
Vertical M1 Routing-Aware Detailed Placement for Congestion and
Wirelength Reduction in Sub-10nm Nodes

Peter Debacker+, Kwangsoo Han†, Andrew B. Kahng†‡,
Hyein Lee†, Praveen Raghavan+ and Lutong Wang†

†ECE and ‡CSE Departments, UC San Diego, La Jolla, CA 92093, USA
+imec, Leuven 3001, Belgium

{peter.debacker, praveen.raghavan}@imec.be, {kwhan, abk, hyeinlee, luw002}@ucsd.edu

ABSTRACT
Aggressive pitch scaling in sub-10nm nodes has introduced
complex design rules which make routing extremely challeng-
ing. Cell architectures have also been changed to meet the
design rules. For example, metal layers below M1 are used
to gain additional routing resources. New cell architectures
wherein inter-row M1 routing is allowed force consideration of
vertical alignment of cells. In this work, we propose a mixed-
integer linear programming (MILP)-based, detailed placement
optimization to maximize direct vertical M1 routing utilization
for congestion and wirelength reduction.

1. INTRODUCTION
In tandem with aggressive pitch scaling in sub-10nm technol-

ogy nodes, the detailed routing problem has become extremely
challenging. Routing today must deal with large numbers of
complex design rules that are driven by patterning technologies
– notably, self-aligned multiple patterning and line-end cut on
minimum-pitch metal layers, as well as contact- and via-layer
patterning. The quest to scale “PPAC” (power, performance,
area, cost) has led to a very delicate balancing act among
power delivery, routing resource, and resistivity in middle-of-
line (MOL) and local metal layers.

To address these challenges, the industry has seen rapid
innovation in standard-cell architecture starting at the foundry
10nm (“N10”) node, and accelerating into the N7/N5 enable-
ment. As examples of cell architecture evolution, metal layers
below M1 are used for internal routing within a standard
cell, or horizontal M1 power/ground pins are removed to gain
additional routing resources for inter-cell routing. These new
cell architectures, wherein inter-row M1 routing is allowed,
force new consideration of vertical alignment of cells.

1.1 New Cell Architectures in Sub-10nm
Figure 1 illustrates inverter (INV) layout in three types of

cell architectures: (a) conventional 12-track, (b) ClosedM1 7.5-
track, and (c) OpenM1 7.5-track. The conventional 12-track
INV has power/ground (VDD/VSS) in M1, which prevents use
of vertical M1 routing for pin access. In other words, with the
conventional cell architecture, pin access is available only with
M2 routing. However, in sub-10nm nodes, where metal layers
below M1 are used for internal cell routing, the M1 layer can
be used for pin access as well as for routing with both the
ClosedM1 and OpenM1 cell architectures.
ClosedM1 standard cell architecture. A ClosedM1 stan-
dard cell has 1D vertical M1 pins, including VDD/VSS pins,
as shown in Figure 1(b). The M1 VDD/VSS pins at the
left and right boundaries of the cell are connected to M2
VDD/VSS pins at the top and bottom boundaries by using
via V12. In this way, VDD/VSS pins do not block inter-
row M1 routing. Also, due to the design rules for self-aligned
multiple patterning (SAMP), the M1 pins in ClosedM1 have
1D shapes and are regularly placed with a fixed pitch. In
particular, the ClosedM1 cell library that we use in this work

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC’17, June 18-22, 2017, Austin, TX, USA
Copyright 2017 ACM 978-1-4503-4927-7/17/06...$15.00
DOI: http://dx.doi.org/10.1145/3061639.3062338.

(a)

VDD

VSS

A ZN

(b)

VSSVSS
ZNA

VDDVDD

VDD

VSS

VDD

VSS

(c)

VDD

VSS

I
ZN

ZN
ZN

M1

M2

V01

M0

Cell boundary

Figure 1: New cell architectures to gain additional routing
resources. (a) Conventional 12-track INV; (b) ClosedM1 7.5-
track INV; (c) OpenM1 7.5-track INV.

has M1 pitch equal to the width of a placement site. Therefore,
if we vertically align pins of given net, these pins can be
connected by a small M1 segment with negligible routing cost
or overheads. Figure 2(a) illustrates an example of direct
vertical M1 routing (dM1) between two INVs. Here we define a
direct vertical M1 routing as a (sub)net routing using only one
M1 routing segment. Importantly, even though the ClosedM1
cell architecture enables inter-row M1 routing, the realized
power/performance/area (PPA) benefit from M1 routing may
not be significant unless a router can effectively exploit the
availability of direct vertical M1 routing. This is because M1
routing tracks are blocked by M1 pins, and the inter-row M1
routing can be used only when two pins are sufficiently aligned.
Thus, both the detailed placer and the router must comprehend
vertical alignment in order to maximally exploit direct vertical
M1 routing for ClosedM1-based designs.
OpenM1 standard cell architecture. At sub-10nm nodes,
the OpenM1 standard cell architecture is introduced to enable
more M1 routing resource than with the ClosedM1 architecture.
For OpenM1 cells, M1 routing is “open” since most of the pins
are on the M0 layer, which is a complementary layer below the
M1 layer. As shown in Figure 1(c), the I, ZN, VDD, VSS pins
have horizontal M0 segments, and an M1 segment connects
two M0 segments for the ZN pin. We note that there is no
connection between M0 and M2 segments for VDD/VSS pins.
Thus, M1 routing for VDD/VSS pins must be accomplished
with a special structure for the power distribution network.1 In
terms of signal routing, if two pins are overlapped horizontally
(i.e., their projections onto the x-axis intersect), direct vertical
M1 routing can be used to connect them. Figure 2(b) shows
a direct vertical M1 routing between the ZN pin of the upper
INV and the I pin of the lower INV. As long as the ZN and I
pins are overlapped horizontally, the two pins can be connected
using a single vertical M1 segment along with two V01 vias.

