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Abstract—Energy and battery lifetime constraints are critical
challenges to IC designs. Stacked power-domain implementation, which
stacks voltage domains in a design, can effectively improve the power
delivery efficiency and thus improve battery lifetime. However, such
an approach requires balanced current between different domains
across multiple operating scenarios. Furthermore, level shifter insertion
(together with shifters’ delay impacts), along with placement constraints
imposed by power domain regions, can incur power and area
penalties. To our knowledge, no existing work performs sub-block-level
partitioning optimization for stacked-domain designs. In this paper, we
present an optimization framework for stacked-domain designs. Based
on an initial placement solution, we apply a flow-based partitioning that
is aware of multiple operating scenarios, cell placement, and timing-
critical paths to partition cells into two power domains with balanced
current and minimized number of inserted level shifters. We further
propose heuristics to define regions for each power domain so as to
minimize placement perturbation, as well as a dynamic programming-
based method to minimize the area cost of power domain generation. In
an updated floorplan, we perform matching-based optimization to insert
level shifters with minimized wirelength penalty. Overall, our method
achieves more than ∼10% and 3X battery lifetime improvements in
function and sleep modes, respectively.

I. INTRODUCTION

Energy and battery lifetime constraints induce new and critical
challenges to IC designs, especially for mobile and IoT (Internet
of Things) applications. To achieve power autonomy in the era
of a slowing Moore’s law, new low-power techniques must be
exploited. While many low-power techniques [9] have concentrated
on the circuit side of system design, power management techniques
have received growing attention due to the importance of power
efficiency. Notably, the misalignment of battery voltages compared
to scaled core voltages causes inefficiencies that present significant
opportunities for power saving. In order to better align SoC power
domain voltages with battery voltages, stacked power domain (or
voltage stacking) has been proposed [20][22][25].

Figure 1 illustrates the basic idea of stacked power domain. A
stacked power-domain (or stacked-domain) design connects in series
power domains that are connected in parallel in a conventional
design.1 Figure 1 shows that one power domain (i.e., the top
domain) is placed over the other (i.e., the bottom domain) to double
the voltage and (ideally) halve the current compared to that in a
conventional design. More specifically, if the supply voltage of a
conventional design is V (i.e., V DD = V and V SS = 0), then the
{V DD, V SS} of the top and bottom domains in the corresponding
stacked-domain design are {2V , V } and {V , 0}, respectively.
Moreover, in the ideal case the currents are balanced across the
two domains. The stacked-domain scheme provides implicit 2:1
downconversion of external supplies. In light of this, there is no
need to employ a bulky supply to generate the supply voltage for

Fig. 1. Comparison between (a) stacked power-domain design, versus
(b) conventional design. VR indicates voltage regulator. The orange arrows
indicate current from voltage regulators. The red arrow indicates stacked
current.

1Our study focuses on optimization with two power domains (i.e., top
and bottom domains) and conventional 2D implementation (as opposed to
three-dimensional integration). Stacked-domain optimization with more than
two power domains and/or in 3DICs is left as a direction for future research.

TABLE I
DESCRIPTION OF NOTATIONS USED IN OUR DISCUSSION.

Term Meaning
Pext total input power from external supply (e.g., battery)

PV R,in input power of voltage regulator from external supply
PV R,out output power of voltage regulator to core

ηV R power conversion efficiency of voltage regulator
Pstk direct power of stacked power domain from external supply
Pcore total power consumption of core
Istk stacked current (current from top domain to bottom domain)
IV R output current from voltage regulator
T battery lifetime

the core (i.e., gate instances and memories). Instead, it suffices to
employ a much smaller converter that acts only as a watchdog to
the supply rail that connects the power domains. This results in
increased power efficiency for the overall system.

