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Abstract— Design-based equivalent scaling now bears much of the bur-
den of continuing the semiconductor industry’s trajectory of Moore’s-Law
value scaling. In the future, reductions of design effort and design sched-
ule must comprise a substantial portion of this equivalent scaling. In this
context, machine learning and deep learning in EDA tools and design flows
offer enormous potential for value creation. Examples of opportunities in-
clude: improved design convergence through prediction of downstream
flow outcomes; margin reduction through new analysis correlation mech-
anisms; and use of open platforms to develop learning-based applications.
These will be the foundations of future design-based equivalent scaling
in the IC industry. This paper describes several near-term challenges
and opportunities, along with concrete existence proofs, for application
of learning-based methods within the ecosystem of commercial EDA, IC
design, and academic research.

[. INTRODUCTION: THE DESIGN COST CRISIS

It is well-understood that the cost of IC design has become a bar-
rier to designers’ ability to exploit advances in underlying pattern-
ing, device and integration technologies. Indeed, as far back as 2001,
the International Technology Roadmap for Semiconductors [63] noted
that “cost of design is the greatest threat to continuation of the semi-
conductor roadmap”. The ITRS Design Cost Model [63, 40, 49]
documents that non-recoverable engineering (NRE) costs are a ma-
jor component of design cost; NRE includes tool license, engineer
salary, compute resource and other components that typically scale
with schedule. Schedule is scaling: the traditional Moore’s Law of
value scaling essentially implies that “one week equals one percent”.
With industry disaggregation (fabless, EDA, foundry, etc.) and con-
solidation (fewer companies serving as ice-breakers for the industry
at the bleeding edge), a shortage of design and methodology exper-
tise can also hamper product development in today’s most advanced
nodes. The recent DARPA Intelligent Design of Electronic Assets
(IDEA) [55] program directly calls out today’s design cost crisis, and
seeks a “no human in the loop,” 24-hour design framework for RTL-
to-GDSII layout implementation.

Viewed more broadly, IC design faces three intertwined challenges:
cost, quality and predictability. Cost corresponds to engineering ef-
fort, compute effort, and schedule. Quality corresponds to traditional
power, performance and area (PPA) competitive metrics along with
other criteria such as reliability and yield (which also determines
cost). Predictability corresponds to the reliability of the design sched-
ule, e.g., whether there will be unforeseen floorplan ECO iterations,
whether detailed routing or timing closure flow stages will have larger
than anticipated turnaround time, etc. Product QOR (quality of re-
sults) must also be predictable. The existence of unpredictability
leads to guardbands and margins in the design flow that manifest as
less-aggressive area utilization, clock frequency, tapeout schedule, etc.
Sources of unpredictability and over-margining in the design process'
include analysis miscorrelations (e.g., different timing slacks reported
by different tools in the SP&R flow), poor estimation of downstream
success vs. failure in the flow (e.g., failure of a post-synthesis netlist
to ultimately close timing after placement, routing and optimization,
or failure of a global routing solution to ultimately pass SI-aware tim-

"We leave aside the well-documented increases in manufacturing variability, model-
hardware miscorrelation, design rule complexity, signoff complexity, aggressiveness of
node development timeline and yield ramp requirements, etc. in advanced nodes. Such
trends only exacerbate guardbanding and margins in the design flow [28].

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

ing signoff after detailed route), and inherent rool noise [39, 24]. Two
compounding phenomena are illustrated in Figure 1 for SP&R imple-
mentation of a low-power CPU core in a foundry FinFET node en-
ablement. First, the left side of the figure shows that variance of flow
outcome (final block area, on the y-axis) increases as required design
quality is increased (target frequency, on the x-axis). Samples at each
target frequency are with small (~2MHz) perturbations to the target
frequency in the logic synthesis stage of SP&R implementation. At
the highest target frequency, nearly 11% area variation can be seen.
Second, the right side of the figure shows a normal distribution of
“noise” in outcome (shown: outcomes of >70 SP&R runs).
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Fig. 1. Left: SP&R implementation noise increases with target design quality.
Right: Observed noise is essentially Gaussian.