Compared to both the conventional and the ClosedM1 cell
architectures, OpenM1 effectively enables an additional metal
layer for routing, which can have considerable routability
benefits. Furthermore, unlike with the sub-10nm ClosedM1
architecture, conventional P&R tools can easily find benefits
from OpenM1 without any special optimization to maximize
M1 routing. This being said, below we explore the question
of whether there might still be room (beyond the current
state of the art in commercial P&R tooling) to optimize for
better pin accessibility in OpenM1-based designs, given that
pins are horizontal. For instance, by maximizing “overlap”
between pins in a net, we might induce a router to use more
direct vertical M1 routing between pins, which would reduce
usage (blockage) and detouring on upper layers (M2, M3, etc.).
In Subsection 5.2, we report experimental results with and

1For example, vertical M1 segments must be inserted with a
fixed pitch to staple M2 and M0 VDD/VSS pins.

without a detailed placement optimization that maximizes pin
overlaps for OpenM1.

(a) (b)

VDD VDD

ZN A
VSS VSS

VSS

VSSVSS

ZNA

VDDVDD

VDD

VSS

M1

M2

V01

M0

Cell boundary

M1 routing

VSS

VSS

VDD

I
ZN

ZN
ZN

VSS

VDD

VSS

I
ZN

ZN
ZN

pin overlap

Figure 2: Direct vertical M1 routing examples: (a) ClosedM1,
(b) OpenM1.

1.2 This Work
In this work, we propose a vertical M1 routing-aware detailed

placement optimization based on mixed-integer linear pro-
graming (MILP) for two new sub-10nm cell architectures, i.e.,
OpenM1 and ClosedM1. We note that the vertical M1 routing-
aware detailed placement is a completely different problem
from traditional wirelength-driven detailed placement, in the
sense that the routing cost is non-monotonic due to vertical
M1 routing, which is almost “free”. Our MILP formulation
enables exploration of the tradeoff between minimization of
the traditional half-perimeter wirelength (HPWL) objective
and maximization of the number of vertical pin alignments
(= potential direct pin-pin routings using vertical M1) via a
weighting factor (α). Below, we specifically study the impact
of α on routed wirelength. The main contributions of our work
are summarized as follows.2

• We propose an MILP-based detailed placement opti-
mization for two cell architectures that are relevant in
sub-10nm process nodes, to consider and exploit (direct
vertical) inter-row M1 routing.

• We propose a distributable window-based optimization
to overcome the runtime limitation of the MILP-based
approach.

• We implement our proposed approach in C++ with
OpenAccess 2.2.43 [19] and incorporate it into a com-
mercial tool-based placement and routing (P&R) flow.
The results from our approach are evaluated using a
commercial tool flow.

• We explore various metaheuristic configurations (op-
timization degrees of freedom, window size, iteration
strategy, etc.) and study impacts on runtime and solution
quality.

The remainder of this paper is organized as follows. Section 2
reviews related previous works. In Section 3, we describe
our MILP formulations for detailed placement optimization
considering direct vertical M1 routing. In Section 4, we explain
our overall optimization metaheuristic, centered around a
distributable window-based optimization. Section 5 provides
experimental results and analysis. We give conclusions and
future research directions in Section 6.

2. PREVIOUS WORK
We classify relevant previous works on detailed placement

and placement legalization into three categories: (i) dynamic
programming-based approaches, (ii) graph model-based ap-
proaches, and (iii) MILP-based approaches. Our present work
is most closely related to the third category.
Dynamic programming-based approaches. Dynamic pro-
gramming (DP) has been a popular framework, particularly for
row-based detailed placement, for many years. Kahng et al. [5]
propose a HPWL-driven ordered single-row detailed placement
with free sites. Gupta et al. [2] propose a DP-based single-
row placement optimization to enable sub-resolution assist

2The MILP formulation will differ according to the stan-
dard cell template and layer directionality. However, our
distributable optimization and exploration of metaheuristic
configurations can apply with any technology.