Based on the power conversion modeling proposed in [3],
we derive the battery lifetime improvement from stacked-domain
optimization as follows. (Table I lists the notations used in our
discussion.) Since battery lifetime (T ) is inversely proportional to
Pext, we compare Pext of a stacked-domain design to that of a
conventional design.2 By definition (see Table I), in a stacked-
domain design we have

Pext = Pstk + PV R,in = Pstk + PV R,out/ηV R (1)

On the other hand, in a conventional design, power only outputs
from the voltage regulator. Thus, the total input power from the
external supply of a conventional design (P ′

ext) is calculated as

P ′
ext = Pcore/ηV R (2)

By assuming the same core power consumption in both stacked-
domain and conventional designs, we have

Pcore = Pstk + PV R,out (3)

Furthermore, based on the model described in [3], we have

PV R,out/Pcore = IV R/(2 · Istk + IV R) (4)

Finally, based on the above analyses, the battery lifetime ratio
between the stacked-domain design (T ) versus the conventional
design (T ′) is3

T

T ′ =
P ′

ext

Pext
=

2 · Istk + IV R

2 · ηV R · Istk + IV R
(5)

We observe that the battery lifetime benefit from stacked-domain
implementation increases with a smaller IV R. As a motivating
example, if the current is perfectly balanced between two domains
(i.e., IV R = 0), assuming ηV R = 80%, the stacked-domain
implementation provides 25% battery lifetime improvement over
the conventional implementation. Moreover, since power efficiency
of voltage regular decreases with smaller supply current, battery
lifetime benefit from stacked-domain implementation is expected

2We use battery lifetime (T ) as the metric to evaluate energy
improvement achieved by our proposed methodology. We also report power
values of core (Pcore) and the entire system (Pext) from our optimization
in Table III.

3 P ′
ext

Pext
=

Pcore/ηV R
Pstk+PV R,out/ηV R

=
(2·Istk+IV R)/ηV R
2·Istk+IV R/ηV R

. See also [3].



to be higher for designs in low-power modes that use a voltage
regulator optimized for high-power cases..

Although stacked-domain implementation provides significant
battery lifetime improvement, it also raises non-trivial
implementation methodology challenges that must be solved.
First, the communication between the power domains must be
ensured by level shifters that can convert such extreme signal
levels. Second, the power efficiency improvement is directly
dependent on the current balancing between the two power
domains. In other words, the design must be bipartitioned in terms
of current consumption. We also note that such a partitioning
optimization must comprehend multiple operating scenarios,
area and power penalties as well as timing impact of level
shifters, as well as additional placement constraints imposed by
region definition of power domains. The first challenge has been
thoroughly investigated, with and several different level shifter
architectures having been proposed [22][25]. However, optimization
of partitioning and layout planning of the designs has remained
an open challenge that prior works (which have mostly been
ad hoc or design-specific) do not ultimately answer for general
systems. In this paper, we address this open challenge and provide
a comprehensive optimization framework for partitioning and
floorplanning of stacked-domain implementation that can be used
for a wide range of systems.

The contributions of this paper are as follows.
• We propose a comprehensive optimization framework for

stacked-domain implementation. Key elements include a flow-
based partitioning with layout and timing-path awareness,
heuristics for layout region generation of power domains, and
a matching-based optimization for level shifter insertion.

• We are the first to propose a partitioning optimization at the
sub-block level for stacked-domain implementation that can be
used for a wide range of systems.

• We validate our optimization flow on an industrial design,
in the context of an industrial implementation flow. We also
compare our method to the recent work of [3].

• Our optimized stacked-power domain designs achieve more
than 10% and 3X battery lifetime improvement compared
to the conventional designs in function and sleep modes,
respectively.

II. PREVIOUS WORK

In this section, we review the previous literature on (i) stacked-
domain implementation and (ii) netlist partitioning.4

A. Stacked-Domain Implementation
The circuit blocks needed for a stacked-domain implementation

– such as level shifters and voltage regulators – are well-studied
in the literature. However, to our best knowledge, no existing work
is able to fully automate the implementation flow of a stacked-
domain design. Various voltage regulators and level shifters have
been studied in [22][25], but the designs used in their studies are
quite simple. A smart regulation scheme has been proposed in [20],
and the studied design has relatively higher complexity, featuring
processor cores. At the same time, in the work of [20] there is
no connection between different processor cores, which makes the
partitioning problem much simpler. Similarly, [21] and [5] only
focus on specific design blocks such as IO cells and memories. A
recent work [3] applies stacked-domain optimization to a complete
MCU system designed with a standard design flow. The partitioning

