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Abstract
In performance-driven interconnect design, delay es-

timators are used to determine both the topology and
the layout of good routing trees. We address the class of
moment-matching, or moment representation, methods
used to simulate interconnects modeled as distributed
RC or RLC lines. We provide accurate 2- and 3-segment
equivalent circuits for the distributed RLC and dis-
tributed RC models. Our equivalent circuits approxi-
mate a distributed RLC structure accurately up to sec-
ond degree terms. We have evaluated our models using
the two-pole methodology for voltage response calcula-
tions. Previous approximate two-pole approaches have
at least 14% error even for small test cases. As routing
trees become bigger and interconnection lines become
longer, our approach has greater advantages in both ac-
curacy and simulation complexity.

1 Overview
Accurate calculation of propagation delay in VLSI in-

terconnects is critical to the design of high speed sys-
tems. Direct simulation codes such as SPICE can fail to
a�ord the e�ciency or the physical intuition needed for
layout-level design. On the other hand, simple lumped
or \distributed-lumped" models become less accurate for
interconnect delay estimation as operating frequencies
approach the order of GHz (lumped and distributed RC
models are reviewed in [12, 6]).

In this paper, we develop new segmented intercon-
nect representations for delay simulation in interconnect
trees; our goal is to improve both accuracy and e�ciency
over existing methodologies. Our work is aimed at the
class of moment matching simulation approaches, which
provide acceptable accuracy while maintaining compu-
tational e�ciency. Traditionally, uniformly lumped seg-
ment models (e.g., L, T or � circuits) are used for mod-
eling interconnect lines [9, 20]. For such uniform repre-
sentations, the moments are perfectly captured only as
the number of segments used approaches in�nity. With
any �nite number of segments, the moments will be ei-
ther underestimated or overestimated depending on the
type of segment (L, T or �).

In this paper, we develop very accurate non-uniform
equivalent circuits for both the distributed RC and the
distributed RLC transmission line models. This concept
is originally due to Rajput [14], who proposed a model
with two non-uniform L segments to approximate the
response of a distributed RC line. For a step input, the
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response of Rajput's equivalent circuit is within 3% of
the correct response. The equivalent circuit also matches
exactly the �rst two moments of the distributed RC line
(i.e., the transfer function matches that of the distributed
RC line up to the coe�cient of s2); such an equivalent
circuit is optimal in terms with respect to the �rst two
moments and the moment-matching methodology. Be-
cause the two non-uniform L segments achieve the ex-
act accuracy that would require an in�nite number of
uniform L segments, simulation time is greatly reduced.
Gerzberg [5] surveyed di�erent non-uniform models and
proposed a model in which the segment RC values are
in geometric progression (the \Uniform Distributed RC"
(URC) line model in SPICE is derived from Gerzberg's
model). Non-uniform equivalent circuits have also been
used in other areas, e.g., Gopal et al. [7] obtain a non-
uniform segment model for driving-point impedance at
a gate output using moment-matching techniques.1 To
evaluate the e�ect of our equivalent circuits in the con-
text of previous moment-based methods, we employ the
two-pole method of Zhou et al. [20] and obtain the volt-
age response for a small tree network studied in [20]. We
show that the delay calculations in [20] have over 14%
error for this instance.

2 Background: Moment Matching
In a linear system, the transfer function H(s) =

Vout(s)
Vin(s)

gives the relationship between the output re-

sponse Vout(s) and the input response Vin(s). Let h(t)
be the impulse response corresponding to the transfer
function. Without loss of generality, the transfer func-
tion for any linear system can be expressed as a ratio of
polynomials in s, that is to say,

H(s) = K
1 + a1s + a2s

2 + a3s
3 + ::::

1 + b1s+ b2s2 + b3s3 + ::::
(1)

where K is the DC (zero frequency) gain. The ith mo-
ment of the linear system is de�ned as

Mi =
1

i!

Z
1

0

tih(t)dt =
(�1)i

i!
H(i)(0) (2)

where H(i)(0) is the ith derivative of H(s) at s = 0.

Assuming vout(0) = 0, the Laplace transform of the
derivative of the output voltage response for a unit step

1Sakurai [17] has observed that the use of such an equivalent
circuit is not always appropriate since it cannot predict the correct
response when the line is driven bidirectionally. However, in most
routing tree design problems the direction of signal ow is known.



input is v0out(t) , sVout(s) = s � 1
s
H(s) = H(s) , h(t).

Therefore, the transfer function can also be written as

H(s) =

Z
1

0

e�stv0out(t)dt:

Expanding e�st into a Maclaurin series,

H(s) =

Z
1

0

v0out(t)dt�
s

1!