Design Cost and Schedule Reduction: A “Moonshot”. RTL-to-
GDSII turnaround time (TAT) generically spans floorplanning / pow-
erplanning, placement, clock tree synthesis, routing and interleaved
optimization steps, followed by extraction and signoff. For a single
10M-instance hard macro block in advanced nodes, a single iteration
of the RTL-to-GDSII flow can easily take two weeks. Final QOR
depends on innumerable methodology choices (constraint exceptions,
tool commands and options used, sequencing of optimizations, etc.),
with unpredictability arising from analysis complexities (e.g., dy-
namic voltage drop impacts on SI-aware timing) and the above-noted
EDA tool noise. With unpredictability of design closure, along with
the competitive requirement to minimize design guardbanding, expen-
sive iterations are unavoidable. In this regime, advances in tool- and
flow-level modeling, prediction and optimization (design-specific tun-
ing and adaptation) have very high value. Figure I, adapted from [29],
gives a pathway to game-changing reduction of design effort and cost.
In the figure, the x-axis gives normalized RTL-to-GDSII schedule, and
the y-axis gives normalized design QOR. (1) ML-based tool and flow
predictors can enable design-adaptive flows with substantially fewer
iterations (even, “one-pass”), albeit with potential QOR degradation.
(2) Improved analysis correlations enable reduction of design guard-
banding while retaining correct-by-construction aspects of the overall
design flow. (3) Fundamental improvements in SP&R heuristics and
tools, along with the leverage of cloud deployment of tools and flows,
can recover overall design QOR.

Toward Learning-Based Tools and Methodologies. As reviewed in,
e.g., [45, 61], machine learning has enjoyed tremendous attention and
broad deployment in recent years, with highly visible successes in im-
age classification, natural language processing, financial, robotics and
biomedical applications. In supervised learning [42], both inputs and
desired outputs are available, as in many image classification prob-
lems. In unsupervised learning [47], the ML application improves
quality without human guidance; techniques include k-means cluster-
ing and principal component analysis, as well as recent generative ad-
versarial network methods. Other paradigms include semi-supervised
learning, which combines the above two methods, and reinforcement
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Fig. 2. “Moonshot” of design schedule and cost reduction.

learning (cf. AlphaGo [48]), which assigns rewards to actions made at
particular states (e.g., of a game) based on outcomes or value achieved.
At a high level, paradigms used in ML span regression, regularization,
clustering, artificial neural networks (ANNs) and deep learning [23];
see [59] for one of many available taxonomies.

Previous ML applications in EDA include yield modeling for
anomaly detection [14], lithography hotspot detection [17], identifi-
cation of datapath regularity [50], noise and process-variation model-
ing [51], performance modeling for analog circuits [41], design- and
implementation-space exploration [34], etc. In this paper, we broadly
explore the potential for ML-based improvement of tools and flows
to answer today’s design cost challenge. A core premise is that re-
alizing the vision of Figure I will require ML deployment both “in-
side” and “around” EDA tools and flows. The anticipated benefits
and impacts of ML range from improved design convergence through
prediction of downstream flow outcomes and model-guided optimiza-
tion; margin reduction through analysis correlation mechanisms; and
efficient development of learning-based applications through use of
open platforms. The remainder of this paper presents concrete op-
portunities and directions for machine learning, focusing on RTL-to-
GDSII IC implementation. Section II discusses ML techniques for
improved analysis correlation, leading to improved design QOR with
reduced design resources. Section III describes several techniques
for tool/flow modeling and prediction, along with resulting design
effort and schedule reductions. The discussion covers prediction of
unroutable locations in advanced-node detailed placements, opportu-
nities for model-guided optimization, and the potential for ML models
to inform project- or enterprise-level optimizations that improve re-
source scheduling and tool usage. Conclusions and ongoing directions
are given in Section IV.

