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ABSTRACT
To reduce time and effort in IC implementation, fundamental chal-
lenges must be solved. First, the need for (expensive) humans must
be removed wherever possible. Humans are skilled at predicting
downstream flow failures, evaluating key early decisions such as
RTL floorplanning, and deciding tool/flow options to apply to a
given design. Achieving human-quality prediction, evaluation and
decision-making will require new machine learning-centric models
of both tools and designs. Second, to reduce design schedule, focus
must return to the long-held dream of single-pass design. Future
design tools and flows that never require iteration (i.e., that never
fail, but without undue conservatism) demand new paradigms and
core algorithms for parallel, cloud-based design automation. Third,
learning-based models of tools and flows must continually improve
with additional design experiences. Therefore, the EDA and de-
sign ecosystem must develop new infrastructure for ML model
development and sharing.
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1 INTRODUCTION
The semiconductor industry today faces two intertwined crises of
IC design. The first crisis is cost: design in advanced nodes is too
costly, such that designers are unable to access benefits of new tech-
nologies. This crisis was foretold as the early-1990s SEMATECH
“design productivity gap” [49]; the 2001 International Technology
Roadmap for Semiconductors (ITRS) [41] stated that “cost of design is
the greatest threat to continuation of the semiconductor roadmap”.
The second crisis is quality: current design enablements and flows
do not extract sufficient benefit (power, performance, area, cost,
etc.) from new nodes. The 2013 ITRS roadmap highlighted a com-
pounding Design Capability Gap between available and realizable
transistor density benefits when designing in a new technology;
see Figure 1 [17].

This paper discusses paradigm shifts that address today’s cost
and quality crises by reducing time and effort in IC design. The bulk
of design cost is non-recoverable engineering (NRE) cost: licenses,
salaries, servers, etc. These cost elements scale with headcount,
tooling, and schedule (i.e., time); thus, levers for design cost reduc-
tion include the number of humans needed to perform design, the
cost of design tools, and the duration of the design schedule. Be-
cause time and effort reductions can free up engineers and schedule
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to allow more careful design space exploration and optimization,
solving the cost crisis can simultaneously help mitigate the quality
crisis. The recent DARPA Intelligent Design of Electronic Assets
(IDEA) program [42] [35] directly calls out today’s design cost crisis,
and seeks a “no human in the loop,” 24-hour design framework for
RTL-to-GDSII layout implementation.

Figure 1: Design Capability Gap [41] [17].
In the following, I will discuss how the EDA and IC design com-

munities might jointly achieve substantial time and effort reduction
in IC implementation. A central theme is that machine learning
(ML) techniques must pervade EDA tools, design methodologies
and overall design infrastructure. Section 2 outlines basic challenges
that underlie today’s design cost and quality crises. Solutions are
proposed, including a qualitative roadmap of ML-enabled design
technology advances aimed at reducing time and effort in IC de-
sign. Section 3 discusses basic categories of ML applications in and
around IC design tools, with pointers to “existence proofs” and
two specific examples. Section 4 discusses industry-wide infrastruc-
ture needs, spanning standards, IP-preserving sharing mechanisms,
open-source initiatives and more. The paper concludes in Section 5.
Readers are referred to the contemporaneous invited papers [20]
[22] for additional perspective and details.

2 CHALLENGES AND SOLUTIONS
This section gives a high-level description of challenges and solu-
tions that lie along the path to design time and effort reductions –
e.g., as targeted by the DARPA IDEA program.
Challenge 1: Breakdownof theDesignCostModel. From 2001-
2014, the ITRS Design Cost Model [31, 39, 41] quantified progress
of IC design technology (DT), and motivated future advances in DT,
according to how well the cost of design could be controlled. Design
productivity, expressed as the number of transistors designed per
engineer-month, is central to the Design Cost Model. Together,
the scaling of design productivity and the scaling of cost compo-
nents (engineer salaries, server and tool license costs, etc.) enable
projection of overall SOC design cost. According to the model, spe-
cific DT advances (RTL methodology, silicon virtual prototyping,
electronic system-level design automation, etc.) deliver forecasted
or calibrated productivity improvements when introduced. These
improvements are such that if the DT advances are delivered on
time, then design productivity will scale sufficiently to keep design
costs in check.1
1The 2013 edition of the model implies that without post-2000 DT innovations, the
total design cost for the ITRS consumer portable system-on-chip (SOC-CP) system driver
would have been at $1B in 2013, reaching $70B in 2028. Or, absent DT innovations
after 2013, the total SOC-CP design cost would grow from $45.4M in 2013 to $3.4B in
2028. Thus, the Design Cost Model captures both progress and value of DT innovation.
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Figure 2: Design cost and transistor count trends [35].