4Our stacked-domain optimization problem is different from the power-
island generation problem [26][8][13], in that the power-island generation
optimization assumes different supply voltages for power domains and
minimizes the power overhead from voltage assignments, while our
optimization maximizes battery lifetime. Moreover, many critical issues such
as timing impact of level shifters, insertion of shifter rows, region definition
of power domains, etc. are not addressed in power island-related works.

approach presented in [3] is somewhat ad hoc, and is not applicable
to a general design. By contrast, here we present a comprehensive
optimization framework for stacked-domain implementation that is
applicable to a wider range of designs.

B. Netlist Partitioning
As a classic problem in VLSI optimization, netlist partitioning

has been thoroughly studied in previous literature. A comprehensive,
still-relevant taxonomy of approaches is given in [1]. We highlight
four basic partitioning approaches.
Move-based approach. To partition a given set of vertices into
two partitions with balanced weights and minimized number of
hyperedge cuts, Kernighan-Lin [18] and Fiduccia-Mattheyses [11]
iteratively move or swap vertices guided by gain functions (within
a pass-based structure) to achieve a local optimal solution. This
greedy iterative improvement approach is efficient and leads to
relatively good solution quality. Important improvements and/or
extensions have been proposed, such as multi-way partitioning [16],
multi-level extension [6], timing path awareness [15], and
“lookahead” gain functions (e.g., gain vectors, CLIP/CDIP and
LIFO gain buckets, etc. [10][14][19]).
Mathematical programming-based approach. Other works
formulate mathematical programs to optimize netlist partitioning.
Shih et al. [24] formulate the timing-aware partitioning problem as
quadratic boolean programming. They minimize the total cost of
cell-to-partition assignments as well as the number of cuts, with
respect to capacity and timing constraints. Goemans et al. [12] use
semidefinite programming for partitioning optimization. However,
their objective is to maximize the number of cuts under capacity
constraints.
Flow-based approach. In light of the max-flow min-cut theorem,
Yang et al. [27] propose to use repeated max-flow computations and
clustering operations to achieve a balanced bipartitioning solution.
The work of [7] documents high efficiency and relatively good
solution quality of flow-based partitioning with a min-cut objective.
Clustering approach. Netlist partitioning can also be achieved by
bottom-up clustering. For example, Rajaraman et al. [23] propose
a clustering approach to minimize the delay from PIs to POs. With
a maximum-area constraint for each cluster, they iteratively cluster
cells until all cells are clustered.

In this work, we apply the flow-based approach [27] to partition
instances into two power domains. We propose several extensions
to the existing flow-based partitioning including layout and timing-
path awareness, multi-scenario weight (i.e., current) balancing, and
a prior clustering step for runtime reduction.

III. METHODOLOGY

We now describe our optimization framework for stacked-domain
implementation. We first state our stacked-domain optimization
problem as follows.

Given: A netlist, timing constraints, level shifters, voltage
regulator efficiency, and switching information of instances in the
netlist,

Do: partition the netlist instances into two domains, define the
layout region of each domain, and place instances and level shifters,
such that battery lifetime is maximized.
As implied by Equation (5), to maximize the battery lifetime, our
basic objective is to balance the current between the two power
domains, while minimizing the power penalty due to level shifter
insertion.

Figure 2 shows our overall optimization flow. A common practice
in stacked-domain implementation is to partition the netlist (i.e.,
define the power domain of each instance or block) prior to
the floorplanning stage [3]. However, performing power domain
assignment before placement can result in suboptimal floorplan
and placement solutions. More importantly, placement optimization
inserts buffers and sizes cells, which can change the current profile



Fig. 2. Overall optimization flow.