feature insertion for improved manufacturability. Subsequent
work addresses a 2D formulation [3], using DP in which
vertical and horizontal costs are calculated with restricted
perturbations. Hur and Lillis [8] propose a DP-based optimal
interleaving for intra-row optimization in detailed placement.
For double-patterning-aware detailed placement, Gupta et al.
[1] propose a DP-based algorithm that solves coloring conflicts
while minimizing the displacement of timing-critical cells.
Graph-based approaches. A literature of graph model-
based approaches typically formulates placement optimization
as a shortest-path computation in an appropriate directed
graph. Kahng et al. [6] legalize placement of a single row
with various minimization objectives, by calculating a shortest
path in a directed acyclic graph constructed from the input
ordering of cells. The work of [13] proposes a triple-patterning-
aware detailed placement using a graph model. The authors
formulate a graph to determine cell locations as well as coloring
solutions for a single row placement. Du and Wong [7]
address the abutment of source and drain in FinFET-based
cell placement. The authors propose a graph model that
captures cell flipping and adjacent-cell swapping as underlying
operations for detailed placement perturbation. A shortest-
path algorithm then minimizes the cost induced from the
source-drain abutment. Lin et al. [12] propose a graph-based
detailed placement to resolve inter-row middle-of-line conflicts.
Similar to [7], a graph is constructed to handle cell flipping,
swapping and shifting operation for local reordered single row
refinement.
MILP-based approaches. While DP-based and graph
model-based approaches are efficient for single-row placement,
it is not easy to handle multiple-row placement optimizations
(specifically, in the context of this work, vertical M1 routing-
aware placement) with these approaches due to interaction
between vertically adjacent cells. However, several mixed
integer-linear programming (MILP)-based approaches have
been proposed which handle both single-row and multiple-row
placement. Lin and Chu [11] formulate a MILP for triple-
patterning-aware detailed placement. The MILP is used to as-
sign a coloring solution for each standard cell and determine the
location of each cell in a single row, while minimizing placement
perturbation and coloring conflicts. Li and Koh [9] propose
MILP-based detailed placement approaches using single-cell-
placement (SCP) variables. The SCP variables correspond to
locations, orientations as well as placement sites of each cell.
The MILP determines the best SCP variable for each cell. The
same authors’ extension [10] supports mixed-size circuits and
improves runtime by bounding solution spaces. Han et al. [4]
adopt the MILP model of [9] [10] and extend it to support N10-
relevant design rules. Further, a distributable optimization
is proposed based on partitioning of the layout into windows
that can be independently legalized. In our present work,
we use a similar strategy as the work of [4], extending it
to handle vertical M1 routing for new cell architectures in
sub-10nm. Overall, our work is distinguished from previous
(MILP-based) approaches in that (i) we formulate inter-row
cell alignment to maximize direct vertical M1 routing, which
has not been addressed in previous works, and (ii) we improve
the distributable optimization of [4] by a smart selection of
target windows along with a metaheuristic strategy.

3. MILP-BASED OPTIMIZATION
In this section, we give our problem statement, followed

by MILP formulations for vertical M1 routing-aware detailed
placement optimization with two sub-10nm cell architectures,
OpenM1 and ClosedM1.

Vertical M1 Detailed Placement
Given: a post-routed placement, and per-cell placement
perturbation range.
Perform: Perturb the input placement to optimize a weighted
sum of (minimized) HPWL and (maximized) inter-row pin
alignments, while satisfying cell location perturbation bounds
and placement legality constraints.

3.1 MILP Formulation for ClosedM1
We formulate an MILP for our detailed placement problem

for the ClosedM1 cell architecture. In the following, we use
notation as described in Table 1.

Table 1: Notations.
Notation Meaning

dpq
a binary indicator of whether pins p and q are
aligned (ClosedM1) or overlapped (OpenM1)

wn half-perimeter wirelength (HPWL) of net n
α a weighting factor for direct vertical M1 routing
βn a weighting factor for HPWL of net n

C, R, Q sets of cells, rows, columns (placement sites)
N set of nets

x(y)min,n minimum x (y) and maximum x (y) coordinates of
x(y)max,n net n

Pn set of pins in net n
G a large positive constant number
H placement row height

xc(yc) x (y) coordinate of the center of cell c

xp(yp)
relative x (y) coordinate of pin p to its owner cell’s
x (y) coordinate

xmin,p minimum (maximum) x coordinate of pin p
(xmax,p) relative to its owner cell’s x coordinate

fc a binary indicator of whether cell c is flipped
scrq a binary indicator of whether cell c occupies site (r, q)
Kc a set of candidates of cell c

λk
c

a binary indicator of whether
candidate k for cell c is selected

xk
c (yk

c) x (y) coordinate corresponding to λk
c

fk
c fc corresponding to λk

c

sk
crq scrq corresponding to λk

c

γ
maximum allowed length for a direct vertical
M1 routing (unit: number of placement rows)

vpq
a binary indicator of whether pins p and q are
within a given range (γ) in y direction

opq length of overlap between pins p and q

δ
minimum required overlap length for direct
vertical M1 routing

ε a weighting factor for the sum of overlap lengths (opq)

Minimize: − α ·
X

dpq +
X
n∈N

βn · wn (1)

Subject to:

wn = xmax,n − xmin,n + ymax,n − ymin,n, ∀n ∈ N (2)

xmax,n ≥ xc + xp, xmin,n ≤ xc + xp

ymax,n ≥ yc + yp, ymin,n ≤ yc + xp

∀p ∈ Pn, where c is the owner cell of pin p (3)

(xc + xp)− (xc′ + xq) ≤ G(1− dpq)

(xc + xp)− (xc′ + xq) ≥ −G(1− dpq)

