
Improved Flop Tray-Based Design Implementation for Power Reduction

Andrew B. Kahng†‡, Jiajia Li‡ and Lutong Wang‡
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA

{abk, jil150, luw002}@ucsd.edu

ABSTRACT
Clock network power reduction is critical in modern SoC
designs. Application of flop trays (i.e., multi-bit flip-flops) can
significantly reduce the number of sinks in a clock network, and
thus reduce the number of clock buffers, clock wirelength, and
clock network power. Shared inverters within flop trays also
reduce power at the flip-flop level. However, large-size flop
trays typically induce placement and routing congestion, and
impose additional placement constraints on their fanin/fanout
logic cones; this results in power overheads on datapaths. At
the same time, to our knowledge, few previous works have
studied flop trays with more than four bits. The “chicken-
and-egg” loop between flop tray generation and placement
optimization is another challenge to flop tray-based design [7].
In this work, we propose an optimization flow to generate and
place flop trays from a library of arbitrary given sizes and
aspect ratios (ARs), to achieve clock network power reduction.
Our optimization starts with an initial placement solution
using only single-bit flops. It then performs capacitated K-
means clustering to generate solutions with different flop tray
sizes and ARs. More specifically, we iteratively use (i) min-
cost flow to cluster flops, and (ii) a linear programming-based
optimization to determine locations of the generated flop trays.
Last, we formulate an integer linear program to select the best
combination of flop tray solutions (i.e., sizes and placements)
with minimum displacement and number of isolated sinks. Our
optimization is aware of flop tray sizes and ARs, as well as
timing-critical start-end pairs. Results in foundry 28FDSOI
technology show up to 32% total block power reduction as
compared to designs using only single-bit flops, up to 16% total
block power reduction over designs with flop trays generated
by logical clustering during synthesis, and 13% clock power
reduction on average compared to the previous work in [10].

1. INTRODUCTION
Clock network optimization is critical in modern SoC designs

due to the following reasons: (i) clock network typically has
large power due to its high switching activity; (ii) clock skew
and latency (with on-chip variation) have significant impact on
design performance; and (iii) clock network routing consumes
routing resources and can cause routing congestion. In this
work, we study design optimization with flop trays1 (i.e., macro
cells of multi-bit flip-flops), where the application of flop trays
can significantly reduce the number of sinks in (similar to [2])
and thus result in an improved clock network. Further, careful
design of the internal routing within a flop tray prevents
hold buffer insertion between flops within the tray, especially
along scan chains. This reduces the number of hold buffers,
DFT (Design for Test) overheads, and potential placement
congestion.
Flop tray potential benefits. It is intuitively reasonable
that more clock power reduction can be achieved by using
larger sizes (i.e., greater number of bits) of flop trays. As a

1Terminology: A flop tray is synonymous with a multi-bit flip-
flop (MBFF); we use “flop” as a synonym for “flip-flop”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICCAD’16, November 07-10, 2016, Austin, TX, USA.
Copyright 2016 ACM 978-1-4503-4466-1/16/11$15.00.
http://dx.doi.org/10.1145/2966986.2967047.

Figure 1: Two inverters for the clock signal are shared between the
two flops in a 2-bit flop tray.

motivating “thought experiment”, consider a clock tree with
N sinks and fanout of f at each level: the total number of
(internal) clock buffers between the clock root and the clock
pins of sinks (i.e., flops, flop trays) is ≈ N−1