Z
1

0

tv0out(t)dt+

s2

2!

Z
1

0
t2v0out(t)dt�

s3

3!

Z
1

0
t3v0out(t)dt+ : : : ;

and identifying the integral quantities as moments
M0;M1;M2;M3 etc. from Equation (2), we get

H(s) = (M0 � sM1 + s2M2 � s3M3 + :::):

The relationships among the moment representation, the
Laplace transform of the response, and the time-domain
response are very well discussed in [13].

3 Uniform Segment Models
For any RLC network, the coe�cients ai and bi of

the transfer function are in terms of the R;L;C circuit
parameters [10]. Here, we �rst seek simple equivalent
circuits for the case of the open-ended distributed trans-
mission line. The ABCD parameters of a distributed
RLC transmission line (Figure 1), are [3]:

v  (t)
1

i  (t)
1

i  (t)
2 2

v  (t)

Distributed RLC line

Figure 1: 2-port distributed RLC line model.

�
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I1(s)

�
=

�
cosh(�h) Z0sinh(�h)
1
Z0

sinh(�h) cosh(�h)

��
V2(s)
I2(s)

�

(3)

where � =
p
(r + sl)sc, h = length of the line and r = R

h
,

l = L
h
and c = C

h
are the resistance, inductance and ca-

pacitance per unit length. Since I2(s) = 0 for an open-
ended distributed RLC line, the voltage response at the

end of the line is V2(s) =
V1(s)

cosh(�h) . Therefore, the numer-

ator polynomial of the open-ended transfer function is a
constant (all a's = 0) and we have

H(s)=
1

cosh(
p
(R+ sL)sC)

=
1

1 + RC
2 s + ( (RC)2

24 + LC
2 )s2 + ( (RC)3

720 + RLC2

12 )s3 + :::

Analogous results for the distributed RC line are ob-
tained by substituting L = 0 in the above equation. We
now discuss the L and T models, which have tradition-
ally been used to approximate the distributed transmis-
sion line The � model analysis is similar to that of the
T model.

3.1 Uniform L Segments

C

R1 R2

1 C 2

Figure 2: Two uniform L segments model.

The open-ended transfer function for two uniform L
segments (Figure 2) is

H2L(s) =
1

1 + s(R1(C1 +C2) + R2C2) + s2R1R2C1C2

Substituting R1 = R2 = R=2 and C1 = C2 = C=2 yields

H2L(s) =
1

1 + 3RC
4
s+ (RC)2

16
s2

(4)

Coe�cients for the three uniform L segments model are
given in Table 1. As the number of segments tends to
in�nity, the L type model approaches the RC distributed
line model given in Equation (4) with L = 0. In [10], we
prove that as N ! 1, b1, b2 and b3 all tend to their
respective values given in Equation (4).2

3.2 Uniform T Segments

R1 R2 R3

C1 C2

R4

Figure 3: Two uniform T segments model.

The open-ended transfer function for two uniform T
segments (Figure 3) is

H2T (s) =

1

1 + s(R1(C1 +C2) + (R2 +R3)C2) + s2R1(R2 +R3)C1C2

Substituting R1 = R2 = R3 = R4 = R=4 and C1 = C2 =
C=2 yields

H2T (s) =
1

1 + RC
2
s + (RC)2

32
s2

(5)

Coe�cients for the three uniform T segments model are
given in Table 1. Sakurai [17] showed that for both the

2Interestingly, the coe�cient b3 is not monotone with respect
to the number of segments: b3 is close to its optimal value of
1=720 when there are three uniform segments; the maximum error
is achieved with seven segments before decreasing [10]. As an ex-
ample, using 10 uniform segments to approximate the distributed
RLC line entails error in the coe�cient b3 of approximately 25%
(at the same time, the error in b1 is around 10% and that of b2
is 20%). The corresponding errors in the �rst moment and second
moment are 10% and 20%, respectively.



T and � models, as the number of segments tends to in-
�nity all the coe�cients will converge to their respective
values in Equation (4). We can see that for any �nite
number of segments, the uniform T segments underes-
timate the coe�cient of s2 in the denominator of the
transfer function, while the uniform L segments over-
estimate the coe�cients of s and s2. A comparison of
various lumped models for the distributed RC line can
be obtained by substituting L = 0 in the Table 1 coe�-
cients.

