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Abstract—As on-chip power densities of manycore systems
continue to increase, one cannot simultaneously run all the cores
due to thermal constraints. This phenomenon, known as the ‘dark
silicon’ problem, leads to inactive regions on the chip and limits
the performance of manycore systems. This paper proposes to
reclaim dark silicon through a thermally-aware chiplet organization
technique in 2.5D manycore systems. The proposed technique
adjusts the interposer size and the spacing between adjacent
chiplets to reduce the peak temperature of the overall system. In
this way, a system can operate with a larger number of active
cores at a higher frequency without violating thermal constraints,
thereby achieving higher performance. To determine the chiplet
organization that jointly maximizes performance and minimizes
manufacturing cost, we formulate and solve an optimization
problem that considers temperature and interposer size constraints
of 2.5D systems. We design a multi-start greedy approach to find
(near-)optimal solutions efficiently. Our analysis demonstrates that
by using our proposed technique, an optimized 2.5D manycore
system improves performance by 41% and 16% on average and by
up to 87% and 39% for temperature thresholds of 85oC and 105oC,
respectively, compared to a traditional single-chip system at the
same manufacturing cost. When maintaining the same performance
as an equivalent single-chip system, our approach is able to reduce
the 2.5D system manufacturing cost by 36%.

I. INTRODUCTION

Over the past decade, CMOS technology scaling has slowed
down, and as a result, it is difficult to sustain the historic
performance improvements in CMOS-based VLSI systems. To
address this challenge, the computing industry has moved
towards packing an increasing number of cores on a single
die and using thread-level parallelism to continuously improve
performance. At the same time, the on-chip power density has
risen with shrinking transistor feature size. This increasing power
density has led to ‘dark silicon’ [1] on a chip. As a result in
manycore systems not all cores can be operated at the highest
frequency or even turned on simultaneously due to thermal
constraints. Thus, there is a significant amount of performance
that is ‘left on the table’ in today’s manycore systems.

A variety of solutions have been proposed to address the
dark silicon problem at both hardware level [2]–[5] and
system management level [6], [7] for single-chip systems.
These techniques help balance the heat dissipation across the
chip, thereby improving system energy efficiency under thermal
constraints. However, these techniques are not able to maximize
the performance in manycore systems.

In tandem with technology scaling and the move to manycore
systems, die-stacking technologies such as 2.5D and 3D
integration have emerged to improve system performance [8]–
[10]. 3D integration, which stacks dies vertically to form
a system, reduces system footprint and increases memory
bandwidth [9], but exacerbates the thermal issues [8]. 2.5D
integration, which integrates small chiplets on a silicon
interposer, is less prone to the thermal challenges observed
in 3D stacking [10]. Moreover, it provides additional routing

resources through the interposer, and is more cost-effective [9],
[10]. Currently, 2.5D integration technology is being extensively
investigated by both academia and industry [9], [11]–[14].

In 2.5D integration, the general approach to arrange chiplets
is to integrate them as close as possible on an interposer to save
cost. There is however an opportunity here to solve the ‘dark
silicon’ problem by organizing the chiplets in a thermally-aware
fashion such that we can lower the overall manycore system
temperature and in turn improve performance (by having more
active cores operating at higher frequency) without significantly
increasing the cost. In this paper, we first explore the impact
of chiplet placement on the cost and thermal behavior of 2.5D
manycore systems. We then propose a thermally-aware chiplet
organization strategy to address the dark silicon problem in 2.5D
manycore systems. Our main contributions are as follows:
• We perform a detailed design space exploration of chiplet

organizations in 2.5D manycore systems to analyze the
impact of chiplet count, power density, and interposer size
on the system temperature.

• We propose to strategically insert spacing between the
chiplets of 2.5D manycore systems to lower the system
temperature. This reduction enables higher operating
frequency and/or more active cores in the 2.5D manycore
system under the same temperature threshold, which in turn
improves the overall system performance.

• We design a multi-start greedy approach to efficiently find
the (near-)optimal thermally-aware chiplet organization that
jointly maximizes the manycore system performance and
minimizes the overall system manufacturing cost.