Fig. 3. Example of optimization: (a) layout-aware partitioning, (b) region
definition of power domains, and (c) level shifter insertion in the updated
floorplan. In blue are instances assigned to the bottom domain and in red are
instances assigned to the top domain. In yellow are level shifters. Design:
AES (∼11K instances). Technology: 28LP.

of each power domain. As a result, currents that have been balanced
during the partitioning stage are no longer balanced after the
placement stage. To resolve this, we propose to perform a trial
placement, based on which we perform layout-aware partitioning
(with minimized number of cuts as well as placement perturbations)
to assign instances to power domains. Figure 3(a) shows an example
of our layout-aware partitioning solution on design AES [30] in
28LP technology. Based on the partitioning solution, we define
the layout region for each power domain such that each domain
has a continuous region (Figure 3(b)). Note that since gaps must
be inserted along the boundary between two power domains,
we propose a dynamic programming optimization to minimize
the boundary length between two domains. We then legalize
instance placements within the (updated) region for each power
domain using a commercial P&R (place-and-route) tool [29]. We
then update the floorplan by shifting the power domains (as
shown in Figure 3(c)) and inserting level shifters.5 We perform a
matching-based optimization to determine level shifter placement
locations that minimize wirelength. Last, we perform an incremental
placement optimization to fix timing violations.

A. Flow-Based Netlist Partitioning
The greedy iterative partitioning approach is not naturally

amenable to timing path-aware partitioning, and has no mechanism
to preserve solution structure of an initial (trial) placement. And,
mathematical programming-based approaches typically have large
runtimes. Thus, we apply the flow-based approach described in [27]
to partition instances into two power domains. Figure 4 illustrates
the basic idea of the flow-based partitioning. According to the max-
flow min-cut theorem, the approach finds the partitioning solution
with the minimum number of cuts for a given netlist via a max-flow
optimization. However, this does not guarantee that the balancing
constraint is met. To address this, after each max-flow optimization,
the approach clusters the vertices belonging to the smaller partition

5We understand that modification of the block size might not be
consistent with certain implementation flows. At the same time, we believe
that performing initial trial placement (with appropriate instance bloating)
in a block having Figure 3(c)’s shape will not diverge significantly from the
initial trial placement in Figure 3(a), particularly with improved (smaller)
level shifter designs. Ongoing work is aimed at a predictive (or, “one loop”)
methodology to determine the block size prior to trial placement.

Fig. 4. Flow-based partitioning. a and b are source and sink, respectively.
All vertices have the same weight. Red dotted lines indicate cuts. (a)
Initial flow network. (b) First max-flow min-cut computation. (b) Clustering
operation. (c) Second max-flow min-cut computation.

together with one neighbor vertex (to avoid obtaining the same
partitioning solution) into one super vertex. Based on the updated
flow network, another max-flow optimization is performed. The
approach iteratively performs (incremental) max-flow optimization
and clustering until the balancing constraint is satisfied.

We adopt the flow-based partitioning approach to our stacked-
domain optimization with the following five extensions.
Source and sink selection. The approach in [27] randomly picks
two nodes (instances) in the flow network (netlist) as the source
and sink nodes. However, there are cases in which the flows
between selected source and sink vertices cannot cover the entire
flow network, resulting in unbalanced partitioning solutions. As an
example, selection of vertices a and b as the source and sink from
the flow network shown in Figure 5(a) will not able to achieve
a balanced partitioning solution. To address this, we add a super
source and a super sink and connect them to multiple vertices (e.g.,
PIs and POs in a netlist, or instances located at the core boundary)
with edges of infinite capacity to minimize the number of uncovered
vertices (instances) as shown in Figure 5(b).

Fig. 5. (a) Choose a / b, or c / d, or d / c as source / sink cannot lead
to a balanced solution. (b) Adding a super source (s) and a super sink (t)
resolves the issue. Edges in black have unit capacities. Edges in red have
infinite capacities.