f−1
. If we could

replace all single-bit flops with K-bit flop trays, the number of

clock buffers would reduce to only ≈ N/K−1
f−1

(e.g., using 64-bit

flop trays to replace single-bit flops could reduce the number of

clock buffers by up to 98.4% (= N−N/64
N−1

≈ 63
64

)). Furthermore,
Figure 1 illustrates how inverters for clock signals can be shared
among flops in a flop tray, resulting in power and area reduction
as compared to multiple single-bit flops. These power and area
reductions would also increase with flop tray sizes.
Current approaches and their limitations. Flop tray-
based implementation is very challenging due to the following
reasons. (1) In advanced nodes, flops (including single-bit
flops and flop trays) typically occupy a large portion of the
entire block area due to their large sizes.2 Moreover, flop trays
can have high aspect ratios (e.g., a 64-bit flop tray may be
implemented as a 4 × 16 array of flops, with much greater
width than height); flop tray size and shape have been ignored
by previous literature on multi-bit flop optimization [14][15][21]
and flop clustering [5][18]. Flop trays with large area and high
aspect ratio make placement optimization very difficult [6][7].
(2) Clustering of flops imposes additional placement constraints
on their fanin and fanout logic cones, which is highly likely
to degrade the placement solution quality [7]. (3) Usage of
flop trays can easily cause routing congestion. (4) Clustering
of single-bit flops into flop trays has large impact on timing
and limits the application of useful skew optimization. Most
previous works study small-size flop trays, and do not fully
address the above challenges in their optimization approaches.
Crucially, further achievable benefits of using large-size flop
trays are not exploited by previous works. To maximize
obtained benefits from flop tray deployment, our present work
proposes a flop tray-based optimization that comprehends
arbitrary flop tray sizes. (Below, we show results with flop
tray size up to 64 bits.)

A common practice for flop tray-based implementation is
to cluster flops during the synthesis stage based on logic
functions of the design, along with clock domain and clock
gating information. We refer to this as logical clustering in the
following discussion. However, flop tray generation without
physical information can result in placement and routing
congestion and degrade place-and-route (P&R) solution
qualities. Figure 2 shows examples where flop tray-based
implementations with logical clustering during synthesis stage
can result in 8% – 39% wirelength overhead and 5% – 16%

2As an example, a minimum-size inverter occupies two
placement sites; a single-bit flop occupies 18 sites; and a 64-
bit flop tray can occupy 244 sites in width and four cell rows
in height. Due to their large sizes, flops and flop trays can
consume a substantial fraction of overall cell area (e.g., VGA
from OpenCores [28] has 30% of its instances as flops, which
accounts for 51% of the total cell area).

Figure 2: Wirelength and power overheads on datapaths due to
flop tray-based implementations compared to implementations using
only single-bit flops. Flop trays are generated based on logical
clustering during synthesis with a commercial tool. Technology:
28FDSOI. Designs are from OpenCores [28]. Numbers of flops and
flop trays in flop tray-based implementations, as percentages of flop
numbers in implementations with single-bit flops, are 43%, 37%, 41%
and 45% for AES, JPEG, MPEG and VGA, respectively.

power overhead on datapaths after detailed routing even at a
low conversion ratio from single-bit flops to flop trays. This
degrades power benefits from flop tray deployment. Therefore,
feedback loops and iterations are required between early-stage
flop clustering and P&R optimization, which can significantly
increase design time [6]. Furthermore, although splitting
large flop trays into smaller trays or single-bit flops during
placement and/or routing can mitigate the congestion and
power penalty, benefits of applying flop trays then become
limited. In addition, the capability of logical clustering to
realize flop tray benefits can be limited according to attributes
of the given design. Designs with few multi-bit signals may
not derive substantial benefits from flop tray deployment. On
the other hand, designs with many multi-bit signals might use
flop trays aggressively, with large-size flop trays in particular
causing placement and routing congestion.
Our approach. In this work, we focus on post-placement flop
tray optimization.3 We first place the design with all single-bit
flops, where the placement solution is considered to give ideal
locations of individual flops and combinational cells (given that
there are no additional constraints induced by flop clustering).
We then cluster flops based on the placement solution. In
this way, we resolve the “chicken-and-egg” loop between early-
stage flop tray generation and placement optimization of flop
trays. However, post-placement flop tray generation such as
ours must carefully comprehend different flop tray sizes and
aspect ratios; it must also minimize perturbation on datapath
placement and timing degradation (otherwise, the assumption
of “ideal” combinational cell placement does not hold).

To maximize the benefits of applying flop trays while
minimizing the perturbation on the initial placement solution,
we propose a capacitated K-means optimization which
iteratively executes min-cost flow to cluster single-bit flops into
flop trays, and a linear programming-based optimization to
place flop trays. Based on the proposed capacitated K-means
optimization, we achieve a solution (including flop clustering
and flop tray placement) for each given flop tray size and AR.
We then formulate an integer linear program (ILP) to select
the best combination of flop tray solutions. In addition to
minimization of displacement of flops (i.e., from the initial
single-bit flop location to the flop location in a flop tray), our
optimization is also aware of timing-critical start-end flop pairs.
Specifically, we minimize the relative location displacement of
timing-critical start-end pairs to minimize the timing impact
from flop tray insertion.

The contributions of this paper are as follows.