An important observation is that the ITRS Design Cost Model
had in-built optimism: it always envisioned some trajectory of DT
innovation that would keep SOC-CP design cost under a ceiling
of several tens of $M through the coming 15-year horizon. Unfor-
tunately, (i) DT innovations are not tied lock-step to the semicon-
ductor roadmap in the way that patterning, device and material
innovations are; and (ii) they depend on creation and delivery by
commercial EDA providers. Even as design tools and methodologies
have advanced over the past decade, the semiconductor industry
has badly diverged from the projected control of design costs, as
depicted in Figure 2 [35]. The shortfall of productivity and cost
scaling afforded by design technology has led to a cost explosion
that is compounded by the above-noted shortfall (Figure 1) of qual-
ity scaling. The increasingly visible failing of “business as usual”
motivates finding new paths forward.
Challenge 2: A Local Minimum of Design Technology and
Design Quality. Both design instances and design tools become
increasingly complex over time. With more heuristics deployed
to meet capacity and turnaround time (TAT) requirements, tools
become unpredictable, particularly when driven to their limits.
Figure 3 (left), from implementation of the PULPino RISC V core in
foundry 14nm enablement, shows that post-P&R area can change
by 6% when target frequency changes by just 10MHz near the
maximum achievable frequency. Figure 3 (right) illustrates that
statistics of this noisy tool behavior are Gaussian [29] [15]. [21,
22] note that unpredictability in design implementation requires
guardbanding of design targets tomaintain schedule. In otherwords,
if designers want predictable results, they must “aim low”.

Figure 3: Left: SP&R implementation noise increases with
target design quality. Right: Noise is essentially Gaussian.

Figure 4(a) suggests that with unpredictable optimizers, as well as
loss of “global optimization” when problems are partitioned, de-
signers demand near-flat methodologies. EDA developers then add
more heuristics so as to process ever-larger blocks in the same TAT.
To recover design quality (recall “aim low”) designers seek more
flexibility in their tools, to the point that a P&R tool today has well
over ten thousand command-option combinations. Unfortunately,

complex tools that are difficult to fathom result in unpredictable
outcomes, more iterations and longer TAT, even as unpredictabil-
ity also induces larger design guardbands. Consequently, achieved
design quality worsens, and the design capability gap grows. In
this way, the industry has reached a local minimum of coevolution
between EDA developers’ tools and IC designers’ methodologies.
Solution 1: A Different DT Roadmap. A “flip the arrows” para-
digm shift for future design technology R&D is suggested in Figure
4(b). The figure abandons traditional incremental improvements to
QOR, capacity and TAT of an extremely complex tool, operating
within an unchanging flow context.2 Rather, the design problem
is decomposed into many more small subproblems; this reduces
the time needed to solve any given subproblem, and smaller sub-
problems can be better-solved (see [32]). To increase the number
of design partitions without undue loss of global solution quality
demands new placement, global routing and optimization algo-
rithms, as well as fundamentally new RTL partition and floorplan
co-optimization capabilities. Further, reducing design flexibility by
giving designers “freedoms from choice” (RTL constructs, power
distribution, etc.) can increase predictability, leading to fewer itera-
tions and eventually single-pass design. Predictability and fewer
iterations enable smaller design guardbands. The end result: better
achieved design quality. Implied mindsets for tool developers and
design flow engineers include (i) tools and flows should never re-
turn unexpected results; (ii) designers should see predictability in
their tools and flows; and (iii) parallel search under the hood can
preserve or improve achieved QOR. [21, 22] note that this vision
strongly relies on pervasive incorporation of ML techniques.

Figure 4: SOC design (a) today, and (b) in the future.