(yc + yp)− (yc′ + yq) ≤ G(1− dpq) + H

(yc + yp)− (yc′ + yq) ≥ −G(1− dpq)−H

∀(p, q) in n, where c, c′ are owners of pins p, q (4)X
k∈Kc

λk
c = 1, ∀c ∈ C (5)

fc =
X

k∈Kc

fk
c λk

c , ∀c ∈ C (6)

xc =
X

k∈Kc

xk
cλk

c , yc =
X

k∈Kc

yk
c λk

c , ∀c ∈ C (7)

scrq =
X

k∈Kc

sk
crqλ

k
c , ∀c ∈ C (8)

X
c∈C

scrq ≤ 1, ∀q ∈ Q, r ∈ R (9)

For a given input layout, our objective is to minimize the
weighted sum of HPWL of all nets subtracted by the total
number of pin alignments for direct vertical M1 routing, while
achieving a legal placement (no overlap of cells).
HPWL calculation. Constraint (2) calculates the HPWL
for each net n, where HPWL as usual corresponds to the half-
perimeter of the minimum bounding box that contains all pins
of n. The maximum and minimum x, y coordinates of pins
of the net n are obtained by Constraint (3). The absolute
coordinates of pin p is determined by adding the coordinates
(xc, yc) of p’s owner cell c to (xp, yp).
Checking pin alignment. Constraint (4) checks whether
pins p, q are aligned, by comparing their absolute coordinates.

If the (absolute) x coordinate of p, q are not the same, dpq = 0.
Otherwise, the left side of the first and second constraints in
Constraint (4) becomes zero, which makes dpq = 1 allowed. In
our implementation, we always ensure dpq = dqp.
Placement of each cell. Similar to [4], we assume that a
perturbation range is given for each cell c, and that a cell
cannot move beyond its given perturbation range. As in [4],
we adopt the single-cell-placement (SCP) model of [10] to
represent each candidate location and orientation for a cell.
The binary variable λk

c represents a candidate k for a cell c,
including the coordinates (xk

c , yk
c), the orientation (fk

c), and
whether placement site (r, q) is occupied (sk

crq). These relations
are handled by Constraints (6), (7) and (8). Constraint (5)
ensures that exactly one candidate is chosen for cell c among
all λk

c , k ∈ Kc. Constraint (9) ensures a legal placement.

3.2 MILP Formulation for OpenM1
To maximize direct vertical M1 routing for the OpenM1 cell

architecture, we must maximize “overlap” between target pins,
which is different from the objective for ClosedM1. In addition
to maximizing the number of overlapping pin pairs, we also
maximize the sum of overlap lengths of each pin-to-pin (sub)net
so as to increase the probability that the router completes the
direct vertical M1 routing. The OpenM1 objective is:

Minimize: − α ·
X

dpq − ε ·
X

opq +
X
n∈N

βn · wn (10)

To support OpenM1, we slightly modify the previous MILP
formulation for ClosedM1 by introducing extra variables. In
this case, dpq becomes a binary indicator of whether pins p
and q are “overlapped”, and Constraint (4) is replaced with
Constraints (11)–(13). Our notation is again as described in
Table 1.

a ≥ xc + xmin,p, a ≥ xc′ + xmin,q

b ≤ xc + xmax,p, b ≤ xc′ + xmax,q

∀p, q, where c, c′ are the owner cells of pins p, q (11)

(yc + yp)− (yc′ + yq) ≤ G · vpq + γ ·H
(yc + yp)− (yc′ + yq) ≥ −G · vpq − γ ·H

∀p, q, where c, c′ are the owner cells of pins p, q (12)

opq ≤ b− a− δ + G(1− dpq), opq ≤ G · dpq

opq ≥ −G(1− dpq)

∀(p, q) pin pairs in net n, ∀n (13)

dpq + vpq ≤ 1, ∀p, q (14)

Checking pin overlaps. Constraint (11) calculates the
length of overlap in x direction between pins p and q. It first
identifies the left side (a) and the right side (b) of the overlap
between pins p and q. The overlap length opq is determined
by a and b in Constraint (14). Constraint (12) checks whether
the absolute difference of y coordinates of pins p and q is larger
than γH and, if so, forces vpq = 1. γ is a user-defined value
for the maximum allowed vertical span of a direct vertical M1
routing.3

We use γ = 3, which means that a direct vertical M1 routing
can cross three placement rows. For the case vpq = 1, we do
not need to make overlaps in the x direction since pins are
multiple rows apart vertically; in such cases, it is difficult (i.e.,
highly improbable) to make a direct vertical M1 routing across
multiple rows. Thus, Constraint (14) forces dpq = 0 if vpq = 1
so that the optimization does not make unnecessary overlaps.
Constraint (13) forces dpq = 1 if b−a is larger than a predefined
δ, which is the minimum required overlap length. Then, the
opq is bounded by b−a−δ. Otherwise, opq is bounded by zero.

3For example, γ = 1 means that direct vertical M1 routing
can traverse between two adjacent cell rows, and γ = 2 (resp.
3) means that direct vertical M1 routing can go through one
(resp. two) intervening cell row(s).

4. OVERALL FLOW
We now describe the overall flow of our optimization.

4.1 Distributable Optimization
In practice, the most critical limitation of the MILP-based

approach is runtime. To overcome the runtime limitation, we
adopt the distributable optimization proposed in [4].