Layout awareness. To avoid excessive placement perturbation,
which can result in current profile change and power penalty, the
partitioning optimization must be aware of trial placement locations
of instances – such that instances partitioned into the same power
domain are placed close to each other in the original trial placement.
We achieve this required layout awareness in two ways. (i) We
only select the instances located close to each other to connect
to the super source (or super sink). As an example, we select
instances located within a particular distance (e.g., ten cell rows)
from the bottom (resp. top) core boundary to connect to the super
source (resp. super sink). (ii) After each max-flow optimization, we
detect outliers, which are instances belonging to the larger-current
partition that are located within a region with a majority of instances
belonging to the smaller-current partition. We then cluster these
outliers with the instances from the smaller-current partition.
Critical-path awareness. Ignoring signal flow direction and timing
path structure during the partitioning optimization can easily result
in multiple cuts along one timing path. We extend the partitioning
flow in [27] to minimize the number of cuts along timing-
critical paths. Similarly to the layout awareness extension discussed
above, after each max-flow optimization we detect “V-shaped
vertices” [15], which are a sequence of instances belonging to the



Fig. 6. HEM clustering solution. Different clusters are indicated by different
colors. (But since we are limited by 64 available colors, different clusters
can have the same color. Also, clusters with small size might not be visible
from the figure.) #Clusters = 200. Levels of clustering = 18. Clustering ratio
at each level = 0.76. Design: AES. Technology: 28LP.

larger-current partition along a timing-critical path, where the fanin
and fanout instances of these instances along the timing-critical path
are in the smaller-current partition. We then collapse (cluster) the
instances corresponding to the V-shaped vertices into the smaller-
current partition without violating the balancing constraints.

Pre-clustering. Although the max-flow optimization can be
achieved with an incremental flow computation and the entire
optimization takes O(N) iterations to converge where N is the
number of instances in a design, the runtime in practice can be
substantial for a large design. To reduce the runtime, we perform
a pre-clustering optimization based on the heavy-edge matching
(HEM) strategy [17]. We enforce layout-awareness constraints (i.e.,
an upper bound on the distance between two vertices that can be
clustered) during the HEM. Figure 6 shows an example of the
HEM clustering up through 18 levels (clustering ratio = 0.76 at
each level), showing how instances within the same cluster are
spatially proximate. Our experimental results show that we can
reduce runtime by 75% (two HEM levels and overall clustering
ratio of 0.5) with negligible degradation of solution quality (e.g.,
cut number).

Multiple operating scenarios. To ensure high power efficiency
across different operating scenarios, the partitioning optimization
must balance currents between two domains across multiple
scenarios. To achieve this, we use the weighted sum of normalized
currents from different scenarios during our optimization.
Specifically, the delta current is calculated as

∆I =
X

i

(wi · |Ii
top − Ii

bot| / (Ii
top + Ii

bot)) (6)

where Ii
top and Ii

bot are respectively the currents of top and bottom
domains in the ith mode, and wi is the weighting factor of the ith

mode, such that
P

i wi = 1. Our optimization ensures that ∆I does
not exceed a predefined upper bound.

Fig. 7. FM-based grid movement. (a) Initial placement solution. In red
and blue are instances partitioned to top and bottom domains. (b) In yellow
are outliers of the top domain. In green are neighboring grids of the top
domain. (c) Post-movement placement, where each domain has a continuous
region. (The small number of remaining outliers are minority instances in
their grids, and will be legalized during an incremental placement.) Design:
AES. Technology: 28LP.

B. Domain Region Definition
In this section, we describe our methodologies to define the layout

region (power island) for each power domain. The definition of the
layout region for each power domain affects the design quality in
two fundamental ways. (i) Gap area must be inserted along the
boundary between different power domains. Therefore, a longer
boundary length will lead to higher area penalty. (ii) The power
domain definitions will have downstream impact on the PDN (power
delivery network) design, which is not yet implemented at this point.
Therefore, it is desirable to adjust the power domain definitions for
minimized area, power and performance penalties. If the partitioning
and the trial placement results in discontinuous power domains, the
length of the power domain boundaries is highly likely to be longer
compared to the case when the regions of each power domain are
merged. Moreover, the power routing will be more difficult, since
different power rails will need to be routed to discontinuous power
domain regions. Thus, we seek to have only two regions (i.e., power
islands) corresponding to the two power domains.