Solution 2:Machine Learning for Time andEffort Reduction.
Figure 5(a) cartoons the daunting scale of design resource require-
ments for IC design: thousands of potential options (constraints,
libraries, floorplan, envars, command options, etc.) at each flow step,
along with iteration, result in an enormous tree of possible flow
trajectories. Today, even identifying a “best” gate-level netlist or
physical floorplan to carry forward in the flow is beyond the grasp
of human engineers. Thus, the likely first stage of ML for time
and effort reduction will entail creating robots: mechanizing and
automating (e.g., via expert systems) 24/7 replacements for human
engineers that reliably execute a given design task to completion.

Once robot engineers exist, their use must be optimized. Thus,
the second stage of ML-based cost and effort reduction will or-
chestrate N robot engineers to concurrently search multiple flow
trajectories; N can range from tens to thousands and is constrained
chiefly by compute and license resources. Here, simple multistart,
or depth-first or breadth-first traversal of the tree of flow options, is
hopeless. Rather, strategies such as “go-with-the-winners” (GWTW)
[2] [24], which launches multiple optimization threads, and peri-
odically identifies and clones the most promising thread while
terminating other threads (Figure 6(a)), might be applied. Adaptive
2A “big iron” analogy may apply here.



Figure 5: (a) Tree of options at flow steps. (b) Stages of ML
insertion into production IC implementation.

multistart [5] [12] strategies, which exploit an inherent “big valley”
structure in optimization cost landscapes to adaptively identify
promising start configurations for iterative optimization, are also
of interest. Figure 6(b) illustrates how better start points for opti-
mization are identified based on the structure of (locally-minimal)
solutions found from previous start points.

Figure 6: (a) Go-with-the-winners [2]. (b) Adaptive multi-
start in a “big valley” optimization landscape [5] [12].

A third stage of ML insertion will integrate prediction of tool- and
design-specific outcomes over longer and longer subflows, so as to
more surgically prune, terminate, or otherwise not waste design
resources on less-promising flow trajectories. Implicit in the third
stage is the improvement of predictability and modelability for
PD heuristics and EDA tools. Finally, a fourth stage must cover
considerable remaining ground – from reinforcement learning, to
“intelligence” in tools to new optimization objectives and beyond. As
discussed in Section 5 below, obvious obstacles include the “small
data” nature of IC design, as well as the large latencies of running
today’s tools and flows.

3 BASIC TYPES OF ML APPLICATIONS
This section describes three application types – along with two
concrete examples – for how ML can contribute to time and effort
reductions in IC design.

3.1 Toward Robot Engineers
Flow automation tools, makefile and target-based flows, load shar-
ing facilities, and other advances have helped human engineers
cope with demands of the chip design process. At the same time,
Figure 2 indicates that the productivity and cost battle is being lost
today. [22] observes that there are significant opportunities to ad-
dress last-mile or small-market tasks that are unserved by available
tools. Often, these tasks are not only time-consuming and error-
prone, but also take up significant design schedule. In some cases,
even expert humans can only muster trial-and-error strategies to
get past a sticking point in the flow. This demands “robot engineers”
that systematically search for tool command sequences, and/or
observe and learn from humans. Obvious, high-value applications
[22] include (i) automation of manual DRC violation fixing; (ii) au-
tomation of manual timing closure steps; (iii) placement of memory
instances in a P&R block; and (iv) package layout automation.
Example: Tool Run Scheduling With a Multi-Armed Bandit.
Recent work [25] shows how primitive “multi-armed bandit” (MAB)

sampling might achieve resource-adaptive use of commercial syn-
thesis, place and route with no human involvement – in a “robotic”
manner distinct from expert systems approaches. In the MAB prob-
lem, we are given a slot machine with N arms, each arm having an
unknown distribution of rewards. The reward obtained from each
arm is i.i.d. (independent, and identically distributed); recall Figure
3. We are also given a budget ofT pulls (also referred to as samples)
on arms of the slot machine (more precisely, T iterations). The goal
is to maximize the expected total reward E[∑T

i=1 rai ], where ai
is the arm played at iteration i . This involves an explore-exploit
tradeoff whereby we draw samples to learn the parameters of the
distributions while simultaneously maximizing rewards.3 Studies
in [25] consider several commonly-used MAB algorithms, including
softmax sampling, ϵ-Greedy sampling and Thompson Sampling
(TS) [38] [33] [40]. TS is found to be more robust in our design
tool/flow sampling context, across a wide range of settings, com-
pared to other algorithms. Figure 7 shows the evolution of sampled
target design frequencies versus iterations using the TS algorithm.
Note that the MAB sampling is inherently adaptive to its given bud-
get of design schedule and number of tool licenses (i.e., concurrent
runs). MAB scripts, code and documentation are available at [48].