• We propose a capacitated K-means iterative optimization
that applies (i) min-cost flow based clustering, and (ii)
LP-based placement optimization) to generate flop trays
with various sizes (e.g., 4-bit, 16-bit and 64-bit) at the
post-placement stage.

3Other low-power clocking styles and methodologies (e.g.,
pulsed-latch, register arrays, and rotary clock) are not the focus
of this work.

• Our optimization is aware of flop tray aspect ratios and
relative location displacement of timing-critical start-end
pairs.

• We apply a new Silhouette-based metric in addition
to displacement distance to evaluate flop clustering
solutions.

• Our optimization is able to convert more single-bit
flops into flop trays, but with smaller datapath power
overhead, as compared to a logical clustering flow
implemented with commercial tools.

• We achieve up to 32% and 90% reductions of total block
power and clock power as compared to implementations
using only single-bit flops; and up to 16% and 40%
reductions of total block power and clock power as
compared to a commercial tool-based flow with logical
clustering. We also achieve 13% clock power reduction
on average compared to the previous work in [10].

• We evaluate the benefit (i.e., leakage reduction) of useful
skew optimization on flop tray-based design and propose
a useful skew-aware clustering to maximize such benefit.

The remainder of this paper is organized as follows. Section 2
reviews related works on flop tray optimization. Section 3
describes our capacitated K-means optimization flow. In
Section 4, we describe our experimental setup and results.
Section 5 concludes and gives directions for ongoing work.

2. PREVIOUS WORK
In this section, we review flop clustering and flop tray (multi-

bit flop) generation approaches proposed in previous works.
We classify these approaches into two categories: (i) early-
stage flop tray generation, and (ii) flop tray generation during
and/or after placement.

Several early works propose flop tray generation at early
design stages. Kretchmer et al. [12] and Chen et al. [4] propose
register banking during logic synthesis. They create Liberty
models of flop trays, which can be used by logic synthesis
tools. But, flop tray generation during synthesis has only logic
topology as its main lever, and the lack of physical information
can result in a sub-optimal clustering solution, degraded timing
and larger power. To address this, Hou et al. [9] further
propose register banking removal based on routing congestion
and timing information. However, such a “(flop) clustering at
early stage and (flop tray) removal at late stage” flow is not
able to effectively exploit the benefits of flop tray usage. Thus,
many other works propose flop tray generation during and/or
after placement.

Yan et al. [23] generate flop trays at the post-placement
stage. They first construct an intersection graph based on
routing length and congestion constraints derived from an
initial placement solution with single-bit flops. They then
perform minimum-clique partitioning to reduce the number
of flop trays. Lin et al. [13] use progressive window-based
optimization to improve the methodology proposed in [23]
considering given flop tray sizes. They solve the clustering
problem by finding K-cliques and maximum independent sets
in a merging graph constructed based on feasible-location
regions of flops. Similarly, Wang et al. [21] use clique
partitioning to identify a set of non-conflicting cliques. Jiang et
al. [10] propose an efficient post-placement flop tray generation
technique using interval graphs and a pair of linearized
sequences. Liu et al. [15] also propose flop clustering based
on an intersection graph. In addition to reducing the number
of flop trays, they apply agglomerative clustering to minimize
displacements of flops, wirelength and clock power. More
recently, Lin et al. [14] develop a clock tree-aware in-placement
flop tray generation technique. They build an intersection
graph considering clock latency, wirelength and timing, then
iteratively perform flop tray generation and timing-driven
incremental placement. Xu et al. [22] propose an analytical
clustering score for flop tray generation, permitting seamless
integration with the traditional wirelength objective. Tsai et
al. [20] propose to generate flop trays during placement. During

analytical global placement, they guide placement of flops
(to enable flop tray generation) with additional bonding force
(resembling ionic bonds in chemistry). Other works optimize
flop trays with awareness of crosstalk [8], clock gating [16], etc.

In addition to flop tray-based design, flop and/or latch
clustering optimizations have been widely applied in previous
works for clock tree and latch placement optimization.
Mehta et al. [17] propose a clustering algorithm to obtain
approximately load-balanced clusters and construct clock trees
so as to minimize skew. Papa et al. [18] apply K-means
clustering algorithm to minimize latch displacement during
a physical synthesis optimization. Deng et al. [5] propose
a register clustering methodology in generating the leaf-level
topology of the clock tree to reduce clock power consumption.

We summarize our algorithmic and methodological
improvements, compared to previous works, as follows.

