
A Study of Optimal Cost-Skew Tradeoff and Remaining
Suboptimality in Interconnect Tree Constructions

Kwangsoo Han‡, Andrew B. Kahng†‡, Christopher Moyes† and Alex Zelikovsky∗

†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA
∗Department of Computer Science, Georgia State University, Atlanta, GA, USA

{kwhan, abk, cmoyes}@ucsd.edu, alexz@cs.gsu.edu

ABSTRACT
Cost and skew are among the most fundamental objectives for in-
terconnect tree synthesis. The cost-skew tradeoff is particularly
important in buffered clock tree construction, where clock subnets
are an important “sweet spot” for balancing on-chip variation-aware
analysis, skew, power and other factors. In advanced nodes, where
both performance and power are critical to IC products, there is
a renewed challenge of minimizing wirelength while controlling
skew. In this work, we formulate the minimum-cost bounded skew
spanning and Steiner tree problems as flow-based integer linear pro-
grams, and give the first-ever study of optimal cost-skew tradeoffs.
We also assess heuristics (notably, Bounded-Skew DME (BST-DME),
Steiner shallow-light tree (SALT), and Prim-Dijkstra (PD)) that are
currently available for trading off cost and skew. Experimental re-
sults demonstrate that BST-DME has suboptimality ∼ 10% in cost
at iso-skew and ∼ 50% in skew at iso-cost. In addition, SALT and
PD shows suboptimality in terms of skew by up to ∼ 3×.

1 INTRODUCTION
The difficulty of scaling integrated-circuit power efficiency, perfor-
mance, area and cost (PPAC) in advanced technology nodes has
been well-documented [46]. With the lack of new back-end-of-line
interconnect materials, and consequent poor scaling of wire resis-
tance and capacitance, there is increased pressure to improve the
quality of interconnect layout. The recent paper of Alpert et al. [1]
notes the power-sensitivity of modern (mobile, IoT, etc.) designs:
“a 1% reduction in power is viewed as a big win for ... physical
implementation”, and “even a small WL savings with similar timing
can have a high impact on value”. In other words, there is renewed
focus on the cost of interconnect trees in advanced VLSI.

Clock distribution has long been a crucial aspect of IC physical
implementation since it strongly affects both power and perfor-
mance. Clock routing brings together both cost and skew criteria:
the cost-skew tradeoff [11] is particularly important in buffered
clock tree construction, where clock subnets with ∼20 fanouts are
a “sweet spot” for balancing of on-chip variation-aware analysis,
skew, power and other factors. Future growth in the number of
fanouts per clock buffer is unlikely, as fanout is limited by poor scal-
ing of drive strengths relative to interconnect parasitics, increased

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SLIP ’18, June 23, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5900-9/18/06. . . $15.00
https://doi.org/10.1145/3225209.3225215

use of multi-bit flip-flops to reduce clock wirelength and power,
and increasing number of clocks in complex, low-power SOCs.1

Over the past decades, a number of works have studied the
bounded-skew routing tree problem:

Bounded-SkewRouting Tree (BST) Problem.Given a set of ter-
minals (points in the Manhattan plane) P = {p1,p2, . . . ,pn } with
p1 being the designated root (source) terminal, along with a skew
bound B, construct a tree T with minimum cost c(T) that contains
all points of P and with root-terminal pathlength skew ≤ B, i.e.,
|dT (1, i) − dT (1, j)| ≤ B, for 2 ≤ i < j ≤ n.

Here, the cost of an edge in T is its Manhattan length. The cost
c(T) of the tree T is the sum of its edge costs, and dT (1, i) denotes
the sum of edge costs along the unique path in T from p1 to pi .
The BST problem may be formulated in either the spanning or the
Steiner contexts; we denote these respectively as the BSSpanT and
the BSSteinT problems. Figure 1 illustrates the BST problem as
well as the different nature of the BSSpanT and BSSteinT problems.
Figure 1(a) shows the distribution of terminals for an example with
n = 8. Figure 1(b) shows cost-skew tradeoff for this instance. Note
that when B = ∞, the BSSpanT problem is the same as the rectilin-
ear minimum spanning tree problem, and the BSSteinT problem is
the same as the rectilinear Steiner minimum tree problem. Further,
when B = 0 the BSSteinT problem becomes the exact zero-skew
clock tree (ZST) problem studied in [5] [7] and many subsequent
works. The unknown that we study in this work is the tradeoff
between these extreme solutions.

Figure 1: Illustration of the bounded-skew spanning and
Steiner tree problems. (a) Distribution of terminals for an
example with n = 8. (b) Minimum achievable BSSteinT cost
decreases as the skew bound B increases. For the same in-
stance and the same values of B, a BSSpanT may not always
exist.

The VLSI CAD literature of the 1990s developed constructions
for bounded-skew clock and Steiner routing trees [11] [20] [24].
1A recent keynote address of TI’s Anthony Hill [18] cites an IOT design with 200k
instances, 200 distinct source clocks, an average of 12 clocks per register, and 1200
total clock domains.

https://doi.org/10.1145/3225209.3225215

Additionally, cost-radius tradeoff methods such as shallow-light
trees [12] [26] (see also [13] [25] [15] [16]) or Prim-Dijkstra trees [1]
[2] were applied in the bounded-skew context, since bounding the
radius of a tree trivially also bounds the skew of a tree. During the
2000s, the discrete algorithms community addressed bounded-skew
tree construction in works such as [8] [39]. In recent advanced
nodes, where both performance and power are critical to IC prod-
ucts, there is now intense focus on the challenge of minimizing
clock distribution wirelength while controlling skew.