II. REDUCTION OF ANALYSIS MISCORRELATION

Analysis miscorrelation exists when two different tools return dif-
ferent results for the same analysis task (parasitic extraction, static
timing analysis (STA), etc.) even as they apply the same “laws of
physics” to the same input data. Miscorrelation forces introduction
of design guardbands and/or pessimism into the flow. For example,
if the P&R tool’s STA report determines that an endpoint has pos-
itive worst setup slack, while the signoff STA tool determines that
the same endpoint has negative worst slack, an iteration (ECO fixing
step) will be required. On the other hand, if the P&R tool applies pes-
simism to guardband its miscorrelation to the signoff tool, this will
cause unneeded sizing, shielding or VT-swapping operations that cost
area, power and design schedule. Miscorrelation of timing analyses
is particularly harmful: (i) timing closure can consume up to 60% of
design time [19], and (ii) added guardbands not only worsen power-
speed-area tradeoffs [3, 12, 19], but can also lead to non-convergence
of the design. However, signoff timing is too expensive (tool licenses,
incremental analysis speed, query speed, etc.) to be used within tight
optimization loops.

Example: Signoff Timer Correlation. Several works apply ML to
reduce the amount of iterations, turnaround time, overdesign, and li-
cense fees needed to achieve final timing signoff. The work of [33]
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uses a learning-based approach to fit analytical models of wire slew
and delay to estimates from a signoff STA tool. These models im-
prove the accuracy of delay and slew estimations along with overall
timer correlation, such that fewer invocations of a signoff STA tool are
needed during incremental gate sizing optimization [44]. The work of
[22] applies deep learning to model and correct divergence between
different STA tools with respect to flip-flop setup time, cell arc delay,
wire delay, stage delay, and path slack at timing endpoints. Figure 3
(lower left), from [22], shows how two leading commercial STA tools
T1 and T2 can differ in reported setup slack by over 100ps in a 28nm
foundry technology. (Larger discrepancies are common between P&R
and signoff STA analyses.) These discrepancies correspond to multi-
ple stage delays: up to 20% of maximum performance might be lost,
which is roughly equivalent to the speed benefit of a new technology
node today.
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Fig. 3. Flow and results for machine learning of STA tool miscorrelation [22].

[22] learns miscorrelations between two STA tools by hierarchi-
cally composing models for discrepancies in path slack, setup de-
lay, cell delay, wire delay and stage delay. Both linear and nonlin-
ear ML techniques (least-squares regression (LSQR), artificial neural
networks (ANN), support vector machines regression (SVMR) with
radial basis function (RBF) kernel, and random forests (RF)) are ap-
plied within the modeling flow shown in Figure 3 (top). Reductions of
worst-case miscorrelation by factors of 4x or more (Figure 3 (lower
right)) are reported across multiple designs and foundry technologies,
both with and without signal integrity (SI) analysis.

Today, the compute and license expense of signoff STA (dozens of
blocks, at hundreds of mode-corner combinations, with SI and path-
based analysis (PBA) options enabled) can itself be a barrier to effi-
cient design in advanced nodes. Motivated by this, [35] achieves accu-
rate (sub-10ps worst-case error in a foundry 28nm FDSOI technology)
prediction of SI-mode timing slacks based on “cheaper, faster’” non-
SI mode reports. The authors of [35] identify 12 electrical and struc-
tural parameters to model the incremental transition times and arc/path
delays due to SI effects.”> Nonlinear modeling techniques, including
ANNs and SVM with radial basis function (RBF) kernel, are used.
Hybrid Surrogate Modeling (HSM) [36] is then used to combine pre-
dicted values from the ANN and SVM models into final predictions.
Two interesting extensions are the subject of current investigation.
Extension 1: PBA from GBA. In advanced nodes, timing analysis
pessimism is reduced by applying path-based analysis (PBA), rather
than traditional graph-based analysis (GBA). In GBA, worst (resp.
best) transitions (for max (resp. min) delay analyses) are propagated
at each pin along a timing path, leading to conservative arrival time