• None of the previous in-placement and post-placement
approaches study flop tray optimization with large-size
flop trays (e.g., 64-bit flop trays). The ARs of flop trays
are ignored (indeed, many previous works treat flop trays
essentially as points in their optimizations). By contrast,
our optimization considers arbitrary flop tray sizes and is
aware of flop tray ARs.

• Most previous works assume a feasible displacement
region for each flop. However, such an assumption
does not comprehend the movements of fanin/fanout
flops, which can be either pessimistic or optimistic.
In addition, such an assumption essentially precludes
exploiting benefits of useful skew. By contrast, our
approach considers timing path-aware timing impact of
flop displacement; specifically, we minimize the relative
location displacement of timing-critical start-end pairs.
We also propose a useful skew-aware optimization flow
to maximize such benefit.

• Previous works use local search to cluster flops into
flop trays. However, due to capacity constraints of
flop trays, such local search can result in outliers with
large displacement distances. By contrast, in this work
we apply a more globally-aware optimization based on
(i) a capacitated K-means formulation (with iterative
min-cost flow-based clustering and LP-based placement
optimization), and (ii) a practically scalable ILP-based
matching and selection of flop tray solutions to globally
optimize flop clustering with given capacity constraints
(i.e., flop tray sizes).4

3. METHODOLOGY
We now describe our optimization methodology for flop

tray generation and placement. Figure 3 illustrates our
overall optimization flow, where we integrate our flop tray
optimization (steps in blue boxes) into a conventional SP&R
(synthesis, place, and route) flow. To address the “chicken-
and-egg” loop between flop tray generation and placement
optimization, we first perform an initial placement with
only single-bit flops, where the placement is considered to
be “optimal” with no placement constraints induced by flop
clustering. We note that since the initial placement is timing-
and congestion-aware, minimizing subsequent perturbations
can mitigate potential congestion due to flop trays, as well as
minimize timing impacts. Further, to comprehend multiple
flop tray sizes and ARs, we perform flop tray optimization
for each flop tray choice (i.e., a {size, AR} combination).
Last, we perform an integer linear programming (ILP)-based
optimization to select the optimal combination of flop trays
and their placement solutions.5

4Our ILP runtime (CPLEX 12.6) is less than one minute on
the VGA testcase [28] (with 17K flops and 1000 timing-critical
paths) with five candidate flop tray sizes studied in Section 3.2
and Section 4 below, using 20 threads on a 2.5GHz Intel Xeon
server.
5Our separate study shows that due to high runtime
complexity, it is practically infeasible for our current approach

Figure 3: Overall optimization flow of flop tray generation.

We state our post-placement flop tray generation problem
as: Given an initial placement solution with only single-bit
flops, flop tray choices, and timing constraints, cluster single-
bit flops into flop trays and determine the placement location
of each flop tray, such that total block power (including clock
power and power of sequential cells (i.e., flops and flop trays)
and combinational cells) is minimized after routing.

The following subsections describe our capacitated K-means
clustering and our ILP-based selection of flop tray solutions.
Table 1 lists the notations used in our discussion.

Table 1: Description of notations used in our formulation.

Term Meaning

ti ith flop tray
ei binary indicator whether ti is used
wi cost of using tray ti
fij jth flop of ti
hl lth single-bit flop

bl,ij binary indicator whether hl is matched to fij

(Xi, Yi) center location of ti
(x′ij , y′ij) relative center location of fij w.r.t. the center of ti
(xl, yl) optimal location of hl

(dl,ij , dl,ij) Manhattan distance between hl and fij

3.1 Capacitated K-Means Clustering
We first address the following, narrower problem: Given

an initial placement solution with all single-bit flops (i.e., N
single-bit flops), and dN/Ke K-bit flop trays with fixed AR,
cluster the single-bit flops into flop trays and determine
the placement location of each flop tray, such that the total
displacement of flops is minimized.

To address this problem, we propose a capacitated K-
means algorithm [11]. (As noted above, K-means clustering
algorithms have also been applied to flop (or latch) clustering
in previous works [5][18].) There are two steps in a standard K-
means algorithm: (i) clustering, and (ii) updating the center
location of each cluster. We associate these two steps with:
(i) matching of single-bit flops to flop slots in flop-trays, and
(ii) updating the locations of flop trays. We propose a min-
cost flow to address (i), and a linear programming (LP)-based
optimization to address (ii). We iterate between these two
steps until convergence (i.e., no further displacement reduction
can be achieved, or a maximum number of iterations (= 35 in
our experiments below) is reached).

to optimize flop clustering and flop tray placement considering
all possible flop tray candidate sizes simultaneously. We
therefore perform a two-step optimization in this work.