Our present work revisits the bounded-skew routing tree prob-
lem – in both the spanning tree and Steiner tree contexts – with an
aim to determine “how much is left on the table”. While VLSI inter-
connect trees are ultimately realized as Steiner trees, the spanning
formulation is of distinct interest. Footnote 1 of [1] observes that
“For global routing, spanning trees are often preferred to Steiner
trees since global routing commonly decomposes multi-fanout nets
into two-pin nets. A spanning tree provides the router with an
obvious decomposition. However, Steiner trees are not well-suited
for this because the Steiner points become unnecessary constraints
that restrict the freedom of the router to resolve congestion.” Indeed,
the spanning and Steiner formulations have different “behaviors”:
Elkin and Solomon [16] show that Steiner shallow-light trees can
be exponentially lighter than their spanning counterparts (recall
also Figure 1).

The key contributions of this work are as follows.
• We formulate the minimum-cost bounded skew spanning
and Steiner tree problems as flow-based integer linear pro-
grams and give the first-ever study of optimal cost-skew
tradeoffs.

• We evaluate the heuristics (Bounded-Skew DME and Prim-
Dijkstra variants) that are currently the best available meth-
ods for trading off cost and skew, and quantify remaining
suboptimality.

• In the Appendix, we apply dynamic programming to obtain
insight into optimal solutions of a highly restricted one-
dimensional (1-D) BST problem; this enables us to shed some
light on such “classic” questions as optimal skew budgeting
across levels of a tree.

In the following, Section 2 summarizes related work on cost-
delay tradeoffs and bounded-skew tree constructions. Section 3
describes flow-based ILP formulations for the spanning and Steiner
BST problems. Section 4 experimentally demonstrates a surpris-
ingly substantial “gap” between existing heuristic tree constructions
and optimum bounded-skew trees. We conclude in Section 5 with
ongoing and future directions. In the Appendix, we analyze the
nature of optimal dynamic programming-based solutions to 1-D
instances of the BST problem, and present observations regarding
“skew budgeting” and the impact of clustering in sink placement.

2 RELATEDWORK
Many spanning and Steiner tree heuristics have been proposed for
VLSI routing applications. These heuristics typically optimize or
trade off the fundamental objectives of tree cost, delay and skew
[22]. Types of tree constructions for VLSI that are related to our
present work can be classified into three main categories: cost-
delay tradeoffs, bounded-skew constructions, and optimal (integer
programming-based) constructions.

Cost-delay tradeoffs havemost famously been achieved by shallow-
light constructions, which optimize cost (wirelength) and radius
(maximum source-sink pathlength) simultaneously to within con-
stant factors of optimal. For example, the BRBC algorithm [12]

produces a tree that has wirelength no greater than 1 + 2/ϵ times
that of a minimum spanning tree (MST), and radius no greater than
1+ ϵ times that of a shortest-paths tree (SPT). Over the ensuing 25+
years, numerous works ranging from [26] to [16] [9] have contin-
ued to improve the basic approach. The SALT method of [9] is the
most recent and strongest work in the shallow-light literature, in-
corporating additional techniques such as post-processing via edge
flipping [19]. The Prim-Djkstra algorithm [2] achieves in practice
a high-quality tradeoff between tree cost and maximum source-
terminal pathlength (i.e., radius), but has no provable shallow-light
property. The very recent work of [1] improves the original Prim-
Dijkstra method with topology and edge-flipping optimizations,
and can produce tree solutions superior to [9]. Additional work has
studied the rectilinear Steiner arborescence (RSA) problem, which
seeks to find a minimum-cost tree that achieves optimal source-sink
delay at every sink, i.e., a minimum-cost shortest-paths Steiner tree.
Rao et al. [32] and Cong et al.[14] give heuristics for the RSA prob-
lem, which is known to be NP-complete [35]; an implementation
of the A-Tree method of [14] is available at [44].

Bounded-skew tree (BST) constructions originally arose as exten-
sions of deferred-merge embedding (DME) based zero-skew tree
(ZST) constructions [5] [7] [23]. Notably, [11] [20] [24] all extend
the DME algorithm to achieve BST routing. With a skew bound of
B = 0, the BST problem reduces to the ZST problem. When B = ∞,
the BST problem reduces to the rectilinear Steiner minimum tree
(RSMT) problem. Tsao and Koh [37] improve the DME algorithm’s
bottom-up merging step to construct trees subject to general skew
constraints. Empirical results show improvements over BST-DME
with certain skew constraints. In the discrete algorithms literature,
works of Charikar et al. [8] and of Zelikovsky and Mandoiu [39]
propose ZST and BST heuristics with constant-factor error bounds;
the latter work gives a realizable ZST construction based on the
“rooted-Kruskal” approach which guarantees rectilinear BST cost
within 9 times of optimal. Rajaram et al. [31] apply bounded-skew
tree construction within low-cost (crosslink insertion-based) non-
tree routing. Below, we study cost-skew tradeoff performance of an
updated version [36] of the open-source BST-DME implementation
of Tsao [45].

A number of optimal tree constructions have been proposed
as well. The well-known FLUTE method of Chu and Wong [10]
uses topology pruning and look-up tables to find RSMT solutions
extremely efficiently; FLUTE solutions are optimal for instances
with up to ∼9 pins. The well-known GeoSteiner code of Warme et
al. [43] can solve the RSMT problem optimally for instances with
thousands of points. The work of Peyer et al. [30] exemplifies the
use of integer linear programming (ILP) to solve the Steiner tree
problem via the flow-based directed Steiner tree framework. Single-
commodity and multi-commodity flow-based ILPs have been also
used by Han et al. [17] to assess back-end-of-line design rule im-
pacts on local routability, and by Jia et al. [21] within a detailed
router. Aneja [4] applies a set-covering ILP to the construction of
Steiner trees given a prescribed set of Steiner points. A “row gen-
eration” technique prevents an exponential number of constraints
from arising. Oh et al. [29] use linear programming to find Steiner
routing trees with upper-and lower-bounded path delays within a
prescribed topology; a method similar to BST-DME is used to embed
the Steiner points in the Manhattan plane. No previous work that
we are aware of optimally solves either the spanning or the Steiner
form of the bounded-skew tree problem. Below, we experimentally
study a flow-based ILP that solves both the spanning and Steiner
BST formulations.