Although our partitioning optimization is layout-aware, there can
still be separated regions for each power domain. Figure 7(a) shows
an example trial placement and partitioning solution where the top
domain (shown in red) has two separated regions. To merge the
regions while minimizing placement perturbation (e.g., wirelength
increase), we perform an FM-based grid movement optimization
(i.e., an iterative, swap-based greedy algorithm as described in
Algorithm 1). We first divide the core area into grids. The power
domain of each grid if defined as the power domain of majority
instances within the grid. We then define the outliers (i.e., grids
outside the largest continuous region of the corresponding domain)
and neighboring grids (i.e., grids adjacent to the largest continuous
region of the different domain) (Line 1). Figure 7(b) shows an
example of outliers and neighboring grids. We calculate the cost
to swap pairs of outliers and neighboring grids (Lines 2-8). We
iteratively swap the pair of an outlier and a neighboring grid with
the minimum movement cost, until all outliers (e.g., yellow grids
in Figure 7(b)) are removed (Lines 9-16).

Algorithm 1 FM-based grid movement.
1: U ← find outliers; H ← find neighboring grids
2: for all u ∈ U , h ∈ H do
3: if u.domain 6= h.domain then
4: cost(u, h)← HPWL increase by swapping u and h
5: else
6: cost(u, h)← +∞
7: end if
8: end for
9: while U 6= ∅ do

10: (u′, h′) ←Mincost(u,h){(u, h) | u ∈ U, h ∈ H}
11: swap u′ and h′

12: if create new outliers then
13: revert the swap; cost(u′, h′)← +∞
14: end if
15: update U , H and costs
16: end while

In the last step of domain region definition, we apply dynamic
programming to minimize the length of the boundary between two
power domains while maintaining the area within each domain.
As the base cases, we calculate the boundary length decrease of
each boundary segment by simplifying the boundary shape (e.g.,
highlighted segment in Figure 8). We note that such simplification
must meet an upper bound of moved area (i.e., total area with
changed domain assignment). Assuming that the (turning) points
along the boundary are indexed from left to right or from bottom
to top, the recurrence relation in our dynamic programming
optimization is

Sol(j) = Min(Sol(i).length + seg(i, j).length), ∀1 < i < j
(7)

where Sol(j) is the optimized boundary solution from the first
point to jth point, and seg(i, j) is the simplified boundary segment



Fig. 8. Boundary optimization. (a) Original boundary between two power
domains after grid movement. (b) Optimized boundary with smaller length.
An example of segment optimization is shown. Optimized segments have
smaller total length while maintaining the same area in each power domain.
Design: AES. Technology: 28LP.

between the ith and the jth points. The dynamic programming-
based boundary simplification has O(M2) time complexity, where
M is the number of points or segments. The time complexity further
decreases to O(M) if we only search a limited range of existing
sub-solutions (i.e., i in Equation (7)).

C. Level Shifter Insertion
In the last step of our optimization, we perform re-floorplanning

based on the defined power domain regions and insert level
shifters. We assume that the layout of the level shifter has
already included the boundary of the deep n-well of either or
both power domains, and that the edges facing either of the
power domains have a standard-cell row structure. As a result,
we are able to seamlessly integrate the level shifters with zero
minimum distance from standard cells. The row height of our
level shifter is 6X of the standard-cell row height.6 As shown
in Figure 3(c), in the updated floorplan, we shift the top power
domain by the minimum required number of shifter rows for level
shifter insertion and insert level shifter instances between two
power domains. We perform a matching optimization (using the
Hungarian algorithm [28]) to determine the placement locations of
level shifters. More specifically, we enumerate possible placement
locations in the shifter rows and calculate the potential cost of
placing each level shifter onto each candidate placement location.
We define the cost as the total HPWL (half-perimeter wirelength)
of nets connected to the level shifter. Based on the cost matrix,
we perform matching optimization to assign placement location for
each level shifter while minimizing the total cost.