In our capacitated K-means clustering, we use an algorithm
that is similar to K-means++ [3] to select the starting points.
Selection of dN/Ke starting points for clustering is described
in Algorithm 1. In Algorithm 1 we calculate center-to-center
distances between single-bit flops. To comprehend the aspect
ratio of flop trays, we scale the horizontal distance by (1/AR)
(= height/width) of the given flop tray.

Algorithm 1 Selection of starting points.

1: Randomly select one flop among single-bit flops
2: For each flop hl, calculate the total Manhattan distance

(dl) from hl to all selected flops
3: Randomly select one new flop with probability dl

4: Repeat Steps 2 and 3 until dN/Ke flops are selected

These selected starting points serve as initial locations of flop
trays. We then apply a min-cost flow to achieve capacitated
clustering of flops. Our min-cost flow is illustrated in Figure 4.
To construct the flow instance, we create a node for each single-
bit flop hl. For each flop tray ti, we further create K nodes
for its K slots, fi1 . . . fiK . For each edge between a pair of hl

and fij , we set its capacity as 1 and its cost as the Manhattan
distance between hl and fij . Here, we directly calculate the
Manhattan distance between single-bit flops and flop slots
without any scaling. Finally, we create one source and one sink,
and assign edges connected to them with capacity as 1 and cost
as 0, as illustrated in Figure 4. Notice that by considering the
distances between the locations of single-bit flops and flop slots
in flop trays, our min-cost flow optimization is explicitly aware
of physical information (in particular, dimensions and ARs) of
the given flop trays.

Figure 4: Example of min-cost flow with K-bit flop trays.

Based on the capacitated K-means clustering solution from
the min-cost flow, we formulate a linear program (shown
as follows) to determine the flop tray locations that achieve
minimum total displacement of flops. These placement
locations of flop trays will serve as starting points for the next
iteration of clustering.

Minimize D (1)

Such that |Xi + x′ij − xl|+ |Yi + y′ij − yl| = dl ∀hl (2)X
l

dl = D (3)

Constraint (2) calculates the displacement for each flop (dl),
and the objective seeks to minimize the total displacement over
all flops.

We iterate between the min-cost flow-based clustering and
the LP-based flop tray placement until no further displacement
reduction is achievable (i.e., no flop trays move between two
consecutive iterations).

To confirm benefits from awareness of flop tray ARs, we
show in Figure 5 representative clustering solutions from (i)
the classic K-means approach, which treats each flop tray as
a point, and (ii) our min-cost flow-based clustering, which is
aware of flop tray ARs. We observe that our clustering solution
more closely matches the AR of given flop trays. Further,
classic K-means without awareness of flop tray AR can result
in 2× increase in average displacement from the “ideal” single-
bit flop placement; this is likelier to incur datapath power and
timing overheads.

Figure 5: Clustering solutions into 64-bit flop trays (i) without
awareness of flop tray aspect ratio and dimensions, and (ii) with
awareness of flop tray aspect ratio and dimensions. Design: AES
(530 single-bit flops). Technology: 28FDSOI.

In our capacitated K-means algorithm, as with K-means
approaches in general, the selection of starting points has a
strong impact on the final solution quality. We adapt the
Silhouette metric [19] and use Equation (4) to evaluate the
solution quality of generated starting points.6

func(hl) =
mini′ 6=i,j′(dl,i′j′)− dl,ij

max(dl,ij , mini′ 6=i,j′(dl,i′j))
(4)

where hl is matched to fij . The dissimilarity within a cluster is
measured by the displacements of each of the cluster’s assigned
flops hl. The dissimilarity between a given cluster and other
clusters is measured by the distances between assigned flops hl

and the nearest flop-tray slot in another cluster to which hl is
not assigned.

Figure 6: Best clustering solution (i.e., func(hl) (left) and
displacement (right)) with multiple runs (numbers of runs are shown
in the x-axis).

We apply a multistart strategy to improve the selection of
starting points. Multiple runs (five in our experiments) of
the procedure in Algorithm 1 are each followed by a small
number (15 in our experiments) of iterations between the min-
cost flow and LP-based placement optimization. We then
select the solution with the highest average func(hl) value and
proceed with capacitated K-means iterations until convergence.
Figure 6 shows a typical improvement of the average value
of func(hl) (left) and the average displacement (right) with
increased number of runs. In our studies, the improvement of
func(hl) and displacement typically saturates after five runs.
Thus, the experiments reported below apply five multistarts to
mitigate the impact of starting point selection.