We partition the layout into small windows (with width bw,
height bh and optimize these windows in several iterations.
In each iteration, we select a subset of windows that are
independently optimizable, and optimize them in parallel.
More specifically, we select windows that do not have any
horizontal or vertical overlap (i.e., have disjoint projections
onto the x-axis and onto the y-axis). For example, as shown in
Figure 3, windows that are diagonally adjacent can be selected
and optimized in parallel. This is because a given window’s
optimization is unaware of cell displacements concurrently
being made outside of the window; if windows share projections
onto the x- or y-axis, the impact of solutions on HPWL from
each window cannot be accurately captured.

Figure 4 illustrates two example cases of (a) target win-
dows with intersecting projections (on the y-axis) and (b)
target windows with disjoint projections. Since the target
windows are optimized in parallel, the optimizer calculates
∆HPWL1 for the displacement of p in w1 without knowing
pin q’s displacement, and vice versa (∆HPWL2 for q in w2).
However, according to the final locations of p and q, the pins
that determine the bounding box corresponding to HPWL can
change, as shown in the figure. In the (a) case, this results
in a discrepancy between the total ∆HPWL and the sum of
∆HPWL from each window. In the (b) case, since p and q
always determine the top-left point and the bottom-right point
of the bounding box, the sum of ∆HPWL from each window
is equal to the total ∆HPWL.

Target window for the current optimization
Untouched window
Optimized window in previous iterations

Figure 3: Illustration of distributable optimization.

Target window for the current optimizationUntouched window

ΔHPWL1 ΔHPWL2

Total ΔHPWL ≠ ΔHPWL1 + ΔHPWL2

ΔHPWL1

ΔHPWL2

Total ΔHPWL=ΔHPWL1 + ΔHPWL2

w1 w2

w3 w4

w1 w2

w3 w4

p

q

p

q

(a) (b)

Figure 4: HPWL calculation for two cases. (a) Target windows
with intersecting projections on the y-axis. (b) Windows with
disjoint projections. In the case of (a), the total ∆HPWL is
not equal to the sum of ∆HPWL values that are calculated
from each window.

4.2 Overall Flow
Algorithm 1 (V M1Opt()) gives the metaheuristic outer

loop of our detailed placement optimization considering direct
vertical M1 routing. The inputs include a routed layout T , a
weighting factor α and a sequence(queue) of input parameter
sets U . Each parameter set in U includes window width (bw),
window height (bh), maximum x displacement for cells (lx),
and maximum y displacement of cells (ly). The sequence U
is determined empirically based on experimental results (see
Subsection 5.2). The output is an optimized layout Topt with
a heuristically minimized objective value Obj.

In Line 2, we obtain the first input parameter set u in the
current U . In Lines 3–11, we iteratively run DistOpt() with
u until the normalized improvement (∆Obj) of the objective
with respect to Obj of the previous iteration is less than a
threshold θ. We use θ = 1% as the threshold. In Line 4, we first
store the previous Obj value as preObj. In Lines 6–7, we then
perform DistOpt() with window size and perturbation range
defined in u (i.e., u.bw, u.bh, u.lx, u.ly) but without allowing
the flip operation (f = 0). After that, DistOpt() is performed
again in Lines 8–9, with allowing of the flip operation (f = 1)
but without allowing perturbation. Empirically, we observe
that a sequential optimization that performs perturbation and
flipping serially is faster than an optimization that performs
perturbation and flipping simultaneously, while both optimiza-
tions give similar solution quality. In Line 10, we update the
x and y shift values for windows (tx, ty). Although we avoid
interference between windows by selecting diagonally-adjacent
windows (recall Figure 3) for parallel optimization, cells at the
boundary (i.e., cells that overlap two windows simultaneously)
cannot be optimized. Thus, similar to the method of [4], we
shift the windows to handle the unoptimized boundary region
of the previous iteration. If ∆Obj is less than θ (Line 3), we
change u to the next input parameter set in U (Line 2). We
iterate the optimization until we reach the last input parameter
set in U .

Algorithm 2 describes details of DistOpt(). According to
the given input parameters, we partition the layout into small
windows (Line 1). We then select target windows that are
independently optimizable and store them in D (Line 3) as
explained in Section 4.1. Since we select target windows such
that windows do not have any vertical or horizontal overlaps,
the parallel optimization has k =

p
|W | iterations, where |W |

is the total number of windows. In Lines 5–6, all windows
d ∈ D are optimized in parallel. For each window, we list
candidates for each cell according to a given perturbation
range (i.e., lx and ly, the maximum displacement of x and
y, respectively). Along with input parameters α, βn, γ and
δ, we formulate the MILP instance for the window and use
CPLEX to solve the MILP instance. The solution is updated
for each window, and is then used as a boundary condition for
the target windows in the next iteration.