II. RELATED WORK

Over the past few years, a number of solutions have been
proposed to alleviate the dark silicon problem. The proposed
solutions include the use of specialized cores [3], DVFS [2],
near-threshold computing [4], approximate computing [5], power
budgeting [6], and computational sprinting [7]. A specialized
core enables efficient execution of a specific application with a
smaller number of transistors, but it cannot execute other types
of applications efficiently. Applying DVFS degrades system
performance, while near-threshold and approximate computing
trade off accuracy and reliability for energy efficiency. Power
budgeting enables operation at a thermally-safe power rather than
at a constant thermal design power (TDP) and achieves a higher
total performance. Computational sprinting (where the system
runs with a larger number of cores in short bursts) incorporates
phase-change materials for higher thermal capacitance, and thus
allows violation of the thermal power budget for a short time.
Power budgeting and computational sprinting, however, require
a ‘cooling down’ period after the performance boost.

A number of previous approaches have introduced thermally-
aware floorplanning methods to reduce hot spots [15], to achieve



Fig. 1: Cross-sectional view of a 2.5D system.

high performance [16], and to reduce peak temperature [17] and
thermal gradients [18] of 3D ICs. All of these works consider
placement of components to reduce temperature, but they do not
focus on 2.5D systems.

In contrast with the prior work, our work leverages thermally-
aware 2.5D integration to reclaim dark silicon. We are the
first to propose a thermally-aware chiplet organization, where
we strategically place chiplets in a thermally-aware fashion
to facilitate heat dissipation, and in turn raise the thermally-
safe power budget without increasing the cooling cost, and in
turn improve performance. Moreover, our approach complements
other approaches such as near-threshold computing, approximate
computing, and specialized cores to reclaim dark silicon.

III. THERMALLY-AWARE CHIPLET ORGANIZATION

In this section we present the details of our example 2.5D
system, manufacturing cost model and thermal behavior of 2.5D
systems, and our approach to optimize the chiplet organization.
All notations used in this section are listed in Table II.

A. 2.5D System Overview
We use a 256-core homogeneous system operating at 1GHz as

an example manycore system in this work. The core architecture
of this system is based on the IA-32 core from the Intel Single-
Chip Cloud Computer (SCC) [19], with size and power scaled to
22nm technology [20]. Each core has a 16 KB I/D L1 cache and
a 256 KB private L2 cache. The area of each core (including L1
cache) is 0.93mm2, and the area of each L2 cache is 0.35mm2.
We assume each L2 cache is placed next to the corresponding
core, and each core together with its L2 cache is square shaped,
with an area of 1.28mm2 (1.13mm×1.13mm) [20]. The total size
of the 256-core single chip is 18mm×18mm. We assume the 256-
core system has 8 memory controllers distributed along the two
opposite edges of the chip and the DRAM is located off-chip.

In the example 256-core 2.5D system (Fig. 1), we split a
single chip into chiplets, place the chiplets onto a 65nm passive
interposer, and use microbumps connecting the chiplets and
the interposer. There are through-silicon vias (TSVs) inside the
interposer to connect its upper and lower layers. We place the
interposer on top of a substrate using C4 bumps for connection.
Epoxy resins are used to underfill the spacing among C4 bumps,
the spacing among microbumps, and the empty spaces among
chiplets [21]. The dimensions of the 2.5D system (shown in
Table I) are based on the prototypes from CEA-Leti [13] and
Xilinx [14]. Our evaluation uses the conventional 2D single-chip
system as a baseline, where the 256-core chip is placed directly
on top of an organic substrate with C4 bumps for connection [21].