>The 12 parameters are: (i) incremental delay in non-SI mode; (ii) transition time
in non-SI mode; (iii) clock period; (iv) resistance; (v) coupling capacitance; (vi) ratio of
coupling-to-total capacitance; (vii) toggle rate; (viii) number of aggressors; (ix) ratio of
the stage in which the arc of the victim net appears to the total number of stages in the
path; (x) logical effort of the net’s driver; and (xi) (resp. (xii)) the differences in maximum
(resp. minimum) arrival times of the signal at the driver’s output pin for the victim and its
strongest aggressor.
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estimates at timing path endpoints. By contrast, PBA calculates path-
specific transition and arrival times at each pin, reducing pessimism
in endpoint arrival time estimates. Figure 4 shows the distribution of
(PBA slack - GBA slack) differences per endpoint, as reported by a
leading commercial signoff STA tool. The testcase is netcard [53]
implemented in 28nm FDSOI with 85% utilization and 0.7ns clock
period; slack differences are sorted from largest (43ps) to smallest
(Ops). (Differences of Ops for the remainder of netcard’s 67,423 end-
points are not shown.) Since PBA requires ~ 4 the runtime of GBA
in current tools, the ability to predict PBA-based endpoint slacks and
PBA-driven timing closure optimization steps from GBA — potentially
using approaches similar to those of [35] — is of high interest.
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Fig. 4. Distribution of (PBA slack - GBA slack) values (ps) at endpoints of the
netcard testcase implemented in 28nm FDSOL.

Extension 2: Matrix Completion. The cost of timing analysis (li-
censes, runtime) is roughly linear in the number of corners (PVT tim-
ing views) at which analysis is performed. In advanced nodes, signoff
timing analysis is performed at 200+ corners, and even P&R and op-
timization steps of physical design must satisfy constraints at dozens
of corners.® Prediction of STA results for one or more “missing” cor-
ners that are not analyzed, based on the STA reports for corners that
are analyzed, would provide valuable runtime, cost and design qual-
ity. This corresponds to the well-known matrix completion problem
in ML [5]. Figure 5 shows maximum arrival times at various design
endpoints (rows of the arrays), at various analysis corners (columns
of the arrays). The figure illustrates training and application of an ML
model that predicts endpoint arrival times in corners Co, C,,—2 and C,
(red-font numbers), based on STA-determined endpoint arrival times
in other (non-red) corners. The Model Training phase uses STA results
at all corners to develop this ML-based prediction. However, during
Model Application, timing analysis is not needed for the “missing”
corners Ca, C),—2 and C,,. Preliminary studies suggest that single-
digit picosecond accuracy of estimated endpoint slacks at “missing”
corners can be achieved with surprisingly few analyzed corners; this
can be very useful for internal incremental STA in timing closure and
leakage optimization as in [32, 33].
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Fig. 5. Illustration of “missing corner” analysis prediction (matrix completion).

3The proliferation of analysis corners is due to aggressive power management strate-
gies (e.g., voltage scaling in logic and memories; power shut-off modes; frequency scal-
ing) as well as manufacturing complexity (e.g., multi-patterning in BEOL layers) [28].

III. ToOL/FLOW MODELING AND PREDICTION

As noted above, convergent, high-quality design requires accurate

modeling and prediction of downstream flow steps and outcomes.
Models (e.g., wirelength or congestion estimates) become objectives
or guides for optimizations, via a “modeling stack™ that reaches up
to system and architecture levels. Examples include network-on-chip
power and area models [56, 34], and power, area and timing models
for DRAM and cache subsystems [57]. Numerous works have ad-
dressed modeling and prediction of interconnect, power, skew, wire-
length, etc. [13, 9, 6] — as well as complementary structural analyses
(spectral and multilevel partitioning, clustering [54]) and construction
of synthetic design proxies (“eye charts”) [20, 31, 58]. In this section,
we give examples of tool and flow predictions that have increasing
“span” across multiple design steps and that permit design feasibility
assessment even at early stages of design implementation.
Example 1: Learning Model-Guided Optimization of Routabil-
ity. Routability is a strong function of design rules, cell library ar-
chitecture, BEOL interconnect stack [8], and previous design imple-
mentation stages. A recent sea change for physical design teams in
advanced nodes is that global routing (GR) congestion no longer cor-
relates well with design rule violations (DRCs) at the end of detailed
routing. This is primarily a consequence of complex design rules
that significantly constrain the detailed router. Therefore, GR-based
congestion maps are no longer good predictors either for evaluating
overall design routability or for identifying potential DRC violation
hotspots prior to detailed routing. Figure 6 gives an example of this
miscorrelation on a sub-14nm design. The figure compares a map of
actual DRC violations with a map of congestion hotspots from global
routing on the same layout; an overlay of these two maps is also given.
Both the placer and global router are from a state-of-the-art industrial
physical design platform. The netlist and layout modifications that
are allowed during routing-based optimization — i.e., when DRC vi-
olations actually manifest themselves — are quite limited. Hence, an
unroutable design must go through iterations back to placement in or-
der to fix DRC violations with cell bloating, non-default routing rules,
or density screens. This challenges turnaround time and motivates
ML-based prediction of post-route DRC hotspots.
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Fig. 6. Discrepancy between post-route design rule violations (DRCs) predicted
from global routing overflows (left), actual post-route DRCs (middle), and an
overlay of the two images (right).