Algorithm 1 Overall flow of V M1Opt

Procedure V M1Opt(T, α, U)
Input : Layout T , weighting factor α, queue of parameter sets U
Output : Layout Topt

1: while U 6= ∅ do
2: u ← U.pop(); ∆Obj ← ∞;
3: while ∆Obj ≥ θ do
4: preOpj ← Obj;
5: lx ← u.lx; ly ← u.ly; f ← 0;

6: (T, Obj) ← DistOpt(T, tx, ty, u.bw, u.bh, lx, ly, f, α);

7: lx ← 0; ly ← 0; f ← 1;

8: (T, Obj) ← DistOpt(T, tx, ty, u.bw, u.bh, lx, ly, f, α);

9: Update tx, ty

10: ∆Obj ← (preObj −Obj)/preObj;
11: end while
12: end while
13: Topt ← T ;

14: return Topt;

Algorithm 2 Procedure DistOpt

Procedure DistOpt(T, tx, ty, bw, bh, lx, ly, f, α)
Input : Horizontal (vertical) offset tx (ty), width (height) of window
bw (bh), perturbation range in x (y) lx (ly), binary indicator of
whether flip operation is allowed f , weighting factor α
Output : Updated layout Topt, objective value Obj

1: A set of windows W ← Partition(T, tx, ty, bw, bh);

2: for i = 1 to
p
|W | do

3: D ← set of current target windows;
4: // parallel optimization
5: MILPFormulation(d, lx, ly, f, α) for ∀d ∈ D;

6: Solve MILP and update MILP solutions to T ;
7: // parallel optimization ends
8: end for
9: Topt ← T

10: Obj ← CalculateObj(Topt);

11: return Topt;

5. EXPERIMENTAL SETUP AND RESULTS
5.1 Experimental Setup

We implement our flow in C++ with OpenAccess 2.2.43 [19]
to support LEF/DEF [17], and with CPLEX 12.6.3 [16] as our
MILP solver. We apply our detailed placement optimization
flow to ARM Cortex M0 core and three designs (aes, jpeg, vga)
from OpenCores [20]. The design information is summarized in
Table 2. The four designs are implemented with 7nm OpenM1
and ClosedM1 triple-Vt libraries from a leading technology
consortium. We synthesize the testcases using Synopsys Design
Compiler K-2015.06-SP4 [21], and then perform placement and
routing using Cadence Innovus v16.1 [15]. The experiments are
performed with 8 threads on a 2.6GHz Intel Xeon dual-CPU
server. We note that with flexible computing resources, the
number of usable threads could be as large as the number of
layout windows that are independently optimizable (

p
|W |) to

reduce runtime for larger designs.

5.2 Experimental Results
We have conducted two basic types of experiments. ExptA

experiments seek to optimize our overall flow by finding input
parameters and optimization sequences that give dominating
runtime vs. solution quality tradeoffs. The aes design with
ClosedM1 is used for ExptA experiments. ExptB experi-
ments apply our flow to both ClosedM1-based and OpenM1-
based designs. For all experiments, we use β = 1 so that our
MILP formulation minimizes pure HPWL.

Figure 5: Scalability test with various window sizes and
perturbation ranges.

Figure 6: Sensitivity of total routed wirelength (RWL) and the
number of direct vertical M1 routings (#dM1) to α.

Figure 7: Results of various optimization sequences.

ExptA-1: Scalability study on window size and per-
turbation range. We sweep the window size and the
perturbation range to study the tradeoff between solution
quality and runtime. We assume square windows and vary
bw = bh from 5µm to 80µm. For the perturbation range, we
try lx ∈ {2, 3, 4, 5}, ly ∈ {0, 1}. In this experiment, we only

run one iteration in Algorithm 1 (i.e., one pair of DistOpt()).
Figure 5 shows the normalized routed wirelength (RWL) and
runtime versus the window size. As the window size increases,
the routed wirelength decreases, as expected. However, we
observe huge runtime increases, e.g., 5× runtime increase with
bw = bh = 40µm. To compromise the runtime overhead and
the solution quality, we select the option with shortest runtime
that gives ≤ 1% total routed wirelength increase compared
to the minimum routed wirelength; this is bw = bh = 20µm,
lx = 4, and ly = 1.
ExptA-2: Sensitivity study for α. We sweep α values
and study the impact of α on the number of direct vertical M1
routings (#dM1) and the routed wirelength (RWL). We vary α
from 0 to 6000 – e.g., for ClosedM1-based design, the objective
with α = 10 prefers one more aligned pin pair at the cost
of at most 10 units increase in HPWL. Figure 6 shows total
routed wirelength (RWL) and the number of direct vertical
M1 routings (#dM1) versus α. As α increases, the number of
direct vertical M1 routings increases. However, maximizing the
number of direct vertical M1 routings does not always reduce
routed wirelength, Based on our studies, we select α = 1200 for
ClosedM1. Similarly, we experiment on OpenM1-based designs
and select α = 1000.4

ExptA-3: Sequence of optimization. We explore various
sequences of input parameter sets (bw = bh, lx, ly) to
optimize our overall flow. We illustrate this with five example
optimization sequences: (1) (20, 4, 1); (2) (10, 3, 1) → (10,
4, 0) → (20, 4, 0) ; (3) (10, 3, 1) → (20, 3, 1) → (20, 3, 0);
(4) (10, 3, 1) → (20, 3, 0) ; and (5) (10, 3, 1) → (10, 3, 0) →
(20, 3, 1) → (20, 3, 0). Figure 7 shows RWL and runtime for
these optimization sequences. We observe that optimization
sequences 1 and 2 with lx = 4 give better solution quality (in
terms of RWL). However, optimization sequence 2 consumes
twice the runtime of optimization sequence 1. Therefore,
(20, 4, 1) would be a preferred choice of sequence.
ExptB-1: Detailed placement optimization for
ClosedM1-based designs. Table 2 shows overall results for
our detailed placement optimization. Our optimizer increases
the number of direct vertical M1 routings by more than 4×
compared to the initial post-routing solution, while decreasing
overall M1 wirelength. This means that we remove long vertical
M1 routings that are not used for direct vertical routing, while
generating many short, direct vertical M1 routes; this results
in smaller M1 wirelength and a larger number of M1 routing
segments. Along with the increase in the number of direct
vertical M1 routings, we achieve up to 6.4% routed wirelength
(RWL) reduction and up to 14.4% #via12 reduction without
design rule violations (DRVs).5 Total power also decreases by
up to 0.9%. For half of the designs, HPWL increases in favor
of more dM1 to further reduce routed wirelength.