6As presented in [19], the Silhouette value is a measure
of how similar an object is to its own cluster, compared
to other clusters. A general Silhouette value is defined as

s(i) = b(i)−a(i)
max(a(i),b(i))

, where a(i) is the average dissimilarity

(e.g., average distance) of i with all other data within the
same cluster, and b(i) is the lowest average dissimilarity (e.g.,
minimum average distance) of i to the data in any other cluster
other than its own. By definition, −1 ≤ s(i) ≤ 1, and a
larger Silhouette value indicates a better clustering solution.
In this work, data are slots of flop trays, and dissimilarities are
measured by distances.

3.2 ILP-Based Matching Optimization
The next step of our optimization approach addresses the

following problem: Given candidate flop trays with various
capacities, each with a fixed placement location, select the
optimal subset of the candidate flop trays, and determine a
mapping of single-bit flops into slots of selected candidate flop
trays, such that (i) every single-bit flop is mapped to a slot of
a selected flop tray (including flop trays with one bit, i.e., no
clustering), and (ii) a weighted sum of the total displacement
of flops, relative displacement of timing-critical start-end pairs,
and total flop tray costs is minimized.

Figure 7: Example of our ILP-based optimization. Inputs: (a)
solution with only 4-bit flop trays (flop trays are in red, #flop trays
= 133, average displacement = 2µm), (b) solution with only 16-
bit flop trays (flop trays are in green, #flop trays = 34, average
displacement = 3µm), and (c) solution with only 64-bit flop trays
(flop trays are in orange, #flop trays = 9, average displacement =
5µm). Output: (d) solution with a combination of single-bit flops
and 4-bit, 16-bit and 64-bit flop trays (#flops + #flop trays = 81,
average displacement = 2µm).

As discussed in Section 3.1, we run capacitated K-means
clustering with different flop tray sizes and ARs, and use these
flop trays together with their optimized placement locations as
inputs (“candidates”) for an ILP-based matching optimization.
Our ILP-based optimization selects an optimal subset of
candidate flop trays with various flop tray sizes as our final
solution. As an example, Figures 7(a)-(c) show solutions of
flop trays with fixed sizes and ARs on the AES testcase.
Figure 7(d) shows the final solution. Our objective is to
minimize a weighted sum of total displacement of flops, relative
displacement of timing-critical start-end flop pairs, and total
flop tray cost. Relative displacement of a timing-critical start-
end flop pair is illustrated in Figure 8. As an improvement
to previous approaches, we comprehend timing impact of flop
tray generation considering timing-critical paths (i.e., start-
end pairs). Specifically, if the flop tray generation moves
two flops towards each other, combinational cells in the logic
cone between the flops are forced to be placed in a more
compact region, which results in congestion and distortion
of the placement and routing. Alternatively, if the flop tray
generation moves two flops away from each other, timing paths
between the two flops will tend to have longer wirelength,
degrading timing. We therefore seek to minimize the relative
displacement of flops that are timing-critical start-end pairs.

Our ILP to select the optimal combination of flop tray
solutions with various sizes and ARs is given below.7

7Note that our ILP can be extended to be aware of clock
gating, clock domain and useful skew optimization, etc. with
additional constraints. Section 4.3 briefly describes a useful
skew-aware extension and corresponding benefits.

Minimize α · W + D + β · Z (5)

Such that |
X
ij

(Xi + x′ij − xl) · bl,ij |

+|
X
ij

(Yi + y′ij − yl) · bl,ij | = dl ∀l (6)

X
l

dl = D (7)

dl ≤ dmax ∀l (8)

|
X
ij

(Xi + x′ij − xl) · bl,ij −
X
i′j′

(Xi′ + x′i′j′ − xl′) · bl′,i′j′ |

+|
X
ij

(Yi + y′ij − yl) · bl,ij −
X
i′j′

(Yi′ + y′i′j′ − yl′) · bl′,i′j′ |

= zll′ ∀(hl, hl′) ∈ timing-critical paths (9)X
(hl,hl′)∈cri paths

zll′ = Z (10)

zll′ ≤ dmax ∀(hl, hl′) ∈ timing-critical paths (11)

bl,ij ≤ ei ∀l, j (12)

ei ≤
X
lj

bl,ij ∀i (13)