Chan et al. [11] present an ML methodology and a detailed model
development flow to accurately identify routing hotspots in detailed
placement. The reported model incorporates parameters that are iden-
tified from deep understanding of the sub-14nm routing application;
these include pin and cell densities, global routing parameters, pin
proximities, multi-height cells, “unfriendly” cells whose instantia-
tions are known to correlate with routing hotspots, etc. As shown
in Figure 7, the developed ML model enables model-guided optimiza-
tion whereby predicted routing hotspots are taken into account during
physical synthesis with predictor-guided cell spreading. This helps to
avoid detailed routing failures and iterations. [11] reports that for in-
dustrial benchmarks in a leading foundry sub-14nm node, the model-
guided optimization reduces DRCs without timing or area overhead.
Furthermore, the methodology of [11] better captures true-positives
(i.e., actual routing hotspot locations) while maintaining a low false-
positive rate, as shown in Figure 8. For industrial testcases, DRC
count is significantly reduced by an average of 20.6% and a maximum
of 76.8%, with negligible effects on timing, wirelength and design
area. Going forward, convolutional neural nets (CNNs) have been
successfully applied to image classification [43], and are likely well-
suited to this type of P&R hotspot identification task.
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Fig. 8. Comparison of confusion matrices for SVM predictors, from [11]. Left:
ML-based prediction has true-positive rate = 74%, false-positive rate = 0.2%.
Right: Global routing-based prediction has true-positive rate = 24%, false-
positive rate = 0.5%.

Example 2: ECO Route Prediction and Optimization. Complex
operating scenarios in modern SOCs maximize performance while
limiting power consumption. However, these techniques increase the
number of mode-corner combinations at timing signoff; this in turn
leads to increased datapath delay variation and clock skew variation
across corners. Large timing variations increase area and power over-
heads, as well as design TAT, due to a “ping-pong” effect whereby
fixing timing issues at one corner leads to violations at other cor-
ners. To mitigate this, [21] propose a “global-local” ML-based op-
timization framework to minimize the sum of clock skew variations
for multi-mode multi-corner designs. Of particular interest for the
present discussion is the local optimization in [21], which incorpo-
rates an ML-based predictor of latency changes after clock buffer and
detailed routing ECOs are performed.

The local optimization iteratively minimizes skew variation via tree
surgery. For a given target clock buffer, local moves include: (i) one-
step sizing and displacement of the target buffer by 10um in one
of eight directions; (ii) displacement and sizing of one of the target
buffer’s child buffers; and (iii) reassigning the buffer to be a fanout
of a different driver. Candidate local moves are tested (through place-
ment legalization, ECO detailed routing, RC extraction and timing
analysis), and the candidate move with the maximum skew varia-
tion reduction is adopted. The iterative optimization continues until
there is no further improvement, or until another stopping condition
is reached. Since evaluating each move involves (placement legal-
ization, ECO routing, RC extraction, timing analysis) steps which to-
gether take minutes of runtime, it is practically infeasible to explore
all move possibilities for all buffers. Instead, [21] uses machine learn-
ing to predict the driver-to-fanout latency changes induced by a given
local move. For each local move, Adelay values are calculated us-
ing low-complexity, low-accuracy analytical models. FLUTE [15] or
single-trunk Steiner trees are constructed to estimate routing pattern
changes, Liberty LUTs are used to estimate cell delay changes, and
Elmore delay or the D2M model [2] is used to estimate wire delay
changes. The new ML model, which applies Hybrid Surrogate Mod-
eling (HSM) [36] on top of ANNs and SVM with radial basis function
(RBF) kernel, then predicts actual post-ECO route Adelay based on
all the above inputs. Training data is generated using artificial test-
cases with various fanouts, net bounding box area and aspect ratios.