Method b1 b2 b3

Dist. RLC RC
2

(RC)2

24 + LC
2

(RC)3

720 + RLC2

12
Line Model

2 U L 3RC
4

(RC)2

16 + 3LC
4 0 + RLC2

8

3 U L 2RC
3

5(RC)2

81 + LC
2

(RC)3

729 + 10RLC2

81

2 U T RC
2

(RC)2

32 + LC
2 0 + RLC2

16

3 U T RC
2

(RC)2

27 + LC
2

(RC)3

1458 + 2RLC2

27

2 non-U L RC
2

(RC)2

24 + LC
2 0 + RLC2

12

3 non-U L RC
2

(RC)2

24
+ LC

2
(RC)3

1111:11
+ RLC

2

12:02

Table 1: Various models approximating the open-ended
transfer function of distributed RC (having L = 0) and
RLC lines. We use U / non-U to indicate uniform /
non-uniform.

4 Non-Uniform Segment Models
Rajput [14] proposed the following equivalent circuit,

composed of two non-uniform L segments, for an open-
ended distributed RC line. With respect to Figure 2,
Rajput's circuit has element values

R1 =
1

4
R; R2 =

3

4
R; C1 =

2

3
C; C2 =

1

3
C

and its open-ended transfer function is

HRaj2(s) =
1

1 + RC
2 s+ (RC)2

24 s2
(6)

Thus, the open-ended transfer function of a dis-
tributed RC line (Equation (4)) is captured exactly up
to the coe�cient of s2, i.e., the �rst two moments are
exact. Rajput obtained these values by comparing the
transfer function and input impedance of the equivalent
circuit with those of the distributed RC line. In this
section we will calculate non-uniform equivalent circuits,
under the open-ended assumption, to approximate the
higher moments; we then extend the technique to obtain
RLC models.

4.1 RC Segment Model

For three non-uniform L segments, as shown in Fig-
ure 4, we solve for the resistance and capacitance values
by calculating the open-ended transfer function and the
open-circuit input impedance; this leads to 7 equations
with 6 unknowns, an overspeci�ed system [10]. Since

R  = 0.30R1 R  = 0.20R2 R  = 0.50R3

1 2 3C  = 0.40C C  = 0.44C C  = 0.16C

Figure 4: Three non-uniform L segments model.

there are no solutions to this system of equations, we
use numerical search techniques to minimize the squared
error in the b1, b2 and b3 values. We thus obtain the
circuit parameters

R1 = 0:30R; R2 = 0:20R; R3 = 0:50R

C1 = 0:40C; C2 = 0:44C; C3 = 0:16C

The values of the corresponding coe�cients of s's in
the transfer function are extremely close to the exact
values given in Equation (4); again, note that just three
segments, rather than a large number of segments, can
achieve this accuracy. The contrast with the various uni-
formRC models used to model the transmission line can
be seen by substituting L = 0 in Table 1. Further, it
should be noted that non-uniform RLC equivalent cir-
cuits can be used to model distributed RC lines. For ex-
ample, a single RLC circuit with R1 =

R
2 , C1 = C, and

L1 = R2C
24

can be used to approximate the distributed

RC line up to the coe�cient of s2.

4.2 RLC Segment Models

Extending the equivalent-circuit technique to the dis-
tributed RLC line is straightforward (see [10]). For two
non-uniform RLC segments (Figure 5), we obtain the
following values for the circuit elements:

R1 =
1

4
R; R2 =

3

4
R

L1 =
1

4
L; L2 =

3

4
L

C1 =
2

3
C; C2 =

1

3
C

The open-ended transfer function for this model is

R  = R/41 L  = L/41 2R  = 3R/4 L  = 3L/42

C  = 2C/31 C  = C/32

Figure 5: Two non-uniform L segments model.

H(s) =
1

1 + RC
2 s+ (

(RC)2

24 + LC
2 )s2 + RLC2

12 s3
(7)

and comparing Equation (7) to Equation (4), shows that
two non-uniform RLC segments can obtain the �rst and



second moments exactly. We have also numerically opti-
mized an equivalent circuit with three non-uniformRLC
segments. The optimized circuit elements are

R1 = 0:30R; R2 = 0:20R; R3 = 0:50R

L1 = 0:30L; L2 = 0:20L; L3 = 0:50L

C1 = 0:40C; C2 = 0:44C; C3 = 0:16C

and this non-uniform three-segment RLC model cap-
tures the �rst two moments exactly, and the third mo-
ment almost exactly. Notice that the resistance and in-
ductance values are distributed identically because they
have to satisfy similar equations in matching the coe�-
cients. From Table 1, it is clear that the use of such non-
uniform equivalent circuits in a two-pole or higher-order
approximation of the transfer function will a more accu-
rate voltage response than the uniform segment models
used in, e.g., [20].