X
i

wi · ei = W (14)

X
l

bl,ij ≤ 1 ∀j (15)

X
i,j

bl,ij = 1 ∀i (16)

Here, W is the total cost of selected flop trays, which is
determined based on their power consumption and sizes (i.e.,
number of bits); D is the total displacement over all flops;
Z is the total relative displacement over all timing-critical
start-end flop pairs; and α and β are weighting parameters.
Constraints (6) and (7) calculate the total displacement of
all flops. Constraint (8) bounds the maximum displacement
of each flop. Constraints (9) and (10) calculate the total
relative displacement of timing-critical start-end flop pairs
(i.e., (hl, hl′)). Constraint (11) bounds the maximum
relative displacement of each timing-critical start-end flop pair.
Constraints (12) and (13) force the binary indicator variable
ei to be 1 if the corresponding flop tray is used, and 0
otherwise. Constraint (14) calculates the total cost of selected
flop trays. Constraints (15) and (16) ensure that each flop is
matched to exactly one slot, and that each slot is matched to
at most one flop. We note that additional mutual exclusion
constraints can avoid placement overlaps between pairs of flop
trays (e.g., ei + ej ≤ 1 if there is overlap between the ith and
jth flop trays). However, such mutual exclusion constraints
might limit the solution space and thus degrade the solution
quality. We therefore perform placement legalization in the
commercial P&R tool to remove overlaps among flop trays.8

We also note that although an ILP-based optimization typically
has large runtime, in our formulation, the number of binary
variables is only O(N · Q), where N is the number of flops
and Q is the number of candidate flop tray choices (i.e., sizes
and dimensions). In practice, our method exhibits practically
reasonable runtimes (see Footnote 4 above).

To give an understanding of how the weighting parameters
α and β affect solution quality, Figure 9 shows the number
of flop trays and the average flop displacement resulting from
optimization with various α values. We observe that more
large-size flop trays are selected with an increased value of
α, so as to minimize the total tray costs. Such selection of
large-size flop trays will reduce power of flop trays as well
as the clock power. However, the average flop displacement
increases with the value of α, and this can incur datapath power

8Our experimental results show no more than three sites
displacement on average per flop tray during the placement
legalization.

Figure 8: Illustration of the timing impact due to relative
displacement between timing-critical start-end flop pairs.

Figure 9: Number of flop trays and average displacement of flops
change with different α values. Each column is an implementation
with corresponding α. Black-dotted curve indicates the total
number of flops and flop trays. Orange curve indicates the average
displacement over all flops. (Small) numbers of 16- and 32-bit
flop trays omitted for figure clarity. Design: JPEG. Technology:
28FDSOI.

overhead. Therefore, the choice of α determines a tradeoff
point between (i) clock power reduction and power reduction
of flop trays, versus (ii) the power overhead on datapaths. In
our experiments, we empirically set α = 20, 40, 60 and 80. We
then select the solution with the minimum total block power
from these four runs.

To evaluate the impact of β, we uniformly place flop trays
within the block area and fix their locations. The number of
flop trays is determined according to the number of flops, such
that no flop tray can be empty, which eliminates the impact of
W in our objective function. We then perform an ILP-based
matching optimization to cluster flops into flop trays. Figure 10
shows the total block power of the AES and JPEG testcases
implemented with various β values. We observe reduced block
power with β > 0, where our optimization minimizes the
relative displacement between timing-critical start-end flop
pairs. This confirms the benefits of minimizing the relative
displacement between timing-critical start-end flop pairs. We
also observe increased block power with a large β value. This
is because with a large β value, relative displacements between
timing-critical start-end flop pairs dominate our objective
function. The resultant large displacements of non-timing
critical flops incur datapath power penalty. We empirically
use β = 1 in our experiments.

Figure 10: Power change with various β values. Designs: AES,
JPEG. Technology: 28FDSOI.