We use an electrical mesh network (single-cycle routers and
single-cycle links) for the example 256-core system. Intra-chiplet
communication is through on-chiplet interconnects, while inter-
chiplet communication is through links in the interposer. We use

TABLE I: Dimensions of the 2.5D System
Layers Thickness Materials

Heat Sink 6.9mm
Spreader 1mm

Interface Material 20µm
CMOS Chiplet Layer 150µm Silicon, Epoxy

Microbump Layer 10µm Copper, Epoxy
Silicon Interposer 110µm Silicon, Copper (TSV)

C4 Layer 70µm Copper, Epoxy
Organic Substrate 200µm FR-4

Component Diameter Height Pitch
Microbumps 25µm 10µm 50µm

TSVs 10µm 100µm 50µm
C4 bumps 250µm 70µm 600µm
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Fig. 2: Inter-chiplet link model of 15mm length (based on a prior model [23]).

DSENT [22] to calculate power of on-chip links and routers,
and HSpice to compute power of inter-chiplet links based on a
2.5D interconnect model [23] (Fig. 2). We size up the drivers to
ensure single-cycle propagation delay in the inter-chiplet links.
The electrical mesh in the 2.5D system consumes up to 8.4W ,
based on real benchmarks activities obtained from Sniper [24].
An electrical mesh network in a single-chip system with the same
micro architecture consumes 3.9W (the low power values in both
cases are due to low link activity). Essentially, here we trade off
network power to match network performance in the 2.5D system
with that in a single-chip system. This power increase, however,
has negligible impact on the thermal profile of the whole system.

B. Manufacturing Cost Model of 2.5D Systems
The cost benefit of 2.5D systems has already been discussed

in prior work [9], [10], where a 20% to 30% reduction in cost
can be achieved by replacing a single chip with a 4-chiplet
2.5D system. Smaller chiplets utilize more wafer area around the
edge and achieve higher yield [9] leading to lower cost per unit
area. Though one needs an interposer to integrate these small
chiplets, the cost is rather low in case of a passive interposer
(typically $500 per 300mm diameter wafer [25]) because it can
be manufactured using older process technologies [14], and with
high yield (as much as 98% [26]).

Stow et al. [10] have proposed a cost model for 2.5D systems
that takes into account the cost and yield of the CMOS chiplets,
microbump bonding, and the interposer, assuming known good
dies1. We adopt this model for estimating the cost of our 2.5D
systems. Eqs. (1) through (4) [10] calculate CMOS dies per wafer
and interposer dies per wafer, CMOS chiplet yield, CMOS per-
chiplet cost and interposer cost, and the overall cost of a 2.5D
system, respectively.

NCMOS =
π× (φwa f er/2)2

ACMOS
−

π×φwa f er√
2×ACMOS

, Nint =
π× (φwa f erint /2)2

Aint
−

π×φwa f erint√
2×Aint

(1)

YCMOS = (1+ACMOSD0/α)−α (2)
CCMOS =Cwa f er/NCMOS/YCMOS, Cint =Cwa f erint /Nint/Yint (3)

C2.5D =
Cint +Σn

i=1(CCMOS +Cbond)

Y n−1
bond

(4)

1We do not explicitly model the testing cost. We assume that the testing costs of a single-
chip system and a 2.5D system are similar because a 2.5D system costs less in per-chiplet
testing but has an additional cost associated with testing the 2.5D system as a whole.



TABLE II: Notation used in Equations (1) through (10)
Notation Definition Assumed Value

φwa f er ,φwa f erint Diameter of CMOS and interposer wafer 300mm
NCMOS,Nint CMOS and interposer dies per wafer Eq. (1)

D0 Defect density 0.25/mm2 [10]
α Defect clustering parameter 3 [10]

Yint Yield of an interposer 98% [26]
YCMOS Yield of a CMOS chiplet from Eq. (2)
Cwa f er CMOS wafer cost $5000 [25]

Cwa f erint Interposer wafer cost $500 [25]
Cint ,CCMOS,C2D Chiplet, interposer, and single chip cost from Eq. (3)

Ybond Chiplet bonding yield 99% [10]
C2.5D Cost of the 2.5D system from Eq. (4)

lg Guard band along each interposer edge 1mm
w2D,h2D Width and height of the baseline single chip 18mm
wint ,hint Width and height of the interposer (in mm) from Eq. (9)
wc,hc Width and height of the chiplets (in mm) from Eq. (8)