Figure 7: Trajectory ofMAB sampling of a commercial SP&R
flow, with 40 iterations and 5 concurrent samples (tool runs)
per iteration. Testcase: PULPino in 14nm foundry technol-
ogy, with given power and area constraints.

3.2 Improving Analysis Correlation
Analysis miscorrelation exists when two different tools return dif-
ferent results for the same input data, analysis task (parasitic extrac-
tion, static timing analysis (STA), IR drop analysis, etc.) and “laws
of physics”. As illustrated in Figure 8, accuracy generally comes at
the cost of computation. Hence, analysis miscorrelation can be an
unavoidable consequence of runtime constraints.

Figure 8: Accuracy-cost tradeoff in analysis.
Miscorrelation forces introduction of design guardbands and/or

pessimism into the flow. If a P&R tool determines that an endpoint
has positive worst setup slack, while the signoff STA tool deter-
mines that the same endpoint has negative worst slack, an iteration
3An equivalent formulation (e.g., [37]) is regret minimization, where regret is the
amount lost due to not playing the optimal arm in each step, and total regret is the sum
of regrets over all steps. Let r ∗ be the reward for the optimal arm at any step j . Then,
the regret for that step is r ∗ − raj and the expected total regret is E

[ ∑
i r ∗ − rai

]
.



will be required. However, if the P&R tool is overly pessimistic
in guardbanding miscorrelation to signoff STA, then it will per-
form unneeded sizing, shielding or VT-swapping operations that
cost area, power and schedule. Miscorrelation of timing analyses is
particularly harmful: (i) timing closure can consume up to 60% of
design time [10], and (ii) added guardbands not only worsen power-
speed-area tradeoffs [3, 10], but can also lead to non-convergence.

Machine learning offers the potential to achieve “accuracy for
free”, shifting the cost-accuracy tradeoff curve as shown in the fig-
ure. In past work, [14] applies ML to model and correct divergence
between different STA tools with respect to flip-flop setup time, cell
arc delay, wire delay, stage delay, and path slack at timing endpoints.
[27] addresses prediction of SI-mode timing slacks. [20] suggests
two near-term extensions: (1) prediction of path-based analysis from
traditional graph-based analysis in STA; and (2) prediction of timing
at “missing corners” that are not analyzed, based on STA reports
for corners that are analyzed. ML for analysis correlation can be
tightly linked to the prediction of tool and flow outcomes discussed
in the next subsection. This is due to the symbiosis between design
analysis and optimization. Example applications include correlation
of “multiphysics” analysis flows and loops (e.g., involving tempera-
ture and voltage droop in combination with signal integrity-aware
timing [7] [19]) at full-chip or die-package levels.

3.3 Predictive Modeling of Tools and Designs
A one-pass design process requires accurate modeling and predic-
tion of downstream flow steps and outcomes, since neither loops nor
excessive margins can be tolerated. Future machine learning-based
predictive models (e.g., of wirelength, congestion, timing, power,
etc.) have a dual purpose, in that they also serve as objectives or
guides for optimizations, via a “modeling stack” that reaches up
to system, architecture, and even project and enterprise levels.4
Four supporting types of machine learning applications arise in
many contexts throughout IC design: (i) identification of structural
attributes of design instances that determine flow outcomes; (ii)
identification of “natural structure” in designs (cf. [44]) that will
permit extreme partitioning and decomposition; (iii) construction
of synthetic design proxies (“eye charts”) [11, 23, 45] that enable
characterization of tools and flows; and (iv) prediction of the “fixed
point” of a given chicken-egg loop of design (e.g., the loop between
floorplanning and global interconnect design, or the loop between
placement and power distribution).

