provide several
comments regarding the former challenge.

First, while optimistic predictions are evident in our ex-
perimental results, we note that for any endpoint, the arrival
time gain lower-bounds the slack gain. In other words, for
any endpoint, slack gain is likely to be larger than arrival time
gain. This is because sharper transition times at the endpoint
in PBA mode lead to reduction of the setup time requirement
at the endpoint. Since our present model predicts arrival time
gain, there is actually some leftover “budget” with respect to
slack gain prediction – and this in effect reduces the optimism
of our model. For the leon3mp testcase, this “budget” averages
4.46ps over all endpoints, as plotted in Figure 15.

Second, we observe that misprediction is at least partly
a consequence of a test data point’s distance from nearest
training data points in the modeling feature space. In an ideal
scenario, our artificial circuits for any (technology and library)
design enablement would effectively span (cover) the entire
real design space, such that a one-time trained model could
accurately predict PBA timing from GBA timing on any real
design. However, our current artificial circuits methodology is
far from enabling such an ideal use case. Thus, an important
direction for future work is to incrementally train models with
real design data along with artificial and previous circuit data,
always testing on subsequent design iterations. In an extension
of our current approach, test data points encountered that are
far from training data set could be incrementally included
into the training data set to help reduce model mispredictions.
Further, detailed PBA analysis can be performed every few
design iterations, to identify mispredicted outliers for inclusion
in future (incremental) training. Such a methodology might

follow the flow shown in Figure 16.7 Last, we recall the
primary motivation of reducing overdesign during the opti-
mization flow – not replacing the golden signoff tool and
PBA signoff analysis. The model calibration flow illustrated
in Figure 16 helps make isolated optimistic predictions less
significant as compared to the benefits obtained from reducing
overdesign earlier in the design process.

V. CONCLUSIONS

In this work, we are the first to apply machine learning
techniques to model PBA-GBA divergence in endpoint arrival
times, addressing an important accuracy-runtime tradeoff in
static timing analysis [4] [5]. We propose a model based on
decision trees along with electrical and physical features of
stage bigrams in timing paths. We assess potential benefits of
our model using 28nm FDSOI foundry technology, a leading
commercial signoff STA tool, and implementations of public
testcase designs up to 1M+ instances. We measure the decrease
of PBA-GBA divergence obtained by the model, according
to several metrics and in several usage scenarios. In our
experiments, model-predicted PBA arrival times reduce mean,
99th percentile and max divergence metrics by at least 26.6%,
13.4% and 11.7%, respectively as compared to reference PBA-
GBA divergence metrics. Such reductions can help avoid over-
fixing and achieve improved power and area outcomes during
optimization. In addition, both model training and inference
are efficient, with a training time of 219 seconds and inference
time of 17 seconds for a test data set with 1.04M bigrams.

A number of ongoing and future works remain. (1) We are
seeking to integrate our predictive models with an academic
sizer and optimizer, to explore the benefit from reduced
pessimism in MCMM timing closure and sizing for leakage
and total power reduction. (2) As shown by Experiment 3 and
as discussed in Subsection IV-C, significant work remains to
be done toward design of artificial testcases that can train well-
performing models for a given design enablement, without
reliance on any actual designs. (3) Reduction or elimination
of remaining optimism in PBA slack prediction, as well as
endpoint-consistent pessimism reduction, present additional
challenges for future research. Both the available “budget”
of arrival time gain versus slack gain, and the proposed in-
cremental model calibration flow, may provide mitigations for
the problem of optimism. (4) Last, as noted in the Experiment
4 discussion, achieving better use of multiple (nworst � 1)
GBA paths to a given endpoint is an important direction to
pursue.

ACKNOWLEDGMENTS

We thank Dr. Tuck-Boon Chan of Qualcomm and Dr. Sid-
dhartha Nath for providing valuable feedback. Research in UC
San Diego ABKGroup is supported in part by funding from
NSF, DARPA, Qualcomm, Samsung, NXP, Mentor Graphics
and the C-DEN center.