3 FLOW-BASED ILP FORMULATION
We now formulate an ILP that can be generally applied to both the
BSSpanT and BSSteinT problems. In this section, we first introduce
our bounded-skew tree routing formulation. Second, we then ex-
plain constraints that detect and block any cycles, such that the ILP
outputs a well-formed tree as its solution. Third, additional con-
straints to improve runtime are explained. Table 1 lists the notations
that we use.

Table 1: Notations

Notation Meaning
pi ith point (pi ∈ P , p1 is a root point)
vi ith vertex (vi ∈ V , P ⊆ V)
ejk a directed edge from vertex vj to vertex vk (ejk ∈ E)
λjk 0-1 indicator of whether ejk is in a tree T
c jk cost of edge ejk
f ijk 0-1 indicator of whether the flow to pi goes through ejk
d ij pathlength at vj along unique v1-pi path
mi j Manhattan distance from vi to vj
B skew bound
L lower bound on pathlength from source v1

Minimize:
∑
j,k

λjk · c jk

Subject to:

λjk ≥ f ijk ∀pi ∈ P , ejk ∈ E (1)∑
j

f ijk −
∑
j

f ik j =


1 if vk = v1,∀vj ∈ V , pi ∈ P , i , 1
−1 else if vk = vi
0 otherwise

(2)∑
j,k

c jk · f ijk ≥ L ∀pi ∈ P , i , 1 (3)∑
j,k

c jk · f ijk ≤ L + B ∀pi ∈ P , i , 1 (4)

3.1 Bounded-Skew Tree Routing
Given a set of terminals P , specified as (x ,y) points in theManhattan
plane with x ,y integers, we create a graphG = (V ,E) whose vertex
setV contains P as well as additional points S (i.e.,V = P∪S). (Thus,
each point in P is identified with some vertex inV .) For the BSSpanT
problem, S is empty and E consists of all |P | · (|P | − 1) possible
directed edges between pairs of terminals. Thus, G = (V ,E) is a
complete graph in the BSSpanT problem. For the BSSteinT problem,
S is a set of non-terminal points in a half-integer grid of P , and E
is a set of directed edges between any neighboring vertices. Each
vertex has up to four outgoing and four incoming edges to/from
neighbor vertices in the east, west, north and south directions. The
half-integer grid consists of all points in the bounding box of P for
which both x and y coordinates are multiples of 1/2. By convention,
we assume that (i) v1 = p1 is the root (i.e., source) terminal, (ii)
{v2,v3, ...,v |P |} = {p2,p3, ...,p |P |} are the leaf (i.e., sink) terminals,

and (iii) other vertices {v |P |+1, ...v |V |} are additional non-terminal
vertices. We formulate the following integer linear program:

Our objective is to minimize total cost, while satisfying a given
skew bound B. We consider each path from p1 to pi as a separate
flow. λjk is a global binary variable that indicates whether any
flow goes through an edge ejk in the tree solution T . Constraint (1)
forces λjk = 1 when a flow exists in ejk .
Flow conservation. Constraints (2) are for flow conservation. (A
unit of flow from source v1 to sink vi will traverse a path from p1
to pi .) These constraints enforce that (i) there is one net outgoing
unit of flow at a vertex vk that is the vertex identified with the root
terminal p1; (ii) there is one net incoming unit of flow at a vertex
vk that is the vertex identified with the leaf terminal pi , and (iii)
otherwise, the sum of incoming and outgoing flow at vertexvk must
be zero. Since each flow for each path is considered exclusively, for
the flow to the terminal pi , other terminals’ vertices (i.e.,v2, ...,v |P |
except for vi) are not considered as leaf terminals.
Skew bound constraints. Given L and B, Constraints (3) - (4)
respectively bound the minimum and maximum pathlengths for
all source-to-sink paths. However, with these constraints only, in-
valid solutions that contain cycles could arise. Next, we add more
constraints to block the formation of cycles.

Figure 2: Example solutionwith a cycle on the lower-left cor-
ner. Red dot is a root and blue dots are leaf terminals.

3.2 Cycle Correction
Figure 2 shows an example solution with a cycle. This solution
satisfies the above flow conservation constraints since the sum of
incoming and outgoing flows are the same for each vertex in the
cycle. This happens when the cost of creating the cycle is less than
the cost of detouring to leaf terminals (that are close to the root)
in order to satisfy a given skew bound. To prevent the cycle, we
define a new dij variable that represents the pathlength from p1 to
vj for path pi . The dij should satisfy the following constraints (5):


dij = 0 if vj = v1,∀ pi ∈ P , i , 1
dij ≥ L else if vj = vi ,∀ pi ∈ P , i , 1
dij ≤ L + B otherwise ∀ pi ∈ P , i , 1

(5)

In other words, the pathlength from the root to any vertex vj must
lie between prescribed minimum and maximum pathlength bounds.

To compute dij , we add the following constraints.

dij +U · (1 − f ik j) ≥ dik + ck j ∀vj ,vk ∈ V , j , k, pi ∈ P (6)

dij −U · (1 − f ik j) ≤ dik + ck j ∀vj ,vk ∈ V , j , k, pi ∈ P (7)

When f ik j = 1, dij should be equal to dik . Otherwise, these con-
straints are always met with a large constant valueU . With these
constraints, dij becomes infinite if there is a cycle.