Notation Definition
ACMOS,Aint CMOS, interposer die area

Cbond Bonding cost of a chiplet [27]
r Number of chiplets in a row or column
n Number of chiplets n = r× r, n ∈ {4,16}
F Frequency set {1000,800,533,400,320MHz}
V Corresponding voltage set {0.9,0.87,0.71,0.63,0.63V}
f Operating frequency f ∈ F
p Active core count p ∈ {32,64,96,128,160,192,224,256}

IPS2.5D, IPS2D Instructions per second (IPS) of 2.5D system and 2D system
s1,s2,s3 Chiplet spacings (Fig. 4(a)). s1 = s2 = 0 for 4-chiplet case

Tpeak ,Tthreshold Peak operating temperature and Temperature threshold for safety

Fig. 3: (a) Impact of defect densities on 2.5D system cost normalized to the
single-chip system costs at the same defect densities. (b) Impact of chiplet counts,
interposer sizes, and power densities on peak temperature of 2.5D systems with
uniform spacing between chiplets.

Fig. 3(a) shows the manufacturing cost of the 2.5D systems
with various (square-shaped) interposer sizes normalized to an
equivalent 18mm×18mm single-chip system for a range of defect
densities [10]. The 2.5D system with a minimal interposer size
has a cost saving ranging from 30% to 42%, compared to the
cost of the single-chip system at the same defect density. The
cost saving is higher for a larger defect density at which a single
chip costs more due to its lower yield. Generally speaking, the
2.5D system cost increases as the interposer size increases.

C. Thermal Behavior of 2.5D Systems
To understand the thermal behavior of a 2.5D system, we

divide an 18mm×18mm single chip into r× r identical chiplets
(r varies from 2 to 10), place the chiplets onto an interposer in a
matrix fashion with uniform spacing between adjacent chiplets,
and leave 1mm guard band along each interposer edge. We vary
the interposer edge length from 20mm to 50mm in steps of
1mm and calculate the corresponding spacing between chiplets.
For a given interposer size, as the chiplet count increases, the
spacing between the chiplets decreases. We assign synthetic
power densities from 0.5W/mm2 to 2.0W/mm2 to the chiplets
and perform thermal simulations (using HotSpot [28]) to get a
better understanding of the thermal trends in 2.5D systems.

Fig. 3(b) shows the impact of chiplet counts, interposer sizes,
and power densities on peak temperature of 2.5D systems. In

general, for the same chiplet count and interposer size, the peak
temperature increases with power density. For the same chiplet
count and power density, as the interposer size increases, the
peak temperature decreases due to the increased spacing between
chiplets. For the same interposer size and power density, the peak
temperature decreases with increasing chiplet count. It should be
noted that in our 2.5D multi-chiplet system, the chiplets have
high power density and the regions between chiplets do not
dissipate power. Inserting spacing between chiplets helps with
heat dissipation, but heat will still aggregate and form hotspots
in the regions of high power density. Thus, we need to place the
chiplets in a thermally-aware fashion.

Although a single chip with the same power profile and the
same area as our 2.5D system would achieve a similar thermal
profile, the single-chip solution is not the best choice from a cost
perspective. For example, based on Eqs. (1)-(4) and parameters
in Table II, increasing the single chip size from 20mm×20mm to
40mm×40mm results in 27× higher cost because of drastically
lower yield. Alternatively, an equivalent 2.5D system with four
smaller chiplets and a 40mm× 40mm passive silicon interposer
has 27% lower cost (where the interposer cost is 30% of the
2.5D system) than a 20mm×20mm single chip.

From the cost perspective, as chiplet count increases in a 2.5D
system, the time for the serial bonding process increases and the
overall bonding yield drops, which increases the cost. Due to the
limited thermal advantages of increasing chiplet count beyond
4× 4 and the bonding yield consideration, in the rest of this
work, we only consider 2.5D systems with 4 and 16 chiplets.