IV. EXPERIMENTAL RESULTS

We perform experiments in a 28nm LP foundry technology
with dual-VT libraries. We use four design blocks (AES, DES,
JPEG, VGA) from OpenCores [30] as our testcases. Parameters
of these four testcases are shown in Table II. The worst-case
timing and power analysis view for AES, DES, JPEG and VGA
is (SS, 0.95V, 125◦C). We synthesize designs using Synopsys
Design Compiler vI-2013.12-SP3 [31] and then place and route
using Cadence Innovus Implementation System v16.1 [29]. We set
the placement density at the floorplan stage as 70%, and perform
timing and power analyses using Cadence Innovus Implementation
System v16.1. We also validate our optimization framework on
an industrial design that contains dual-core M4 MCU and six
memories in a 40nm CMOS foundry technology with HVT-only
cells. The worst-case timing and power analysis views for the dual-
core M4 design are respectively (SS, 0.99V, 125◦C) and (TT, 1.1V,

TABLE II
TESTCASE PARAMETERS.

design technology #instances #flops clock period
AES 28nm LP ∼11K 530 1.2ns
DES 28nm LP ∼17K 530 1.4ns
JPEG 28nm LP ∼42K 4512 1.6ns
VGA 28nm LP ∼58K 17053 2.0ns

M4 (dual core) 40nm ∼113K 15245 20ns
6Our level shifter model is from our industry collaborators.

Fig. 9. Power efficiency of switched-capacitor voltage regulator used in [4].

25◦C). We implement the M4 design with Cadence tools. However,
we cannot disclose the tool names and versions in the industry
collaborator’s implementation flow. The level shifter implemented
in 40nm technology occupies six standard cell rows × 4µm space.
The energy/cycle is 35fJ/cycle. The shifter propagation delay for
nominal PVT (TT, 1.1V, 25◦C) is 400ps. According to the delay,
area and power ratios between the level shifter and the minimum-
size inverter in 40nm technology, we generate level shifter models in
28nm LP technology. Figure 9 shows the relation between output
current versus the power efficiency of the used voltage regulator,
provided by our industry collaborators. Our optimization flow is
implemented in C++. Functions used in P&R tools are implemented
in Tcl. We conduct our experiments on a 2.5GHz Intel Xeon server.
A. Comparison to Conventional Designs

Table III shows the comparison between our stacked-domain
optimization (opt) versus the conventional implementation (ref)
on four testcases in 28nm LP and an industrial design in 40nm.
Our optimization comprehends both function mode and sleep
mode (i.e., with only leakage power). In 28nm technology, our
optimization achieves an average of 14% and 238% battery lifetime
improvements in function and sleep modes, respectively. On an
industrial design in 40nm, we also achieve 11% and 270% battery
lifetime improvements in function and sleep modes, respectively.
Moreover, the power penalty due to our optimization (see Pcore) is
less than 7% for most cases, while the currents are well-balanced
(i.e., with <10% difference) between the top and bottom power
domains (see Ibot / Itop). As a result, our optimization significantly
reduces Pext, and leads to an improved battery lifetime. We also
observe that the battery lifetime increases more in the sleep mode.
This is because the voltage regulator has lower efficiency with
smaller current (as shown in Figure 9. Therefore, stacked-domain
optimization is expected to provide more energy and battery lifetime
benefits in low-power modes if the voltage regulator is optimized
for high-power cases. We note that all the implementation solutions
except that of [2][3] have negligible timing violations (i.e., #timing
violation paths < 5), and the slightly improved worst negative
slack (WNS) values of our optimization solutions might be due
to tools’ noise. Moreover, since logic gates are densely connected
in blocks AES, DES, JPEG and VGA, and since the block sizes are
small, the relative area overheads due to level shifter insertion are
large. Exploration of the tradeoff between power and area penalties
due to level shifter insertion versus current balancing is one of
our future directions. Runtimes shown in Table III indicate the
extra runtime of our optimization that includes partitioning, re-
floorplanning and incremental placement optimization. The results
also show that simply partitioning two cores into two domains [2]
in an evenly partitioned floorplan with a horizontal cut (without
considering timing and layout impacts) results in degraded battery
lifetime.
B. Sensitivity to Level Shifter Delay