3.3 Constraints for Runtime Improvement
It is well known that the chief drawback of using ILP is long, poorly-
scaling runtime. We add further constraints to predetermine some
variables according to what we might know before we run the ILP
instance. The idea is to find flow variables that cannot exist, or
combinations of variables that cannot coexist. This reduces the
solution space for an ILP solver to explore.

ifm1j +mji > L + B ∀vj ∈ V , j , 1, ..., |P |, pi ∈ P

f ijk = 0, f ik j = 0 ∀ejk ∈ E, ek j ∈ E (8)

For any non-terminal vertex vj , if the sum of Manhattan length
from root terminal p1 to vj and from vj to leaf terminal pi is larger
than the upper bound on pathlengthL+B, all incoming and outgoing
flows for pi going through vj should be zero.

Similarly, we can consider two non-terminal vertices vj and vj′ :
ifm1j +mj j′ +mj′i > L + B

&&m1j′ +mj′j +mji > L + B

f ijk + f ij′k ′ = 1, f ik j + f ij′k ′ = 1, ∀ejk ∈ E, ek j ∈ E (9)

f ijk + f ik ′j′ = 1, f ik j + f ik ′j′ = 1, ∀ej′k ′ ∈ E, ek ′j′ ∈ E (10)

For any two non-terminal vertices vj and vj′ , if the sum of Man-
hattan lengths from p1 going through vj and vj′ to terminal pi is
larger than the pathlength upper bound, then any combinations
of incoming and outgoing flows going through vj and vj′ cannot
coexist. Our ILP implementation applies such additional constraints
to reduce ILP solver runtime.

3.4 Analysis of the Number of Variables and
Constraints

The number of variables and constraints depends on the number
of edges (|E |), vertices (|V |) and points (|P |).

• The number of variables λjk is |E |.
• The number of variables f ijk is |E | · |P |.
• The number of variables dij is |V | · |P |.
• The number of Constraints (1) is |E | · |P |.
• The numbers of Constraints (2), (5), (6), (7) are |V | · |P |.
• The numbers of Constraints (3) and (4) are (each) |P |.

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Experimental Setup
We implement our tool in C++ and use CPLEX 12.6.1[47] as our
ILP solver. The following experiments are performed on a 2.7 GHz
Intel Xeon server with 32 threads.

Even with the additional constraints for runtime improvement,
our flow-based ILP for Steiner tree only works for a limited condi-
tion (i.e., |P | ≤∼16, |V | ≤∼140, |E | ≤∼550). Under this condition, we

generate 50 testcases for each |P | = {8, 10, 12, 14, 16}. The terminals
of each testcase are randomly distributed.

For the generated testcases, we run our flow-based ILP for Steiner
tree, and obtain cost-skew tradeoff curves. For each instance, we
run ILP with four different skew bounds = M · {0.3, 0.5, 0.7, ∞},
whereM is the maximum source-to-sink Manhattan length. We do
not run our ILP with skew bound B = 0 due to the long runtime.
We also set L = M − B for a given B. When a fixed L is used, our
ILP Steiner tree solution could end up with a suboptimal solution.
The impact of a fixed L on suboptimality is discussed in Section 4.2.

We also run several academic tools for evaluation; BST-DME [45],
SALT [9] and PD [2]. For each tool, we sweep input parameters to
obtain several solutions.

4.2 Experimental Results
Study of cost-skew tradeoff.Wenormalize the costs (resp. skews)
of academic tools’ solutions as well as our ILP-based spanning tree
solutions by the minimum cost (resp. skew) achieved from ILP-
based Steiner tree for each testcase. Figure 3(a) shows the results for
one 14-terminal instance. Each data point is mapped to a solution
from the corresponding tool. This figure clearly shows that our
ILP-based Steiner tree solutions are dominating the other tools’
solutions on both skew and cost. Some solutions from BST-DME
achieve slightly better skew than our minimum skew from ILP-
based Steiner tree solutions. This is because we do not have a run
with B = 0. Figure 4 shows the plots of ILP-based Steiner tree
solutions for this 14-terminal instance.

For a more comprehensive study across different instances, we
propose the following way for comparison. (1) For each tool, we
select three representative solutions: the minimum-skew solution,
the minimum-cost solution, and a “median” solution in between.
(2) We then compute the average normalized cost (resp. skew) for
the same set of solutions (e.g., minimum skew solutions) for all 50
instances.

Figures 3(b)-(f) show the cost-skew tradeoff curves for all |P | =
{8, 10, 12, 14, 16}, respectively. From these figures, we observe that:

• ILP-based Steiner tree dominates all other tools in terms of
both cost and skew across all terminal nets.

• Compared to the Steiner tradeoff curve, BST-DME is ∼ 10%
suboptimal in cost at iso-skew and ∼ 50% suboptimal in
skew at iso-cost. Solutions for different terminal nets show
a similar trend.

• Both SALT and PD mostly generate large skew solutions,
with up to ∼ 3× suboptimality. This suggests that optimizing
shallowness only, without awareness of skew, is insufficient
to find solutions with good skew.

• In general, ILP-based spanning tree solutions have larger
skew and cost than the ones from SALT and BST-DME. How-
ever, as the number of terminals increases, it generates com-
parable or better cost and skew solutions than SALT and
BST-DME. This implies that the optimal spanning tree solu-
tions could be good candidates for high-fanout nets.

Runtime. ILP for spanning tree runs very fast. Average runtime
is 0.32 second and maximum runtime is 4 second. On the other
hand, ILP for Steiner tree uses the half-integer grid to ensure that
optimal solutions. Thus, as we increase the number of terminals, the
number of vertices and edges increase and runtime goes up quickly.
Runtime also increases as the skew bound is tightened. Table 2
shows the average runtime for different |P | and skew bound.
Possible suboptimality with fixed L.Due to runtime scaling and
available computational resource, we have used a fixed L (computed

Figure 3: Illustration of cost-skew tradeoff. (a) cost-skew tradeoff curve for one 14-terminal instance (b) cost-skew tradeoff
curves for all 8-terminal instances (c) cost-skew tradeoff curves for all 10-terminal instances (d) cost-skew tradeoff curves
for all 12-terminal instances (e) cost-skew tradeoff curves for all 14-terminal instances (f) cost-skew tradeoff curves for all
16-terminal instances.