4.3 Complexity Reduction

For large routing trees, using non-uniform equivalent
circuits for a distributed RLC line will reduce the com-
putation time signi�cantly when compared with using a
number of uniform RLC segments. Such works as [16]
or [20] suggest using k segments to model each inter-
connect line; for large MCM interconnects the appropri-
ate value of k can be quite large. Let N be the total
number of interconnect lines between a given input node
and output node. From the expressions given in [10],
the computation time of b1 is of the order of O

�
(kN )2

�
,

that of b2 is on the order of O
�
(kN )4

�
and that of b3 is

O
�
(kN )6

�
. By using two non-uniform segments the com-

putation time will be reduced to O(N2) for b1, O(N4)
for b2 and O(N6) for b3, which corresponds to a sub-
stantial reduction if the interconnection tree is large or
if accuracy is desired.

5 Two-Pole Methods for Tree Analysis

5.1 Previous Methods

Horowitz [9] proposed a method for estimating the
response and delay through RC trees using both single-
pole and two-pole methods: he calculates the poles of
the estimated system response from the �rst and second
moments of the main path (i.e., the unique path from
the input node to the output node) in the RC tree. His
paper with Rubinstein et al. [16] suggests that for delay
analysis of RC trees, each distributed RC line should be
replaced by a �nite number of lumped RC segments to
achieve the required accuracy.3

Zhou et al. [19] proposed an analytical approach for
calculating the dominant poles for a single transmission
line by using a single RLC segment as the underlying
model. The analysis assumes a linear model for the
source I �V curve, and obtains a polynomial describing
the poles of the transmission line. By making various
assumptions about this polynomial, the poles of interest
are obtained ([19], p. 781). Based on this work, Zhou

3The �rst moment (M1) of the system impulse response corre-
sponds to the delay measure proposed by Elmore [4]; this corre-
sponds to a single dominant pole approximation of the response.

et al. [20] then compute poles of a general interconnec-
tion tree. Since the polynomial obtained in [19] is based
on a single RLC segment, the coe�cient of s2 (i.e., b2)
will not have any (RC)2 term. Based on this model, the
voltage response in a general interconnection tree is com-
puted from the two dominant poles. To achieve improved
accuracy, the authors of [20] propose modeling each tree
branch by many shorter segments (but this deviates from
the underlying assumptions in that not every branch of
the tree drives the small capacitive load). This method
is somewhat impractical when used for trees with long
wire segments (e.g., for MCMs). Since the poles are com-
puted by approximating the o�-path subtree admittance
by the sum of the total subtree admittance (i.e., approx-
imating subtree admittance up to coe�cient of s) [20, 8],
the response is not exact.

5.2 Experimental Comparisons

Driver

1 2

3

12

4

5 6

8 7

9

10
11

50 um
50 um

Load

Load

Load

Load

Load

Load

Figure 6: A tree interconnection layout studied in [20].

We now give a practical demonstration of the utility
of our non-uniform equivalent circuit models, in the con-
text of the two-pole simulation methodology. For the
interconnect tree studied in [20] (see Figure 6), we plot
the voltage response at a speci�c node (Node 6) using
each of �ve distinct simulation methodologies:

� App2Pole is the \approximate two-pole" method
of Zhou et al. [20] discussed above, wherein the
poles of an interconnection tree are heuristically
computed and a two-pole analysis is then applied.

� Stan2Pole is the standard two-pole approximation
for the system transfer function [9, 20],

H(s) =
k1

s� s1
+

k2
s� s2

where s1; s2 are the poles and k1; k2 are the coef-
�cients corresponding to the poles. Using Laplace
transform techniques, one can express both the poles
and the coe�cients in terms of the �rst and second
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Figure 7: Unit step response at Node 6 of the tree shown
in Figure 6, using both uniform and non-uniform mod-
els (Stan2Pole), SPICE approaches, and the approximate
App2Pole method of [20]. Following [20], the driver re-
sistance is 10
.

moments4 [10, 20]. The voltage response is then
calculated as

Vout(t) =

�
1 +

k1
s1
es1t +

k2
s2
es2t

�

For the tree analysis using the standard two-pole
approximation, we replace each interconnect line by
the uniform L segment circuits given in Section 3.
We then identify the \main path" from the source
to the output (sink) node. The o�-path sub-tree
impedance is approximated by the total capacitive
impedance [20]. The delay thus computed is an up-
per bound on the exact delay.

� With our new non-uniform segment model, we cal-
culate the voltage response for interconnection trees
using the same Stan2Pole methodology, and replac-
ing each interconnect line by a non-uniform equiva-
lent circuit.