D. Optimization of Chiplet Organization
To determine the optimal thermally-aware chiplet organization

(including chiplet count, chiplet placement, active core count,
and operating frequency), we formulate an objective function
that maximizes system performance while minimizing system
cost (see Eq. (5)). In Eq. (5), 2.5D system performance (in terms
of instructions per second (IPS)) and cost are normalized to the
baseline single-chip system, and the user-specified weight factors
α and β have no units. The objective function is subject to a
variety of constraints listed in Eqs. (6) to (10).

Minimize : α× IPS2D

IPS2.5D( f , p)
+β× C2.5D(n,s1,s2,s3)

C2D
(5)

Sub ject to : Tpeak( f , p,n,s1,s2,s3)<= Tthreshold (6)
wint <= 50, hint <= 50 (7)

wc =
w2D

r
,hc =

h2D

r
(8)

wint = wc× r+2× s1 + s3 +2× lg,hint = hc× r+2× s1 + s3 +2× lg (9)
2× s1 + s3−2× s2 > 0 (10)

Eq. (6) is the peak temperature constraint for a valid chiplet
organization. Eq. (7) limits the interposer size to be no larger
than 50mm×50mm. This is within the exposure field size of 2X
JetStep Wafer Stepper [29], which avoids extra stitching cost.
We consider all chiplet organizations on an interposer that are
axially and diagonally symmetric and we use Mintemp [20]
workload allocation policy for our analysis, which minimizes
operating temperature by assigning threads starting from outer
rows or columns and then moving to inner rows or columns of
the whole system in a chessboard manner. Eq. (8) calculates the
chiplet width and height. Eq. (9) calculates the interposer width
and height as a function of chiplet spacings (s1, s2, and s3 in
Fig. 4(a), which vary independently). Eq. (10) ensures there
is no overlap between center chiplets. The 2.5D system cost is
calculated using Eqs. (1) to (4).



Pseudocode: Multi-Start Greedy Approach
1) calculate cost and performance of 2.5D system for all ( f , p,C2.5D) combinations
2) input obj. func. weights (α,β)

sort ( f , p,C2.5D) combinations based on obj. func. from low to high
3) foreach ( f , p,C2.5D) combination in the sorted order do

generate random start points of (s1,s2,s3)
foreach start point (Scurrent ) do

evaluate peak temperature T of Scurrent
repeat

generate a random neighbor placement (Sneighbor)
evaluate peak temperature T ′ of Sneighbor
if T ′ < Tthreshold then

output Sneighbor and ( f , p,C2.5D) combination and exit
if T ′ < T then

update minimum peak temperature T ← T ′

update current placement Scurrent ← Sneighbor
until T < peak temperature of all the neighbor placements

end for
end for

To determine the minimum value of the objective function, an
exhaustive search approach takes 180k CPU hours (a calendar
month with 250 computers running in parallel) to run thermal
simulations for the whole design space of our example 256-
core 2.5D system. The simulation time is long because there are
over 680k chiplet organizations (17k chiplet placement options
with 0.5mm granularity, five voltage/frequency levels, and eight
different active core counts) for each benchmark, and each
organization takes up to 2 mins for a thermal simulation. Note
that it takes 1.5k CPU hours in total to simulate performance
for all the 40 ( f , p) pairs using Sniper [24], an architecture-level
simulator, when running the benchmarks listed in Sec. IV, which
is insignificant compared to thermal simulation time.

To speed up the process of finding a solution to our
optimization problem, we design a multi-start greedy approach
to reduce the number of thermal simulations (see Pseudocode).
Our approach has three steps. In the first step, we calculate
the performance of the 256-core system for all 40 ( f , p) pairs
using Sniper [24], and the cost (C2.5D) of both 4-chiplet and
16-chiplet cases for discretized interposer sizes from 20mm to
50mm with 0.5mm granularity using Eqs. (1) to (4). In the
second step, we compute the objective function value for each
( f , p,C2.5D) combination using user-specified weights α and β