Table 2: Average ILP runtime for Steiner tree.

Skew bound |P | = 8 |P | = 10 |P | = 12 |P | = 14 |P | = 16
Unbounded 0.33 0.50 0.68 1.04 0.78
0.7 ·M 2.89 5.22 41.24 130.08 58.53
0.5 ·M 13.20 74.98 364.03 1522.25 892.50
0.3 ·M 320.77 662.01 2593.59 4664.06 3477.73

as M − B; see Section 4.1 above) in our reported results for ILP-
based bounded-skew Steiner trees. However, a fixed L can cause
small suboptimality in the solutions. To study the impact of L on
suboptimality, we select 10 sample instances (two instances from
each testset with a given number of terminals) and vary L from
M − B to M . We then compare the best cost found to the cost
obtained using a fixed L = M − B. We find that one out of 10 nets
is suboptimal due to the fixed L and the suboptimality is 2.8%.

5 CONCLUSIONS
In this work, we empirically study the minimum-cost bounded
skew spanning and Steiner tree problems. We formulate and apply
a flow-based ILP to find optimal cost-skew tradeoffs for generated
testcases with number of terminals from 8 to 16. Based on the
optimal cost-skew tradeoffs, we find significant remaining subop-
timality of several state-of-art academic tools: (1) BST-DME, (2)
SALT, and (3) Prim-Dijkstra. Across our testcases, BST-DME has
suboptimality ∼ 10% in cost at iso-skew, and ∼ 50% in skew at

iso-cost. In addition, SALT and PD show suboptimality in terms of
skew by up to ∼ 3×. This degree of suboptimality is very different
from the near-optimality in practice of heuristics for the RSMT
problem (e.g., FLUTE, 1-Steiner, etc.). Thus, our study motivates
renewed attention to the cost-skew tradeoff.

Our future work includes (1) further scalability study and im-
provement of the flow-based ILP formulation; (2) extensions of our
suboptimality study to the cost-radius tradeoff and well-studied
variants (sink-specific radius bounds, critical-sink trees, required
arrival time (RAT) trees, etc.), and (3) benchmark suite generation
with known optimal solutions to various formulations.

ACKNOWLEDGMENTS
A. Zelikovsky’s research is supported in part by NSF under grant
number CCF-1619110. Research in UCSD ABKGroup is supported
in part by funding from NSF, Qualcomm, Samsung, NXP, Mentor
Graphics and the C-DEN center.

REFERENCES
[1] C. J. Alpert, W.-K. Chow, K. Han, A. B. Kahng, Z. Li, D. Liu and S. Venkatesh, “Prim-Dijkstra

Revisited: Achieving Superior Timing-driven Routing Trees” Proc. ISPD, 2018, pp. 10-17.
[2] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng and D. Karger, “Prim-Dijkstra Tradeoffs for

Improved Performance-driven Routing Tree Design”, IEEE Trans. on CAD 14(7) (1995), pp.
890-896.

[3] C. J. Alpert, A. B. Kahng, C. N. Sze and Q.Wang, “Timing-driven Steiner Trees are (Practically)
Free”, Proc. DAC, 2006, pp. 389-392.

[4] Y. P. Aneja, “An Integer Linear Programming Approach to the Steiner Problem in Graphs”,
Networks 10(2), 1980, pp. 167-178.

[5] K. Boese and A. B. Kahng, “Zero-Skew Clock Routing TreesWithMinimumWirelength”, Proc.
IEEE ASIC Conf., 1992, pp. 1.1.1 - 1.1.5.

[6] M. Borah, R. M. Owens and M. J. Irwin, “An Edge-based Heuristic for Steiner Routing”, IEEE
Trans. on CAD 13(12) (1994), pp. 1563-1568.

Figure 4: Illustration of ILP-based Steiner tree solutions for a 14-terminal instance with (a) B = inf , (b) B = 0.7 ·M , (b) B = 0.5 ·M ,
(d) B = 0.3 ·M .

[7] T. H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese and A. B. Kahng, “Zero Skew Clock Routing With
Minimum Wirelength”, IEEE Trans. on Circuits and Systems 39(11) (1992), pp. 799-814.

[8] M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai and A. Tomkins, “Minimizing
Wirelength in Zero and Bounded Skew Clock Trees”, SIAM J. Disc. Math. 17(4) (2004), pp.
582-595.

[9] G. Chen, P. Tu and E. F. Y. Young, “SALT: Provably Good Routing Topology by a Novel Steiner
Shallow-Light Tree Algorithm”, Proc. ICCAD, 2017, pp. 569-576.

[10] C. Chu and Y.C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree
Algorithm for VLSI Design”, IEEE Trans. on CAD 27(1) (2008), pp.70-83.

[11] J. Cong, A. B. Kahng, C. K. Koh and C.-W. A. Tsao, “Bounded-SkewClock and Steiner Routing",
ACM TODAES 3(3) (1998), pp. 341-388.

[12] J. Cong, A. B. Kahng, G. Robins and M. Sarrafzadeh, “Provably Good Performance-driven
Global Routing”, IEEE Trans. on CAD 11(6) (1992), pp. 739-752.

[13] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh and C.K. Wong, “Performance-driven Global
Routing for Cell Based ICs”, Proc. ICCD, 1991, pp. 170-173.

[14] J. Cong, K. S. Leung and D. Zhou, “Performance-driven Interconnect Design Based on Dis-
tributed RC Delay Model”, Proc. DAC, 1993, pp. 606-611.