Tool and flow predictions must also increase their “span” across
multiple design steps: essentially, we must predict what will hap-
pen at the end of a longer and longer “rope” of design steps when
the rope is wiggled. [20] reviews several works that give a pro-
gression of “longer ropes”: (i) prediction from global/trial routing
through detailed routing and from ECO placement through incre-
mental global/trial routing [8]; (ii) prediction from clock buffer and
topology change through automated placement and routing ECOs,
extraction, and timing analysis [13]; and (iii) prediction from netlist
and floorplan information through placement, routing, optimization
and IR drop-aware timing analysis [7].
Example: Predicting Doomed Runs. Time and effort can be
saved by predicting whether a tool run is “doomed”. Modern de-
tailed routers default to 20-40 iterations which can take many days
of runtime. If detailed routing runs with an inevitably excessive
number of design rule violations (DRVs) can be stopped early, then
resources and schedule can be repurposed. The same applies to
doomed P&R flows, doomed floorplans, etc.

Figure 9 shows four example progressions of DRVs during the
(default) 20 iterations of a commercial router. We wish to identify
4[1] shows that project- and enterprise-level schedule and resource optimizations,
supported by accurate estimates, have the potential to achieve substantial design cost
reductions.

Figure 9: Example progressions of DRVs (log scale) versus
iterations of a commercial detailed router.

and terminate unsuccessful runs (e.g., red and orange) that end up
with too many DRVs for manual fixing, while ultimately successful
runs (e.g., green) are allowed to run to completion. Tool logfile data
can be viewed as time series to which hidden Markov models [36]
or policy iteration in Markov decision processes (MDPs) [4] may
be applied. For the latter, collected logfiles from previous successful
and unsuccessful tool runs can serve as the basis for automated
extraction of a “blackjack strategy card” for a given tool, where
“hit” analogizes to continuing the tool run for another iteration, and
“stay” analogizes to terminating the tool run.

Figure 10: MDP-based “strategy card”.

In [30], we have used a state space in the MDP that consists
of binned violation count and change in DRVs since a previous
iteration. Actions are either “GO” or “STOP”, and rewards at each
state used to derive the policy include a small negative reward
for a non-stop state, a large positive reward for termination with
low DRVs, etc. Figure 10 shows an MDP-based strategy card that
is automatically derived from 1400 logfiles of an industry tool;
each dot represents “GO” (yellow) or “STOP” (purple). The x- and
y-axes represent binned violations at time t , and change in DRVs
since previous iteration, respectively. We see that the MDP suggests
STOP when DRVs at t = T is very large (right half of the card), and
suggests GO when DRVs is small. The MDP also suggests GO when
DRVs is moderately large (bins 3-5) but with a negative slope.5

To assess the MDP-based strategy, we define two types of errors.
Type 1 errors occur when the policy stops a run that would have
succeeded (where success is defined as the detailed routing run
ending with ≤200 DRVs). Type 2 errors occur when the policy
allows a run to go to completion, but the run fails. We find that
the policy that we produce is oversensitive, in that it stops the tool
5Since “training” logfiles do not generally contain information for all parts of the
strategy card, we programmatically fill in the missing parts as: (i) large violations and
positive slope should be STOP, (ii) small violations and large positive slope should be
STOP, (iii) very large violations should be STOP, and (iv) everything else should be
GO.



run too quickly. Accuracy is improved by requiring consecutive
STOP signals before terminating the tool run. The table below
shows training (1200 logfiles from artificial layouts) and testing
(3742 logfiles from floorplans of an embedded CPU) errors when we
require 1, 2 and 3 consecutive STOP signals from the policy before
actually stopping the tool run. The error rate in testing is ∼4% if
we wait until the MDP gives three consecutive STOP signals. For
the runs that are doomed, substantial iterations are saved.