and sort these ( f , p,C2.5D) combinations in ascending order of
objective function values. In the third step, we go through the
list of ( f , p,C2.5D) combinations in the sorted order to find a
chiplet organization that meets the temperature threshold. Here,
for each ( f , p,C2.5D) combination, we use m starting points (for
each starting point, spacing values s1,s2 and s3 are randomly
picked), and we greedily explore the design space from these
starting points. Each starting point (Scurrent ) has six neighboring
points (obtained by varying one of s1,s2 or s3 by ±0.5mm).
We randomly2 pick one neighbor (Sneighbor) and evaluate the
peak temperature of Scurrent and this Sneighbor. If the neighbor
has a peak temperature lower than the temperature threshold,
it is a chiplet placement solution for the current ( f , p,C2.5D)
combination. We then stop the process and pick this organization
as our solution. If Sneighbor has a lower peak temperature than
Scurrent (but higher than the temperature threshold), we make
Sneighbor the next Scurrent and repeat the substeps mentioned
earlier to check if it has a neighbor with lower peak temperature.
If Sneighbor has higher temperature than Scurrent , we pick another
neighbor of Scurrent and evaluate its peak temperature. If all
neighbors of Scurrent have higher peak temperature than Scurrent ,
we move on to the next random starting point. If there is no

2We randomly pick the neighbor placement because out of the six neighbors, the neighbor
that has the lowest peak temperature may not necessarily lead to a local minimum. We also
avoid any biases resulting from evaluating neighbors in a fixed order.

Fig. 4: (a) Chiplet count and placement options. We vary the chiplet spacings
independently to find the optimal chiplet placement. (b) Evaluation framework.

feasible solution among all the m starting points, then we go to
the next ( f , p,C2.5D) combination. If none of the ( f , p,C2.5D)
combinations lead to a feasible solution, it means that the
manycore system is unable to run at any ( f , p) pair within the
given temperature threshold.

We validate our multi-start greedy algorithm by comparing
with the exhaustive search approach. The greedy algorithm with
ten starting points (there is a tradeoff between accuracy and speed
for different number of starting points) achieves the same result
as the exhaustive search 99% of the time. Using the multi-start
greedy approach, we can reduce the thermal simulation time from
180k to 0.45k CPU hours (400× speedup), and speed up the
total simulation time (Sniper and Hotspot simulations) by 100×
compared to the exhaustive search approach.

IV. EVALUATION METHODOLOGY

Our evaluation framework is shown in Fig. 4(b). We use
Sniper [24] for performance evaluation. We use multi-threaded
benchmarks from SPLASH-2 (cholesky, lu.cont) [30],
PARSEC (blackscholes, swaptions, streamcluster,
canneal) [31], HPCCG1 (hpccg) [32], and UHPC
(shock) [33] suites that cover workloads of various performance
and power profiles. We use different frequency/voltage levels
and different numbers of active cores (see Table II) while
evaluating the 256-core system. For each ( f , p) pair of each
benchmark, we simulate 10 billion instructions in the parallel
region or the full region of interest (ROI) if it finishes earlier.
We collect performance statistics for each core every 1ms.

We use McPAT [34] to calculate power consumption of each
core based on the performance stats from Sniper. We calibrate
the McPAT output with the measured power dissipation data of
Intel SCC [19], scaled to 22nm. We assume that the idle cores
enter sleep mode and consume negligible power (close to 0W ).
As discussed in Sec. III-A, we calculate network power using
DSENT and Hspice.

We use HotSpot-6.0 [28] for our thermal simulations,
which can model layers (where each layer is composed of
heterogeneous materials) in a 3D structure [35]. We model 2.5D
systems based on industry prototypes [13], [14]. We generate
detailed floorplan files specifying material properties of all blocks
in each layer. We treat each core as a single block of heat
source and use a 64× 64 grid for thermal simulations. For the
interface material, the spreader, and the heat sink, we use the
default conventions in HotSpot, assuming spreader edge size is
2× interposer’s edge, and heat sink edge size is 2× spreader
edge. We adjust the convective resistance of heat sink to keep
heat transfer coefficient constant. We set temperature threshold
to 85oC and ambient temperature to 45oC.