[15] M. Elkin and S. Solomon, “Narrow-shallow-low-light TreesWith andWithout Steiner Points”,
SIAM J. Disc. Math. 25(1) (2011), pp. 181-210.

[16] M. Elkin and S. Solomon, “Steiner Shallow-light Trees are Exponentially Lighter than Span-
ning Ones”, SIAM J. Comp. 44(4) (2015), pp. 996-1025.

[17] K. Han, A. B. Kahng and H. Lee, “Evaluation of BEOL Design Rule Impacts Using an Optimal
ILP-based Detailed Router”, Proc. DAC, 2015, pp. 1-6.

[18] A. Hill, keynote address, Proc. ISPD, 2018. http://www.ispd.cc/slides/2018/k1.pdf (Slide 17).
[19] J. M. Ho, G. Vijayan and C. K. Wong, “New Algorithms for the Rectilinear Steiner Tree Prob-

lem”, IEEE Trans. on CAD 9(2) (1990), pp. 185-193.
[20] J.-H. Huang, A. B. Kahng and C.-W. A Tsao, “On the Bounded-SkewClock and Steiner Routing

Problems”, Proc. DAC, 1995, pp. 508-513.
[21] X. Jia, Y. Cai, Q. Zhou, G. Chen, Z. Li and Z. Li, “MCFRoute: A Detailed Router Based on

Multi-Commodity Flow Method”, Proc. ICCAD, 2014, pp. 397-404.
[22] A. B. Kahng and G. Robins, On Optimal Interconnects for VLSI, Kluwer Academic Publishers,

1995.
[23] A. B. Kahng and C.-W. A. Tsao, “Planar-DME: A Single-Layer Zero-Skew Clock Tree Router”,

IEEE Trans. on CAD 15(1) (1996), pp. 8-19.
[24] A. B. Kahng and C.-W. A. Tsao, “Practical Bounded-Skew Clock Routing", J. VLSI Signal Pro-

cessing 16 (1997), pp. 199-215.
[25] G. Kortsarz and D. Peleg, “Approximating Shallow-light Trees”, Proc. SODA, 1997, pp. 103-110.
[26] S. Khuller, B. Raghavachari and N. Young, “Balancing Minimum Spanning Trees and Shortest-

path Trees”, Proc. SODA, 1993, pp. 243-250.
[27] K.-S. Leung and J. Cong, “Fast Optimal Algorithms for the Minimum Rectilinear Steiner Ar-

borescence Problem”, Proc. ISCAS, 1997, pp. 1568-1571.
[28] A. Lim, S.-W. Cheng and C.-T. Wu, “Performance Oriented Rectilinear Steiner Trees”, Proc.

DAC, 1993, pp. 171-175.
[29] J. Oh, I. Pyo and M. Pedram, “Constructing Lower and Upper Bounded Delay Routing Trees

Using Linear Programming”, Proc. DAC, 1996, pp. 401-404.
[30] S. Peyer, M. Zachariasen and D. G. Jorgensen, “Delay-related Secondary Objectives for Recti-

linear Steiner Minimum Trees”, Discrete Appl. Math. 136(2-3) (2004), pp. 271-298.
[31] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing clock skew variability via crosslinks”, IEEE

TCAD, 25(6) 2006, pp. 1176-1182.
[32] S. K. Rao, P. Sadayappan, F. K. Hwang and P. W. Shor, “The Rectilinear Steiner Arborescence

Problem”, Algorithmica 7(2) (1992), pp. 277-88.
[33] L. Scheffer, Bookshelf RMST code, http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/

RMST.
[34] R. Scheifele, “Steiner Trees with Bounded RC-delay”, Algorithmica 78(1) (2017), pp. 86-109.
[35] W. Shi and C. Su, “The Rectilinear Steiner Arborescence Problem is NP-complete”, SIAM J.

Comp. 35(3) (2006), pp. 729-740.
[36] B. Taskin, personal communication, Oct. 2012.
[37] C.-W. A. Tsao and C.-K. Koh. “UST/DME: A Clock Tree Router for General Skew Constraints”,

ACM Trans. on Design Automation of Electronic Systems 7(3), 2002, 359-379.
[38] D. M. Warme, P. Winter and M. Zachariasen, “Exact Algorithms for Plane Steiner Tree Prob-

lems: A Computational Study”, in D.Z. Du, J.M. Smith and J.H. Rubinstein (Eds.) Advances in
Steiner Trees, Kluwer Academic Publishers, 2000, pp. 81-116.

[39] A. Z. Zelikovsky and I. I. Mandoiu, “Practical Approximation Algorithms for Zero- and
Bounded-skew Trees", SIAM J. Disc. Math. 15(1) (2002), pp. 97-111.

[40] C. J. Alpert, R. G. Gandham, J. Hu, S. T. Quay and A. J. Sullivan, “Apparatus and Method for
Determining Buffered Steiner Trees for Complex Circuits”, U.S. Patent 6,591,411, July 2003.

[41] G. M. Furnish, M. J. LeBrun and S. Bose, “Node Spreading Via Artificial Density Enhancement
to Reduce Routing Congestion”, U.S. Patent 7,921,392, Apr. 2011.

[42] P. Saxena, V. Khandelwal, C. Qiao, P-H. Ho, J. C. Lin and M. A. Iyer, “Interconnect-driven
Physical Synthesis using Persistent Virtual Routing”, U.S. Patent 7,853,915, December 2010.