Figure 9 compares prediction accuracy of the learning-based model
and analytical models. The learning-based model can identify the best
move for more buffers, using fewer attempts. For real design blocks,
the overall global-local skew optimization reduces the sum of skew
variation over all sink pairs by up to 22%, with negligible area and
power overhead.
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Fig. 9. Modeling flow (left) and accuracy of model prediction (right) from [21].
The ML-based model identifies the best local move for a buffer within five
attempts in 90% of the trials.

Example 3: Prediction of Timing Failure Risk at Floorplan Stage.
A very different ML modeling task is addressed in [7], which mod-
els and predicts a very long, complex subflow of physical implemen-
tation. Based only on netlist, constraints and floorplan information,
the “multiphysics” (i.e., dynamic voltage drop-aware) endpoint tim-
ing slacks of embedded memories are predicted. This prediction must
simultaneously surmount two distinct challenges. First, the complex-
ity of timing closure in modern SOCs entails multiple iterations be-
tween various analyses and design fixes. The analyses themselves per-
form iterative loops across “multiphysics” such as crosstalk, IR, tem-
perature, etc. Second, embedded memories (SRAMs) complicate the
SOC layout implementation while occupying significant die area [27].
The placement of embedded memories (typically, in stacks or arrays)
makes floorplanning difficult and creates P&R blockages, such that
timing closure becomes more costly and difficult to predict.

The authors of [7] demonstrate that endpoint timing slacks differ
significantly and non-obviously across various regimes of physics-
aware analysis: (i) STA with no IR analysis; (ii) STA with static IR
analysis; (iii) STA with dynamic voltage drop (DVD) IR analysis; and
(iv) four iterations of STA with DVD IR analysis. They apply machine
learning to achieve accurate predictive modeling of post-P&R slacks
under multiphysics timing analysis at embedded SRAM timing end-
points, given only a post-synthesis netlist, floorplan and constraints.
Table I lists the model parameters used in [7], which are extracted
from netlist, netlist sequential graph, floorplan context and constraints.
It should be emphasized that once again, the model parameter list re-
flects deep domain expertise and experience, along with considerable
parameter and hyperparameter tuning.

TABLE I
Parameters used in ML modeling of [7].

Parameter | Description Type Per-memory?
N1 Max delay across all timing paths at the post-synthesis stage Netlist Yes
N2 Area of ce!lc in the intersection of startpoint fanout Netlist Yes

and endpoint fanin cones of max-delay incident path
N3 Number of stages in the max-delay incident path Netlist Yes
N4, N5, N6 Max, min f1nd average prodn‘c( of #transitive fanin Netlist Yes

and #transitive fanout endpoints
N7 Width and height of memory Netlist Yes
FP1 “Aspect ratio of floorplan Floorplan No
FP2 Standard cell utilization Floorplan No
FP3, FPA PDN stripe width and pitch Floorplan No
FP5 Size of buffer screen around memories Floorplan No
FP6 “Area of blockage (%) relative (0 floorplan area Floorplan No
FP7, FPS Tower-Teft placement coordinates of memories Floorplan Yes
FP9, FP10 Width, height of channels for memories Floorplan Yes
FPI1 Fmemory pins per channel Floorplan Yes
c1 Sum of width and spacing of top-three routing Constraint No

layers after applying non-default rules (NDRs)
Cc2 % cells that are LVT Constraint No
C3,C4 Max fanout of any instance in data and clock paths Constraint No
C5,C6 Max transition time of any instance in data and clock paths Constraint No
7 Delay of the largest buffer expressed as FO4 delay Constraint No
T3 Clock period used for PR expressed as FOA delay Constraint No
9 Ratio of clock periods used during synthesis and P&R Constraint No