We implement a temperature-dependent leakage power model
in our thermal simulations. We use a linear leakage model
extracted from published power and temperature data of Intel
22nm processors [20]. We assume 30% of power is leakage at
60oC. We adjust the leakage power of each core based on its
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Fig. 5: Peak temperature of a 256-core system with all cores active at 1GHz
for single-chip case (0mm) and 2.5D integration cases for various chiplet counts
and spacings (with chiplets placed in a matrix fashion).

initial temperature obtained from HotSpot, and re-run HotSpot
to update the thermal profile until the temperature converges.

In our evaluation framework (Fig. 4(b)), there is a closed loop
between chiplet organizer, floorplan generator, and HotSpot. The
chiplet organizer is implemented using the multi-start greedy
algorithm (with ten starting points) as discussed in Sec. III-D. We
use single-application workloads in this paper. In a more general
case, a system runs a variety of applications. Our approach
can be used by a designer to find the chiplet organization that
minimizes the objective function for multi-application workloads.
The designer could use the worst-case (i.e., the design with
the largest interposer, which will ensure best performance for
all applications), the average-case, or the weighted-average case
(i.e., Eq. (5) becomes α×∑i(

IPSi
2D

IPSi
2.5D
× ui)+β× C2.5D

C2D
, where i is the

application index and ui indicates how frequently application i
runs) to select the optimal chiplet organization.

V. EVALUATION RESULTS

A. Peak Temperature Reduction using 2.5D Integration
We first study the impact of spacing between chiplets on the

peak temperature (for different chiplet counts) with all cores
active at 1GHz for various benchmarks (see Fig. 5). The 0mm
spacing case refers to the single-chip system. For the 2.5D
integration cases, we organize the chiplets in a matrix fashion
with a uniform spacing (from 0.5mm to 10mm with a granularity
of 0.5mm) between adjacent chiplets, given the 50mm×50mm
upper limit of the interposer size. As discussed in Sec. III, the
64-chiplet and 256-chiplet cases are not viable due to low overall
bonding yield. We present them here to show the overall thermal
trends.

The reported power values are the total power consumption
under the single-chip case. These power values, which are
unrealistic for 2D systems, can be viable for 2.5D systems from
a thermal perspective: even at these large power consumption
values, a 2.5D system can operate below a typical temperature
threshold of 85oC. The challenge then will be the design of a
power delivery network that can provide the current required for
this large power consumption3.

In general, for all 2.5D integration cases, the peak temperature
decreases as chiplet spacing increases. High-power benchmarks
need larger chiplet spacing to stay below the 85oC threshold. For
example, high-power benchmarks (shock, blackscholes,
and cholesky) need a 16-chiplet system with 10mm spacing
to meet the 85oC constraint, while low-power benchmarks
(canneal and swaptions) can easily meet the same

3Based on expert opinion [36], there are no fundamental limits in designing power delivery
circuits for high-power chips (e.g., 500W ), but a number of engineering challenges would
need to be addressed.

Fig. 6: Maximum IPS and cost of 2.5D systems (normalized to maximum IPS
and cost of a single-chip system) under 85oC for example low-power, medium-
power and high-power benchmarks. We only show results for 3 representative
benchmarks due to space constraints. In total we evaluated 8 benchmarks.
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Fig. 7: Minimum objective function (from Eq. (5)) value for different (α,β) pairs
across different interposer sizes for example low-power, medium-power and high-
power benchmarks.

constraint with 16 chiplets and 4mm spacing or with 4 chiplets
and 8mm spacing. This analysis shows that even a naive
chiplet organization can lower peak temperature significantly and
provide opportunities to improve performance.

B. Balancing Performance and Cost of 2.5D Systems
In this subsection, we optimize the chiplet organization by

considering non-uniform spacing between chiplets. Fig. 6 shows
the normalized maximum IPS and cost of 2.5D systems. The
maximum IPS, in general, remains unchanged as the interposer
size increases, until the interposer size is large enough to find
a chiplet placement that can operate the system at a higher
performance level within the temperature threshold. The IPS
curves have steps because we use discretized frequencies and
active core counts. Since the cost of 2.5D systems only depends
on the chiplet count and the size of interposer, the cost curves are
the same across all benchmarks. With the minimum interposer
size, the system cost decreases by 36% without performance loss.
This reduction in cost is due to the higher yield of the smaller
CMOS chiplets compared to the single-chip baseline.