To study the impact of direct M1 routing on congestion
reduction, we increase the initial utilization on the aes design
so as to induce congestion hotspots, which lead to design
rule violations. In Figure 8, we show that our optimizer
has the added benefit of avoiding a substantial fraction of
DRVs (#DRVs orig vs. opt in the figure). We note that
even though our optimization consistently decreases DRVs,
routing QOR is ultimately determined by the initial placement
quality. Notably, placement QOR with utilization 83% from
the commercial tool is worse than placement with utilization
84% in terms of DRVs. The cause of this phenomenon is
beyond our present scope.
ExptB-2: Detailed placement optimization for
OpenM1-based designs. Our optimizer increases the num-
ber of direct vertical M1 routings by around 60% compared to
the initial post-routing solution. We observe that the increase
of the number of direct vertical M1 routings for OpenM1-based
designs is much smaller than that for ClosedM1-based designs.
This small increase of the number of direct vertical M1 routings
results in only up to 2.2% routed wirelength reduction, and
up to 4.1% #via12 reduction, without design rule violations.

4We do not show data for OpenM1 due to the page limit.
5Here we refer to routing DRVs. In this paper, we do not
consider advanced node placement rules (e.g., drain-drain abut-
ment, minimum implant area, etc.). However, our framework
is fully compatible, and can be easily integrated, with the work
of [4] and complex sub-14nm rules.

Table 2: Experimental results of ExptB.
Design #Inst

Util
α

#dM1 M1 WL (µm) #via12 HPWL (µm) RWL (µm) WNS (ns) Power (mW) Runtime
(%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final Init Final (∆%) (sec)

ClosedM1-based designs
M0 9922 75% 1200 545 2955 (442.2) 676 629 (-7.0) 35766 31932 (-10.7) 22850 23760 (4.0) 27636 26833 (-2.9) 0.000 0.000 2.444 2.431 (-0.5) 344
aes 12345 75% 1200 631 3177 (403.5) 970 710 (-26.8) 43248 38631 (-14.4) 30420 28890 (-5.0) 32560 30471 (-6.4) 0.000 0.000 3.240 3.212 (-0.9) 711
jpeg 54570 75% 1200 3694 20688 (460.0) 3605 3329 (-7.7) 179315 153500 (- 5.7) 91030 88900 (-2.3) 96621 90593 (-6.2) 0.000 0.000 28.592 28.399 (-0.7) 1216
vga 68606 75% 1200 2460 12473 (407.0) 5973 5428 (-9.1) 270930 255466 (-10.7) 169200 169800 (0.4) 206558 204269 (-1.1) 0.000 -0.002 53.614 53.542 (-0.1) 561

OpenM1-based designs
M0 9891 75% 1000 1183 1931 (63.2) 3681 3790 (3.0) 35099 34336 (-1.7) 24790 24570 (-0.9) 29884 29575 (-1.0) -0.003 0.000 2.475 2.468 (-0.3) 298
aes 12348 75% 1000 1341 1975 (47.3) 4646 4620 (-0.5) 43004 42269 (-4.1) 30670 29980 (-2.2) 34338 33592 (-2.2) 0.000 0.000 3.273 3.263 (-0.3) 325
jpeg 54689 75% 1000 8391 13763 (64.0) 18709 19244 (2.8) 173622 166411 (-3.8) 92100 91110 (-1.1) 103257 101463 (-1.7) 0.000 -0.001 29.024 28.957 (-0.2) 1026
vga 68729 75% 1000 7714 13132 (70.2) 26912 26823 (-0.3) 261424 251558 (-2.2) 170000 168700 (-0.8) 215218 213598 (-0.8) 0.000 -0.002 53.805 53.730 (-0.1) 515

Figure 8: The number of DRVs after optimization for aes
design with various utilizations. Also shown: the number of
direct vertical M1 routings.

There can be several reasons for the lesser improvement seen for
OpenM1-based designs. Our current hypothesis is that P&R
for OpenM1 is very similar to traditional P&R in terms of pin
access. In traditional P&R flows with conventional libraries,
where most pins are on M1, the M2 layer is used to access the
pins. Similarly, OpenM1 cells also have pins (on or) below M1,
and M1 can be used for pin access. Thus, P&R for OpenM1
can be seen as a variant of the conventional P&R flow, where
the bottom routing layer is shifted down to M1. Indeed, in
OpenM1-based designs, direct vertical M1 routing can block
access to other pins, which limits the wirelength reduction.
On the other hand, in ClosedM1-based designs, direct vertical
M1 routing does not block any pin access, and is thus “free”
in terms of routing resource. Compared to ClosedM1, where
routed wirelength can be reduced even at the cost of HPWL
increase, OpenM1-based designs prefer smaller α to reduce
HPWL. However, given our use of a black-box commercial
router, it is difficult to identify root causes of the improvement
difference between OpenM1 and ClosedM1. This is the subject
of one of our ongoing studies.