[43] http://www.geosteiner.com/
[44] L. He, C.-K. Koh, D. Z. Pan and X. Yuan, TRIO release B 1.0, http://vlsicad.eecs.umich.edu/BK/

Slots/cache/cadlab.cs.ucla.edu/software_release/trio/htdocs

[45] C.-W. A. Tsao, BST-DME source code, MARCO GSRC Bookshelf, 2002. https://vlsicad.ucsd.edu/
GSRC/bookshelf/Slots/BST/download/

[46] ITRS 2013 Edition Report - Interconnect. https://www.semiconductors.org/clientuploads/
Research_Technology/ITRS/2013/2013Interconnect.pdf

[47] IBM ILOG CPLEX. www.ilog.com/products/cplex/

APPENDIX: OPTIMAL COST-SKEW TRADEOFF
IN ONE DIMENSION
It is intuitively clear that the optimal cost-skew tradeoff curve is
monotone: with decreasing skew bound B, the minimum bounded-
skew tree cost is non-decreasing. However, the nature of skew
allocation within optimal BSTs (i.e., how skew is budgeted across
levels in the topology of optimal trees), or how pointset attributes
affect the shape of the tradeoff curve, is unknown. Further, the ILP
presented above has limited scalability.

To obtain additional insights into the structure of optimal BST
solutions for larger instances, we have studied the one-dimensional
(1-D) bounded-skew tree problem, where all terminals have integer
coordinates and are on the x-axis.2 We implement a dynamic pro-
gramming algorithm that finds optimal BST solutions for a given
1-D input and skew bound. Results support the “folklore” intuition
that skew is best budgeted toward the lower levels of an optimal
BST; we also obtain examples of optimal cost-skew tradeoff curves
for qualitatively different types of pointsets.

1D-BST Algorithm
A dynamic programming algorithm to find the optimal 1D-BST for
a pointset is formulated as follows.

• The input is a pointset P = (p1, . . . ,pn)with eachpi = (xi , 0).
p1 is the source and the remaining pi are sinks. We must
reach all sinks from the source, such that the difference
between maximum and minimum source-to-sink distances
in the tree is less than or equal to a skew bound B, and total
edge cost is minimized.

• Definexmin = min(x2, . . . ,xn) andxmax = max(x2, . . . ,xn).
For the algorithm to maintain an optimal cost-skew tradeoff
curve, it must be the case that the source location x1 lies
between xmin and xmax . Without loss of generality, we let
xmin = 1 in order to simplify the recurrence.

• Let span(P) = xmax − xmin . Let M[l][s][sh][B] be the total
cost of the minimum-cost tree over points in P such that xi ∈
[sh+1, l+sh]with source s and skew bound B.M[l][s][sh][B]
is computed for each l ∈ {xmin ,xmin + 1, . . . ,xmax }, sh ∈
{1, 2, . . . ,xmax − l}, s ∈ {sh, sh + 1, . . . , sh + l} and B ∈
{0, 1, . . . , l}.

• Let S[l][s][sh][B] be the (ch, c) pair of the optimal tree of
cost c containing sinks pi such that sh + 1 ≤ xi ≤ sh + l

2For the 1-D BST problem to be meaningful, edges of a routing tree over the terminals
should not be superposed: internal nodes of the tree and embeddings of tree edges are
assumed to be displaced very slightly off the x-axis as necessary to avoid overlaps.

http://www.ispd.cc/slides/2018/k1.pdf
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST
http://www.geosteiner.com/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/cadlab.cs.ucla.edu/software_release/trio/htdocs
http://vlsicad.eecs.umich.edu/BK/Slots/cache/cadlab.cs.ucla.edu/software_release/trio/htdocs
https://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/download/
https://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/download/
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2013/2013Interconnect.pdf
https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2013/2013Interconnect.pdf
www.ilog.com/products/cplex/

and skew bound B where ch is the only child of the source
s . (Here, sh refers to a “shift’, as explained in the next para-
graph.) S[l][s][sh][B] is computed for each l ∈ {xmin ,xmin+
1, . . . ,xmax }, s ∈ {−xmax ,−xmax + 1, . . . ,xmax }, sh ∈
{1, 2, . . . ,xmax − l} and B ∈ {0, 1, . . . , l}.

The base cases used to computeM and S are given by Equations
(11) and (12), respectively. In these Equations, define I (p) = 1 if p
is true and I (p) = ∞ if p is false. In the case of theM matrix, each
sink is connected to an internal node directly above it and in the
case of the S matrix,

The recurrences used to computeM and S are given by Equations
(13) and (14), respectively. The intuition behind Equation (13) is
that any tree of span l is composed of two left and right subtrees
with span L and R = l − L respectively. S[L][s − sh][sh][B].c is
the cost of the left tree and S[l − L][s − sh − L][sh + L][B].c is the
cost of the right tree with source at location s . In each subproblem,
we adopt the notational convention that all sinks are shifted by
distance sh to the left. So, to ensure that the source location (in a
subproblem) is correct with respect to the original problem instance,
M[l][s][sh][B], the left subtree’s source location will be at s − sh
and the right subtree’s source location will be at s − sh − L.

M[1][1][sh][0] = I (xsh ∈ {p2,p3, . . . ,pn }) (11)
S[1][s][sh][0] = I (xsh ∈ {p2,p3, . . . ,pn }(s − 1) (12)
M[l][s][sh][B] = (13)
min
L

S[L][s − sh][sh][B].c + S[l − L][s − sh − L][sh + L][B].c

S[l][s][sh][B] = min
ch∈{1, ...,l }

(M[l][ch][sh][B] + |s − ch + sh |) (14)

Illustrations. Figure 5 shows how theM and S matrices are filled.
The subtree rooted at I1 contains sinks p2 and p3. ForM[l][s][sh][B]
the values of (l , s, sh,B) = (3, 2, 0, 0). This is due to sinks p2 and p3
having their x-coordinates in the window [sh + 1, l + sh] = [1, 3].
Note that this same subtree has the cost inM[7][2][0][0] as no other
sinks aside from p2 and p3 are within [1, 7]. The subtree rooted at
I2 is held in the solution given by M[2][1][7][0]. Both sinks have
x-coordinates in [8, 9] and the source of this subtree. For these sinks,
we use a “shift" of 7, meaning that each sink is shifted by 7 units to
the left. Because of this, it is as though p4 is at x-coordinate 1 and
p5 is at x-coordinate 2. Due to this shifting, the source, I2, is now
at x-coordinate 1. Lastly, notice that one unit of wire is “wasted"
on the edge from I2 to p5 in order to preserve a zero skew tree.
Wire will be “wasted" anytime two subproblems have maximum
and minimum source to sink distances that do not preserve the
given skew bound when they are combined into a single tree.