At the same cost as the baseline, a thermally-aware 2.5D
system with 16 chiplets can improve the performance by 41% on
average across 8 benchmarks and by up to 87%. For the high-
power benchmarks shock, cholesky and blackscholes,
our approach achieves 87%, 80% and 75% performance
improvement, respectively. As for the remaining benchmarks,
our approach has 40% improvement for Hpccg, 24% for
swaptions, and 14% for streamcluster; however, there
is only 7% improvement for canneal and no performance
gain for lu.cont when using 2.5D integration technology.
The performance improvements for these benchmarks are
limited because they do not need all cores active to maximize
performance. For example, to achieve maximum performance,
canneal needs 192 active cores, which is thermally feasible
at small interposer sizes, while for lu.cont the maximum
performance is achievable with 96 active cores even in
conventional single-chip system under the temperature threshold.
Although 2.5D systems do not bring performance benefits for
lu.cont, our proposed thermally-aware chiplet organization
can still provide lower operating temperature, which improves
transistor lifetime and reliability.
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Fig. 7 shows the minimum objective function (Eq. (5)) values
of three different choices for α and β across different interposer
sizes and different benchmarks. When α = 0 and β = 1, the
curves are the same as normalized minimum cost curves. When
α = 1 and β = 0, the curves are the same as inversed normalized
maximum performance. When α= 0.5 and β= 0.5, the objective
function value is the weighted sum of IPS2D

IPS2.5D
and C2.5D

C2D
. For a given

pair of α and β, the optimal chiplet organization occurs at the
minimum point on the objective function curve. For example,
cholesky has the optimal organization at the interposer size
of 31mm, running at 1GHz with 192 active cores. The optimal
chiplet organization, however, varies across benchmarks.

To choose the final chiplet organization, a designer would need
to choose appropriate α and β values. Fig. 8 shows examples
of optimal chiplet organization and the workload allocation for
α = 1 and β = 0 under an 85oC constraint. For cholesky, our
technique improves performance by 80% by increasing frequency
from 533MHz to 1GHz, while the cost is similar compared to
the baseline. For hpccg, our 2.5D system achieves 40% higher
performance by increasing active core count from 160 to 256
and lowers cost by 28%. For canneal, the performance benefit
is 7% because it saturates with 192 active cores; however, our
approach reduces the cost by 36%. These results demonstrate that
our thermally-aware chiplet organization technique can reclaim
dark silicon by having more active cores and/or operate the cores
at a higher frequency without violating the temperature threshold.

We analyze the sensitivity of our proposed approach to
different temperature thresholds ranging from 75oC to 105oC.
The performance of the baseline single-chip system is lower
at a lower temperature threshold, so there is more room for
performance improvement. For the temperature thresholds of
75oC, 85oC, 95oC, and 105oC, our thermally-aware chiplet
organization approach improves the performance by 41%, 41%,
27%, and 16%, respectively, on average across all 8 benchmarks.

VI. CONCLUSION

Our work leverages thermally-aware chiplet organization in
2.5D systems to reclaim dark silicon. We propose to split a
manycore system across multiple chiplets in the 2.5D system
and then strategically insert spacing between the chiplets to
reduce the operating temperature of the overall system, thus
allowing more cores to operate at a higher frequency under
the same safe peak temperature threshold. A multi-start greedy
approach is used to determine the optimal chiplet organization
that jointly maximizes performance and minimizes cost. Our
analysis shows that for a 256-core system, compared to a single-
chip design, our thermally-aware 2.5D integration approach
improves performance by 41% (16%) on average and up to 87%
(39%) without increasing the cost while staying below a peak
temperature threshold of 85oC (105oC), or reduces system cost
by 36%, without performance loss, at all temperature thresholds.
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