We observe that [7] is another work that exploits multiple ML mod-
eling techniques, i.e., ANN, Boosting with SVM as a weak learner,
LASSO with L1 regularization and nonlinear SVM with RBF kernel.
Predictions from these models are combined using HSM weights fol-
lowing [35]. A number of other details are specified in [7], e.g., when
actual negative slack values are predicted as positive for a data point,
the model is retrained by increasing the weight for the data point by
5x. Ultimately, experimental results in [7] show that the only 3% of
the data points are false negatives (where the model suggests that a
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floorplan should be changed when this is actually not required). Only
4% of data points are false positives (where the model deems a floor-
plan to be good when it actually leads to at least one endpoint timing
failure in an embedded SRAM). For data points with positive slack,
the recall is 95% for 93% precision, and for data points with negative
slack, the recall is 90% for 92.5% precision. These results are with
respect to ground truth that is obtained from P&R and multiphysics
STA reports.

Extension 1: Prediction of Doomed Runs as Time Series. Models
of tool and flow outcomes can save substantial effort and schedule if
they enable a “doomed run” to be avoided. (The previous example af-
fords such savings by flagging doomed floorplans very early in the im-
plementation flow.) Here, we briefly note that analysis of tool logfiles
enables metrics to be tracked and projected as time series. Figure 10
shows four example progressions of the number of design rule viola-
tions during the (default) 20 iterations of a commercial router. Ideally,
unsuccessful runs — i.e., those that end up with too many violations
for manual fixing — should be identified and terminated after as few
iterations as possible. To this end, hidden Markov models [46] can
be estimated from previous examples of successful and unsuccessful
runs. Or, the policy for early termination of “doomed runs” can be
cast as a Markov decision process [4].
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Fig. 10. Four example progressions of the number of design rule violations
(shown as a base-2 logarithm) with iterations of a commercial detailed router.

Extension 2: Connection to Higher-Level Optimizations. Im-
proved predictive models lead to improved optimization objectives,
in a spirit similar to that of “model-guided optimization” above. ML-
based models of tools and flows (e.g., to predict runtime and QOR
outcomes) can inform planning and resource management at project
and enterprise levels. This complements such works as [1], which
proposes mixed integer-linear program formulations and solvers for
optimal multi-project, multi-resource allocation for IC design man-
agement and cost reduction. The authors of [1] study (i) schedule
cost minimization (SCM) to minimize overall project makespan sub-
ject to delay penalties, resource bounds, resource co-constraints, etc.;
and (ii) resource cost minimization (RCM) to minimize the number
of resources required across all projects. The work provides detailed
modeling of IC projects (e.g., comprising activities such as placement,
routing, RCX, STA and physical verification (PV)) and resources (e.g.,
CPU cores, memory, filers, and licenses for the P&R, RCX, STA and
PV tools). Unique scheduling challenges are identified, such as “co-
constraints” on the allocation of CPU cores and tool licenses. Fig-
ure 11 from [1] illustrates how the combined compute needs of three
ongoing tapeouts can exceed the existing number of servers as well
as the capacity of an IC company’s datacenter. In such a situation,
project schedules and resource allocations must be modified to enable
the tapeouts to occur with minimum financial impact. Results reported
in [1] show the potential for substantial cost (engineering headcounts,
compute servers) and schedule (project makespan) gains over current
practice (and, a web-based solver is available at [62]). Improved ML-
based models will increase the value and impact of such optimizations.

IV. CONCLUSIONS

Machine learning techniques offer many low-hanging, high-value
opportunities to the IC design and EDA industries. ML models will

SA-1

Usage

Work Weeks
Fig. 11. The schedule for three concurrent tapeouts in a design datacenter can

exceed the number of available servers, as well as the datacenter capacity.

aim to improve design convergence and QOR, e.g., via (i) pre-route
estimation of SI effects to prevent unnecessary optimization of paths,
and (ii) pre-route modeling of advanced technology rules to prevent
unexpected QOR changes at the post-route stage of implementation.
ML models will also deliver faster tool and flow TAT, e.g., via accurate
estimation of signoff QOR to reduce iterations between implementa-
tion and signoft tools. And, as noted above, ML-based tool and flow
predictors — likely developed initially by large IC design organizations
— can even be used to guide project and resource management, e.g., for
dynamic re-optimization of resource allocations to improve robustness
of product development schedules. A number of potential new inter-
actions and transfers may be spurred by ML applications within the
ecosystem of commercial EDA, IC design and academic research, as
shown in Figure 12.