We further study the impact of level shifter model on our stacked-
domain optimization. We use a pessimistic (i.e., worst-case) model
that has roughly 3-4× power, area and delay compared our current
(i.e., nominal-case) model. Figure 10 shows that the pessimistic
level shifter model leads to slightly larger total design power (Pcore)



TABLE III
EXPERIMENTAL RESULTS. (POWER UNIT: MW. CURRENT UNIT: MA.)

design flow WNS #inst inst area #LS func mode sleep mode runtime
(ps) (µm2) Pcore Ibot/Itop Pext T Pcore Ibot/Itop Pext T (min)

AES ref -24 10799 8864 0 8.80 9.26/0.00 10.98 1.00 0.09 0.09/0.00 0.57 1.00 -
(28nm) opt -2 10989 10846 166 9.38 4.83/5.04 9.76 1.13 0.09 0.05/0.04 0.14 4.19 8

DES ref 4 16505 16790 0 15.83 16.67/0.00 19.76 1.00 0.06 0.07/0.00 0.43 1.00 -
(28nm) opt 4 16635 18374 135 16.82 8.83/8.87 16.99 1.16 0.06 0.04/0.03 0.08 5.16 7
JPEG ref -4 42131 47486 0 38.54 40.57/0.00 48.12 1.00 0.30 0.32/0.00 0.74 1.00 -

(28nm) opt 0 42679 55377 673 40.68 19.43/23.39 41.58 1.16 0.31 0.16/0.16 0.31 2.39 14
VGA ref 0 57790 97752 0 52.95 55.74/0.00 66.11 1.00 0.35 0.37/0.00 0.86 1.00 -

(28nm) opt 2 58165 103824 520 58.28 28.69/32.65 59.18 1.12 0.35 0.20/0.17 0.48 1.81 21

M4 ref 12 113421 852173 0 7.09 6.45/0.00 8.86 1.00 0.17 0.15/0.00 0.64 1.00 -
opt -6 112903 864178 477 7.33 2.74/3.92 8.00 1.11 0.17 0.75/0.77 0.17 3.70 34

(40nm) [2][3] -1446 110773 930745 774 8.43 2.46/5.21 9.26 0.96 0.17 0.03/0.14 0.63 1.02 -

due to larger level shifter power and timing impact. Results also
show larger ∆I with the pessimistic level shifter model. The larger
current difference comes from the level shifters’ timing and area
impact.

Fig. 10. Impact of level shifter delay, area and power on design QoR in
(a) function mode and (b) sleep mode. Design: M4. Technology: 40nm.

C. Sensitivity to Voltage Regulator Power Efficiency
Last, we study impact of voltage regulator efficiency on battery

lifetime improvement in stacked-domain designs. More specifically,
we assume a higher power efficiency η′ = 1− (α · (1− η)), where
η is the original power efficiency, and (1-α) indicates the efficiency
improvement (shown as the x-axis in Figure 11). Figure 11 shows
battery lifetime decreases with a higher voltage regulator efficiency,
especially in the sleep mode.

Fig. 11. Impact of voltage regulator efficiency on battery lifetime
improvement. Design: M4. Technology: 40nm.

V. CONCLUSION

In this paper, we propose the first comprehensive optimization
framework for stacked power-domain implementation with
maximized battery lifetime. We extend the existing flow-based
partitioning methodology with layout- and timing-path-awareness,
as well as multi-scenario balancing objective. We further propose
an FM-based grid movement and a dynamic programming-based
boundary optimization to define layout region (power island) of
each power domain. Last, we insert level shifter rows in an updated
floorplan and place level shifters using a matching optimization.
We validate our optimization flow in both 28nm LP and 40nm
technologies and on an industrial design. Our optimization achieves
more than 10% and 3X battery lifetime improvements for function
and sleep modes compared to the conventional design. Our future
works include (i) a complete IC implementation flow for stacked-
domain designs, (ii) a hierarchical and block-aware partitioning
optimization, (iii) a predictive methodology to determine the block

size prior to trial placement, (iv) stacked-domain optimization with
> 2 power domains and/or in 3DICs, and (v) exploration of the
tradeoff between power and area penalties that is due to level
shifter insertion versus current balancing.
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