In order to find the final cost of the optimal tree,M[9][5][0][0],
we will sweep L ∈ {1, 2, . . . , 8}. Suppose L = 7, by Equation 13,
M[9][5][0][0] = S[7][5][0][0] + S[2][−2][7][0]. Notice how these
have already been computed in previous steps so we can used our
cached solutions in order to find the minimum cost bounded skew
tree.3

In addition to these recurrences, the following cases forM will
need to be considered: (i) the trees with one child of the source
and (ii) the minimum spanning trees with source locations in [sh +
1, l + sh]. We need to consider case (i) because our recurrence is
defined when an internal node has two children – but this may not
necessarily be the case. Case (ii) is necessary because without it,
sinks would not be able to add edges to other sinks. The base case

3As mentioned previously, wire may need to be “wasted" on one of the subtrees in
order to preserve the skew bound.

Figure 5: Example of how M and S are constructed over a
pointset P .

for the M tensor is simply that each sink can be connected to a
source at the same location for 0 cost and 0 skew.

Empirical Studies
We now briefly describe example insights that can be obtained
in a quantified manner using the DP for 1-D BST. A first insight
concerns the impact of sink clustering. To create diverse pointsets
as inputs to the DP algorithm, we define a cluster in a pointset to
be any set of sinks with span equal to the number of sinks in the
cluster. In other words, a cluster is a set of ‘contiguous’ points. We
construct pointsets that have c clusters evenly spaced within the
span of the pointset.

As the number of clusters in a pointset increases, internal nodes
of the bounded-skew tree will need to be spread out more at lower
levels of the tree in order to reduce skew. For example, with only
two clusters, we might satisfy a given skew bound by constructing
two subtrees for each cluster, but having 16 clusters would require
creation of 16 trees and addition of more internal nodes to connect
back to the source.

Figure 6 shows that for a given fixed value of B, the optimum
tree cost will increase as the number of clusters increases. This
essentially visualizes the benefits seen in use of multi-bit flip-flops
and other clock sink clustering techniques, as a function of skew
bound. We also observe that the cost impact of clustering depends
on the overall density of sinks in the placement. The spread between
the cost-skew tradeoff curves is much greater in the top figure
(n = 20) than in the bottom figure (n = 80).

The 1-D DP solutions also improve our intuition regarding op-
timal BST cost as a function of the number of sinks and of the
skew bound B. Figure 7 shows how – for a fixed span – the tree
cost increases with the number of sinks.4 Additionally, the cost-
skew tradeoff curve is steeper for small values of skew: when the
skew bound B is small, an increase in skew will decrease cost more
rapidly than if the skew were already large. Thus, we can see the
wirelength and dynamic power returns from relaxation of skew
constraints.

A third example insight from 1-D BST concerns the classic ques-
tion of how available skew should be optimally budgeted across
levels of a clock tree. Figure 8 shows internal nodes and the cumu-
lative source-to-sink distance at each internal node. In the figure,
4While, e.g., a square-root relationship between ZST cost and n has been conjectured
in the past (cf. the theory of subadditive functionals of planar pointsets), no formal
result has been established.

Figure 6: Effect of the number of clusters, c, on cost-
skew tradeoff curve for (span(P),n) = (100, 20) (top) and
(span(P),n) = (100, 80) (bottom).

sinks are displayed in black at the bottom, and internal nodes are
colored according to their source-to-sink distance. The pointset
consists of 80 sinks with a span of 100 and 40 clusters with the
source at location x = 32. DP solutions show that skew is preserved
in favor of cost at high levels of the tree (near the root), and cost
is preserved in favor of skew at lower levels of the tree (near the
leaves). By the time the internal node that is lowest in the tree
is reached, nodes along the same level of the tree have the same
source-to-sink distance. This is most apparent when the tree elects
to waste wirelength in order to maintain a balance among the in-
ternal nodes in higher levels of the tree. For example, in Figure 8,
the path created from nodes (a-b-c-d) wastes wirelength as the
path could have been taken from (a-d). This is accomplished in
order to preserve a similar source-to-sink distance among internal
nodes in the tree at this level. This will ensure that sinks that are
far away from the source share a similar source to sink distance.
Once the lowest level of the tree is reached, we see that the internal
nodes tend to be sparse relative to the sinks surrounding them.
This means that the sinks are reached from other sinks, i.e., these
subtrees rooted at internal nodes at the bottom of the tree have
high skew. This implies that skew is budgeted to be spent at lower
levels of the tree rather than higher levels of the tree.

Figure 7: Effect of n on cost vs. skew tradeoff curve for
(span(P), c) = (100, 2) (top) and (span(P), c) = (100,n) (bottom).

Figure 8: Optimal BST topology with span(P) = 100, s = 32
and skew = 8. Each internal node in the tree is colored with
its source-to-sink distance. Sinks are colored black.

	Abstract
	1 Introduction
	2 Related Work
	3 Flow-based ILP Formulation
	3.1 Bounded-Skew Tree Routing
	3.2 Cycle Correction
	3.3 Constraints for Runtime Improvement
	3.4 Analysis of the Number of Variables and Constraints

	4 Experimental Setup and Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