Errors Training (1200 logfiles) Testing (3742 logfiles)

N = 200
Total

Training
Error

#Type 1 Errors
(wrong STOP
prediction)

#Type 2
Errors

(no STOP)

Total
Training
Error

#Type 1 Errors
(wrong STOP
prediction)

#Type 2
Errors

(no STOP)
1 STOP 29.66% 251 99 35.3% 1317 3

2 consecutive
STOPs 10.5% 27 99 8.3% 307 3

3 consecutive
STOPs 8.5% 3 99 4.2% 154 3

4 INFRASTRUCTURE NEEDS
To enable the above-described paths to ML-enabled design time and
effort reductions, considerable new infrastructure is required. For
example, standards for ML model encapsulation, model application,
IP-preserving model sharing, etc. will likely be required before any
training data, data generation tasks, or ML models can be shared
across multiple organizations. Specific infrastructure requirements,
while too numerous to list, include the following.6
(1) Design owners, foundries and EDA should be comfortable that
their IP (design function, technology parameters, protected syntax,
etc.) is sufficiently protected (e.g., by standard anonymization and
obfuscation mechanisms).
(2) ML researchers, foundries and EDA tool users should be com-
fortable that their use of ML to improve IC design enablement and
flows does not risk IP infringement claims (e.g., would modeling a
delay calculator’s “error versus SPICE” be somehow prohibited?).
(3) Academic researchers should be attracted with a critical mass
of ML modeling challenges, supporting data, and incentives (e.g., a
“Kaggle for machine learning in IC design”).
(4) In the longer term, the design, EDA and research communities
must share responsibility for a “standard ML platform for EDA and
IC design modeling” that spans design metrics collection, tool and
flowmodel generation, design-adaptive tool and flow configuration,
and prediction of tool and flow outcomes.
Recalling the METRICS System. The “standard ML platform for
EDA and IC design modeling” requirement recalls the METRICS
initiative, proposed nearly 20 years ago as a standard platform and
industry infrastructure for measurement of the IC design process
[9, 28, 43]. If only to help avoid repeating the past, the remainder
of this section reviews METRICS and several of its lessons.
Architecture. As developed in 1999-2000, METRICS instruments
design tools and design processes for continuous collection of de-
sign artifact and design process data, so as to produce predictions
and guidance for improving the current design process. The MET-
RICS system has three main components: (i) the instrumentation of
design tools, which includes wrapper scripts to extract data from
outputs and logfiles, and callable API codes that allow direct in-
teraction from within the design tools; (ii) the METRICS server
that provides central data collection; and (iii) the data mining pro-
cess that analyzes existing data to produce improvements to the

6Beyond these examples, as noted in Subsection 3.3, datasets to support ML will need
to include classes of (non-infringing) artificial circuits and “eyecharts” to complement
(obfuscated) real artifacts. And, the long to-do list for academic researchers includes
at least (i) invention of inherently more modelable algorithms and tools (e.g., with
less-chaotic behaviors than present methods) as well as (ii) collaboration toward a
critical mass of open-source research infrastructure (perhaps, with similar motivations
as the MARCO GSRC Bookshelf [6], and adopting the open culture seen in the AI/ML
community).

Figure 11: Overall METRICS system architecture.

existing design flow. Figure 11 shows the overall METRICS system
architecture. Design and design flow data are collected by either a
wrapper script or an API call from within the tools. The collected
data are transmitted and stored in the METRICS server, which may
reside on different machines and/or networks than those used by
the design tools. Once sufficient data are collected, analyses can
be performed and predictions can be made. The result of the pre-
dictions can be fed back to the design process for improvement
or reporting. During collection, the data are encoded into XML
format and transferred from transmitters to the web server. All data
handling inside METRICS server is handled using Enterprise Java
Beans. Results generated by the data miner and/or estimators are
exported back to the user through servlets and applets.
Validation.METRICS was used to predict design-specific tool out-
comes and best tool option settings, and to provide guidance re-
garding tool “sweet spots” or “field of use”. Within Cadence Silicon
Ensemble, tool-specific wrappers were implemented to extract data
from the individual tools used in a typical SE-based flow. Multiple
runs were launched with different designs and different option set-
tings, from floorplanning to routing. Then, mining and sensitivity
analyses with respect to final design QOR enabled prediction of
best design-specific tool option settings. METRICS was also used to
prescribe achievable clock frequency for given designs and resource
budgets. The system was used to collect data from existing IP block
implementations, including sizes, clock structures, timing delays,
etc. During clock planning, characteristics of the IP blocks used in
a given design were extracted from the database and used by an
estimator to generate a target frequency range and clock structure
best suited to the overall design.
Looking Back. Among the many learnings from the METRICS ex-
perience, several stand out. (1) Close collaboration and support from
EDA vendors is important. Constantly changing tool behaviors and
outputs are most efficiently handled through direct integration with
the METRICS API - and this requires cooperation from tool develop-
ers. (2) A common METRICS vocabulary across different vendors is
also important. Design metrics (crosstalk delay, vertical overconges-
tion, etc.) reported from one tool should have the same semantics
when reported by another tool. (3) There is no “one-size-fits-all"
solution for all designs. For example, data collected from designs in
one technology node may not be relevant to designs in a different
technology node; a rerun of data collection or other calibration may
be needed. (4) Today’s context is quite different from that of the
original METRICS initiative.7 (i) Reimplementing METRICS with
today’s commodity networking, database and cloud technologies
will be much simpler compared to the initial implementation. (ii)
The IC design and EDA industries are more receptive to “measure,
7But, some aspects have not changed. At a DAC-2002 Birds-of-a-Feather meeting, we
discovered that METRICS-like systems had been partially implemented inside several
major design houses. These systems were realized using scripting languages to extract
data from tools, and were largely used for resource allocation and management (i.e.,
licenses, machines, disk, etc.). The collected data were primarily used for reporting,
with no AI deployed to process the data. Today, many companies collect LSF, flexlm
and other data in Splunk [46], but usage of this data is still for “IT” rather than “design”.