Al / ML,
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%

Improved tools; trained

(“private-label”) models | C
=== Designers
$$$5$

Fig. 12. Potential ML-centered interactions within the EDA, IC design and
academic research ecosystem.

The path to ML-based design cost reductions and other benefits
will not be straightforward, however. While ML is often linked to
the phrase “big data”, ML for hardware design often takes place in a
“small data” context: designs, tools, commands and options, technolo-
gies and models are always changing. Identification and extraction of
modeling parameters remain an art that requires insight across circuit
design, EDA algorithms, design methodology and software engineer-
ing. Further, given today’s thousands of tool commands and options,
multi-day runtimes, and vast space of potential designs, the scalable
automations (e.g., “self-play”) seen with AlphaGo and other AI/ML
triumphs do not easily port to hardware design. In the IC design realm,
authors of such works as [35, 11, 7] apply substantial domain exper-
tise, along with extensive tuning of model parameters and ML model
hyperparameters, to achieve their reported results. At the same time,
EDA developers understand their tools, and model development effort
will be naturally incented by returns on investment as well as require-
ments from IC designers (i.e., EDA customers).

Going forward, the challenge of “small data” may be mitigated by
systematic generation of training data as in [22, 35, 21]. Further-
more, design organizations who use the same vendor tools and/or the
same foundry enablements might be afforded mechanisms for data and
model sharing and aggregation that inherently safeguard proprietary
IP. In this light, we recall that the METRICS initiative [18, 52, 38]
sought to (i) comprehensively record and measure the IC design pro-
cess, (ii) develop models of EDA tools by data-mining logfiles, (iii)
predict and avoid failing tool/flow outcomes, and (iv) automatically
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deliver the best choices of tools and runtime options for a specific de-
sign task. Standardized formats and semantics were proposed for tool
logfiles, and wrapper scripts were used to automatically insert data via
web interfaces into Oracle8i. Today, a platform such as Splunk [60]
is commonly used to capture logfile data, along with job distribution
and license usage history, at enterprise scale. And, more recent works
such as [37] have shown the ability to “dial in”” tool choices, command
options and constraints to match required QOR metrics. Revisiting the
original goals of METRICS may complement and accelerate the mat-
uration of learning-based IC design tools and methodologies.

Finally, early investigations suggest that reinforcement learning
frameworks may contribute to future “no-human-in-the-loop” reduc-
tions of design effort. For example, “multi-armed bandit” (MAB)
sampling strategies can be used to achieve a resource-adaptive com-
mercial synthesis, place and route flow that requires no human in-
volvement. Past tool run outcomes are used to estimate the prob-
ability of meeting constraints at different parameter settings; future
runs are then scheduled that are most likely to yield the best out-
comes. Since the available number of runs is typically much smaller
than number of tool parameter settings, domain knowledge (e.g., that
meeting area/power and timing constraints becomes more difficult at
higher frequency targets; recall Figure 1 above) may be incorporated
into the model to improve outcomes. Preliminary studies suggest that
MAB can obtain significantly better outcomes than naive sampling
for a given design resource budget (licenses x schedule). Figure 13
shows the evolution of sampled frequencies versus iterations in a “no-
humans” MAB implementation.

Multi-Armed Bandit : Sampled Frequency(GHz) vs. Iteration

* Unsuccessful samples in 5x40 run
* Successful samples in 5x40 run
——Best from 5 samples x 40 iterations

o

Sampled Frequency(GHz)

o

0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40
Iteration

Fig. 13. Trajectory of “no-human-in-the-loop” multi-armed bandit sampling of
a commercial SP&R flow, with 40 iterations and 5 concurrent samples (tool
runs) per iteration. Shown: ~2.0GHz is achieved for a small embedded CPU
core in foundry FinFET technology, with user-prescribed power and area con-
straints. Figure adapted from [30].
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