� SPICE simulation of the interconnect tree can be
performed with each interconnect line of the tree di-
vided into a large number of uniformRLC segments,
as in [20] [8]. The voltage response so obtained will
be exact in the limit (i.e., as the number of RLC
segments per interconnect line approaches in�nity).
We apply this method by dividing each interconnect
line into uniform RLC segments of length 5�m.

4The poles are s1;2 = 2

�M1�

p
4M2�3M

2

1

and the coe�cients

are k1 = �k2 = �
1p

4M2�3M
2

1

.

� Finally, the LTRA (Lossy TRAnsmission line)
model in SPICE models each interconnect line in the
tree as a lossy transmission line. This model is also
referred to as a uniform transmission line model be-
cause it has constant resistance, capacitance and in-
ductance per unit length, uniformly distributed over
the length of the line. The LTRA model calculates
the response using the convolution of the transmis-
sion line's impulse response with the input response
[15]. In the limit, as the number of segments per
interconnect line tends to in�nity, the SPICE seg-
mented response coincides with that of the LTRA
approach.

We plotted the voltage response at Node 6 of the tree
interconnection layout studied in [20] (see Figure 6), us-
ing using the above approaches and varying driver resis-
tances.
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Figure 8: Unit step response at Node 6 of the same
tree topology, with the branches (edges) between nodes
(1; 2) and between nodes (2; 3) scaled by a factor of 40,
and all other branches scaled by a factor of 10. Again,
we compare the uniform/non-uniform models using the
Stan2Pole method against SPICE simulations and the
App2Pole method; driver resistance is 150
.

Figure 7 shows the voltage response at Node 6 with
a driver resistance of 10
. The response calculated us-
ing our non-uniform model is fairly comparable with the
SPICE simulation, and the response calculated using
uniform and non-uniform equivalent circuits is almost
identical. However, as the interconnection tree becomes
larger the response of the uniform method moves away
signi�cantly from the SPICE response.

To demonstrate the increase of error for longer inter-
connects, we used the same tree but scaled the length
of edges (1; 2) and (2; 3) by a factor of 40 and all other
edge lengths by a factor of 10. The response at Node
6 is given in Figure 8; the error in the 90% threshold



delay between two uniform RLC segments and two non-
uniform RLC segments is approximately 14%. We also
observe that as more uniform segments per interconnect
line are used, the \approximate two-pole" response ac-
tually moves away from the SPICE response. In con-
trast, the response calculated using either SPICE simu-
lation methodology is very close to the Stan2Pole result
using our non-uniform models. As driver resistance de-
creases or as wire length increases, the di�erence between
these models becomes much more signi�cant. For high-
speed systems or MCM layout applications where the
wire lengths become very large, use of our non-uniform
segment model will signi�cantly improve accuracy and
e�ciency versus previous two-pole methods.

6 Conclusions
Accurate estimation of signal propagation delays in

interconnects is a major obstacle to correct implementa-
tion of high-speed systems. In this paper, we simulate
interconnect trees by modeling each distributed inter-
connect line using accurate non-uniform lumped segment
models. Since our non-uniform segment models approx-
imate the moments of the transfer function of the dis-
tributed line very accurately using only two or three seg-
ments, we obtain improvements in both simulation com-
plexity and accuracy over previous methodologies [9, 20].
We show that the 90% threshold delay estimates of pre-
vious work [20] are incorrect by 14% even for a very small
routing topology. Such di�erences are signi�cant for crit-
ical timing analyses in the design of high-speed systems,
and we believe that non-uniform equivalent circuits can
supersede the lumpedT and�models traditionally used
for delay estimation, clock skew minimization and other
routing applications. Moreover, the evaluations of exist-
ing routing tree techniques (such as Elmore routing trees
[1] or A-trees [2]), whose delays were measured using the
technique of [20], may change.

In [11], we have developed non-uniform equivalent cir-
cuits to model distributed RLC lines with general source
and load impedances. In general, the coe�cients of the
distributed RLC line can be obtained using the recur-
sive expression given in [10]. Similarly, the coe�cients
of the non-uniform equivalent circuits can be obtained
recursively in terms of the equivalent circuit parame-
ters. The parameter values can be derived by matching
the coe�cients of the transfer function with the non-
uniform equivalent circuits (note that Yu and Kuh [18]
have also proposed an approach for directly calculating
the moments of distributed line, and given a derivation
of equivalent circuit parameters). Our current work ad-
dresses the exact computation of moments and poles us-
ing the recursive admittance formulation for interconnec-
tion trees.
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