to improve”: past resistance to “big brother watching” has been
replaced by “please help me do my job”. (iii) Active user interaction
with the system was needed for benefits to be obtained from the
predictions or flow suggestions in the METRICS data miner reports.
A reimplementation of METRICS should feed predictions and guid-
ance back into the design flow, which would then adapt tool/flow
parameters midstream without human intervention.

5 CONCLUSIONS
A roadmap is traditionally defined to consist of (i) requirements
(challenges) expressed as metrics, (ii) potential solutions, and (iii)
a mapping between challenges and solutions – all laid out over a
time horizon. By contrast, the material above gives only a personal
vision – without all of the required elements of a roadmap – of how
machine learning and a “METRICS 2.0” mindset may reduce time
and effort in IC design. A roadmap that extends all the way to “no
human in the loop” and “24-hour turnaround time” must answer
such questions as the following.
(1) Are there limits to where we can reasonably seek reduction of
human design effort and design cost? For example, will humans
always be needed to design at the ‘bleeding edge’ (e.g., the latest
CPU in the latest technology node)? If so, roadmapping of design
time and effort reduction might chiefly address the ever-growing
“fast-follower” category (e.g., 15% degradation from best possible
PPA, at node (N-1)).
(2) What are appropriate metrics to track progress of time and effort
reduction? For example, benchmark design tasks might be devised
that map and scale to arbitrary complexities and technologies. Dis-
tinct “design driver classes” (RF, GPU, CPU, DSP, NOC, PHY) might
be needed against which to measure progress.
(3) Do design productivity and design cost reflect an organization’s
mastery of design enablement in a given technology? This suggests
the need to normalize for newness (unfamiliarity) of technology as
well as a design’s PPA targets relative to that technology. Addition-
ally, metrics for IC design learning (“design capability ramp”) and
IC design process stability might be defined that are analogous to
long-standing yield learning and process stability metrics (D0, Cp,
Cpk) in IC manufacturing.
(4) Are “machine learning” and “sharing” compatible concepts in
the design-EDA-research ecosystem? Or, will “data is the new oil”
thinking induce the closing of platforms and new conflicts over the
inputs and outputs of design tools and flows? And, can timely open
standards preempt such behaviors?
(5) Are there fundamental inconsistencies between IC design and
“big data” mindsets? [20] notes the “small data” nature of IC design,
with its latency and unpredictability (IC design cannot be played
out millions of times in a day as we would the game of chess), and
sparsity of data (10nm layouts are much harder to find than cat
images). This suggests that scalable generation of useful training
data, along with standards for sharing of data and models, will be
an essential element of ML-based design cost reduction.
(6) Are EDA tool predictability, stability, self-modeling, introspec-
tion, chattiness (e.g., to reveal the internal state of optimization
and ‘thinking’) germane to a roadmap of design time and effort
reduction? If so, metrics for these attributes will be needed.
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