7A comment: As a design undergoes changes during the design cycle,
performing PBA analysis after any given design change would bring sig-
nificant runtime overhead. The ultimate bar for value obtained from GBA-
based predictive model is faster design convergence through avoidance of
PBA analysis overheads.

610

Fig. 12. Results of Experiment 1 for actual GBA path arrival time (top row) and predicted PBA path arrival time (bottom row) versus actual PBA path arrival
time for, in left-to-right order, megaboom, leon3mp, netcard, dec viterbi and jpeg encoder.

Fig. 13. Results of Experiment 2 for actual GBA path arrival time (top row) and predicted PBA path arrival time (bottom row) versus actual PBA path arrival
time for, in left-to-right order, megaboom, leon3mp, netcard, dec viterbi and jpeg encoder.

REFERENCES

[1] A. B. Kahng, M. Luo and S. Nath, “SI for Free: Machine Learning of Interconnect
Coupling Delay and Transition Effects”, Proc. SLIP, 2015, pp. 1-8.

[2] A. B. Kahng, S. Kang, H. Lee, S. Nath and J. Wadhwani, “Learning-Based
Approximation of Interconnect Delay and Slew in Signoff Timing Tools”, Proc.
SLIP, 2013, pp. 1-8.

[3] S. S. Han, A. B. Kahng, S. Nath and A. Vydyanathan, “A Deep Learning
Methodology to Proliferate Golden Signoff Timing”, Proc. DATE, 2014, pp. 1-
6.

[4] R. Molina, EDA Vendors Should Improve the Runtime Performance of Path-
Based Timing Analysis, http://www.electronicdesign.com/eda/eda-vendors-should-
improve-runtime-performance-path-based-analysis, May 2013.

[5] A. B. Kahng, “Machine Learning Applications in Physical Design: Recent Results
and Directions”, Proc. ISPD, 2018, pp. 68-73.

[6] T.-W. Huang and M. D. F. Wong, “Timing Closure: Speeding Up Incremental
Path-Based Timing Analysis with MapReduce”, Proc. SLIP, 2015, pp. 1-6.

[7] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A
Practical Approach, Springer, 2009.

[8] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and
Regression Trees, Chapman & Hall/CRC, 1984.

[9] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer, 2009.

[10] J. H. Friedman, “Multivariate Adaptive Regression Splines”, Annals of Statistics
19(1) (1991), pp. 1-67.

[11] L. Breiman, “Random Forests”, Machine Learning 45 (2001), pp. 5-32.
[12] Synopsys, Inc., https://www.synopsys.com

[13] Cadence Design Systems, Inc., https://www.cadence.com
[14] scikit-learn, http://scikit-learn.org
[15] PyTorch, https://pytorch.org
[16] OpenCores, https://opencores.org
[17] RISC-V, https://riscv.org
[18] TAU Workshop, https://www.tauworkshop.com
[19] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo, “The ISPD-

2012 Discrete Cell Sizing Contest and Benchmark Suite”, Proc. ISPD, 2012, pp.
161-164.

[20] Synopsys PrimeTime User Guide, http://www.synopsys.com/Tools/
Implementation/SignOff/Pages/PrimeTime.aspx

[21] Cadence Tempus User Guide. https://www.cadence.com/content/cadence-
www/global/en US/home/tools/digital-design-and-signoff/silicon-signoff/tempus-
timing-signoff-solution.html

611

Fig. 14. Results of Experiment 3 for actual GBA path arrival time (top row) and predicted PBA path arrival time (bottom row) versus actual PBA path arrival
time for, in left-to-right order, megaboom, leon3mp, netcard, dec viterbi and jpeg encoder.

Fig. 15. Arrival time gain versus slack gain for the leon3mp testcase with an
average “budget” of 4.46ps (indicated by red arrow) and a maximum “budget”
of 17.88ps over 100K endpoints.

Fig. 16. A potential incremental modeling flow to reduce mispredictions.

612