6. CONCLUSIONS
In this work, we propose a vertical M1 routing-aware

detailed placement optimization based on mixed-integer linear
programing (MILP) for two new cell architectures in sub-10nm
nodes, i.e., ClosedM1 and OpenM1. With our optimization,
up to 6.4% (resp. 2.2%) total routed wirelength reductions
and 14.4% (resp. 4.1%) #via12 reductions are achieved
for ClosedM1-based (resp. OpenM1-based) designs, with no
adverse timing impact.

We note that the library characterization model for
ClosedM1 library cells might need to change since the vertical
M1 routings might affect cells’ library model (change in gate
capacitance, etc.). However, according to our study with an
INV cell in ASAP ASU 7nm PDK [14], the timing impact is
negligible (≤ 0.1ps).6

Our future works include (i) a comprehensive study of
timing library characterization for ClosedM1, to accurately
capture the timing impact of direct vertical M1 routing; (ii)
extension of our placement objective function to consider other
design criteria, including timing criticality, pin density, routing

6We modify pin shapes (increase the pin length by 32nm)
in a cell layout, run parasitic extraction with Calibre xRC
v2016.1 31.21 [18], and measure cell delay and slew with
HSPICE I-2013.12 [22]. We observe that the delay and slew
impacts of the pin modifications are negligible (≤ 0.1ps).
Further, there are only a small number of possible uses of
vertical M1 incident to a cell (this number is a function of the
number of pins, and of upward versus downward alignments).
In a regime where these delay and slew changes must be
modeled, each of these contexts could be characterized.

congestion, and routing design rules; (iii) (meta)heuristic
innovation to improve QOR and scalability; and (iv) theoretical
understanding of OpenM1-based layout design to inform an
improved optimization strategy.

7. REFERENCES
[1] M. Gupta, K. Jeong and A. B. Kahng, “Timing

Yield-Aware Color Reassignment and Detailed
Placement Perturbation for Bimodal CD Distribution in
Double Patterning Lithography”, IEEE TCAD 29(8)
(2010), pp. 1129-1242.

[2] P. Gupta, A. B. Kahng and C.-H. Park, “Detailed
Placement for Improved Depth of Focus and CD
Control”, Proc. ASPDAC, 2005, pp. 343-348.

[3] P. Gupta, A. B. Kahng and C.-H. Park,
“Manufacturing-Aware Design Methodology for Assist
Feature Correctness”, Proc. SPIE 5756 (DPIMM III),
2005, pp. 131-140.

[4] K. Han, A. B. Kahng and H. Lee, “Scalable Detailed
Placement Legalization for Complex Sub-14nm
Constraints”, Proc. ICCAD, 2015, pp. 867-873.

[5] A. B. Kahng , P. Tucker and A. Zelikovsky,
“Optimization of Linear Placements for Wirelength
Minimization with Free Sites”, Proc. ASPDAC, 1999, pp.
241-244.

[6] A. B. Kahng, I. L. Markov and S. Reda, “On
Legalization of Row-Based Placements”, Proc. GLSVLSI,
2004, pp. 214-219.

[7] Y. Du and M. D. F. Wong, “Optimization of Standard
Cell Based Detailed Placement for 16nm FinFET
Process”, Proc. DATE, 2014, pp. 1-6.

[8] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for
Standard Cell Placement”, Proc. ICCAD, 2000, pp.
165-170.

[9] S. Li and C.-K. Koh, “Mixed Integer Programming
Models for Detailed Placement”, Proc. ISPD, 2012, pp.
87-94.

[10] S. Li and C.-K. Koh, “MIP-based Detailed Placer for
Mixed-size Circuits”, Proc. ISPD, 2014, pp. 11-18.

[11] T. Lin and C. Chu, “TPL-Aware Displacement-driven
Detailed Placement Refinement with Coloring
Constraints”, Proc. ISPD, 2015, pp. 75-80.

[12] Y. Lin, B. Yu, B. Xu and D. Z. Pan. “Triple Patterning
Aware Detailed Placement Toward Zero Cross-Row
Middle-of-Line Conflict”, Proc. ICCAD, 2015, pp.
396-403.

[13] B. Yu, X. Xu, J.-R. Gao and D. Z. Pan, “Methodology
for Standard Cell Compliance and Detailed Placement
for Triple Patterning Lithography”, Proc. ICCAD, 2013,
pp. 349-356.

[14] ASAP ASU 7nm PDK, http://asap.asu.edu/asap/
[15] Cadence Innovus User Guide, http://www.cadence.com
[16] IBM ILOG CPLEX.

http://www.ilog.com/products/cplex/
[17] LEF/DEF reference 5.7. http:

//www.si2.org/openeda.si2.org/projects/lefdef
[18] Mentor Graphics Calibre, https://www.mentor.com
[19] Si2 OpenAccess. http://www.si2.org/?page=69
[20] OpenCores: Open Source IP-Cores,

http://www.opencores.org
[21] Synopsys Design Compiler User Guide,

http://www.synopsys.com
[22] Synopsys HSPICE User Guide,

http://www.synopsys.com