4. EXPERIMENTAL RESULTS
We perform experiments in a 28nm FDSOI foundry

technology with dual-VT libraries. We use four design blocks
(AES, JPEG, MPEG, VGA) from OpenCores [28] as our
testcases. Parameters of these four testcases are shown in
Table 2. We scale flop tray power and area based on the
ratios shown in Table 3. Layout ARs of flop trays are also
shown in Table 3. We synthesize designs using Synopsys Design
Compiler vI-2013.12-SP3 [29] and then place and route using
Cadence Innovus Implementation System v15.2 [24]. We set
the placement density at the floorplan stage as 70%. We also
perform timing and power analyses using Cadence Innovus
Implementation System v15.2. We perform vectorless power
simulation with a default switching activity of 10% at primary
inputs. Our optimization flow is implemented in C++. We
use CPLEX v12.6 [25] as our ILP solver and LEMON [27] as
our min-cost flow solver. Functions used in P&R tools are
implemented in Tcl. We conduct our experiments on a 2.5GHz
Intel Xeon server.

Table 2: Testcase parameters.

design #inst #flops clock period
AES ∼12K 530 600ps

JPEG ∼47K 4512 600ps
MPEG ∼13K 3181 500ps
VGA ∼56K 17053 700ps

Table 3: Normalized flop tray area and power, and layout AR.

tray size 4-bit 8-bit 16-bit 32-bit 64-bit
norm. area/power per bit 0.875 0.854 0.854 0.844 0.844
AR (#rows×#columns) 1×4 2×4 4×4 4×8 4×16

AR (#rows×#sites) 1×63 2×62 4×62 4×122 4×244

4.1 Comparison to Other Methods
To evaluate the performance of our proposed methodology,

we compare our solutions to three reference flows: (i)
the conventional implementation flow with only single-bit
flops (ref 1b), (ii) a flop tray-based implementation flow
which generates flop trays during commercial synthesis based
on logical clustering, followed by conventional commercial
P&R optimization (ref mb1), and (iii) a flop tray-based
implementation flow which generates flop trays at the post-
placement stage using the method proposed in [10], followed by
clock tree synthesis and routing (ref mb2). No value judgment
or “benchmarking” regarding any commercial tool is intended
by, or should be inferred from, our present discussion.

Table 4 shows results evaluated at the post-routing stage.
Figure 11 shows the layouts of placement solutions with single-
bit flops and optimized flop trays. We observe that our
proposed optimization (opt mb) is able to significantly reduce
the number of sinks with application of flop trays (e.g., we
reduce the number of sinks by 98% on the VGA testcase
compared to the implementation using only single-bit flops).
The reduction in number of sinks results in smaller clock
power: our optimization reduces clock power by up to 90% and
40% compared to implementations with single-bit flops and
flop trays generated by logical clustering, respectively. Our
flop tray generation also results in reduced power on flops.
Moreover, we observe that although our optimization has large
conversion ratio from single-bit flops to flop trays, the incurred
datapath power and wirelength penalties are small as compared
to the implementation with logical clustering. This strongly
suggests that our approach of optimization with minimum
perturbation from a“good” initial placement solution forestalls
placement and routing congestion while also minimizing the
datapath power penalty from application of flop trays. For the
MPEG testcase, our optimization actually results in smaller
datapath power as compared to the “ideal” implementation
with single-bit flops; we believe this is likely due to reduced
placement density (i.e., usage of flop trays reduces total area
of flops).

Our optimization (opt mb) also achieves up to 7% total block
power reduction compared to the previous work [10] (ref mb2).
Since ref mb2 only uses up to 8-bit flop trays, we limit the flop

Table 4: Experimental results.

design flow power (mW) #flops #clk WNS area WL #inst
comb seq clk sum (norm) 1 4 8 16 32 64 bufs (ps) (µm2) (µm)

ref 1b 8.11 4.37 1.53 14.02 (1.00) 530 0 0 0 0 0 11 -11 10362 140 12002
ref mb1 8.64 4.00 0.72 13.35 (0.95) 198 5 19 2 2 1 0 9 10606 153 11730

AES ref mb2 8.14 4.05 0.43 12.62 (0.90) 34 56 34 0 0 0 3 -4 10122 140 11595
opt mb 8.15 3.94 0.46 12.56 (0.90) 59 22 46 1 0 0 4 -5 10171 139 11619
opt mb’ 8.09 3.98 0.54 12.60 (0.90) 80 41 36 0 0 0 4 -2 10160 137 11598

ref 1b 35.13 36.04 13.37 84.54 (1.00) 4512 0 0 0 0 0 115 1 47595 420 47567
ref mb1 36.88 33.21 6.10 76.20 (0.90) 1388 109 84 70 0 14 59 0 46374 531 44246

JPEG ref mb2 35.45 32.06 4.56 72.07 (0.85) 308 457 297 0 0 0 40 -1 45888 437 44094
opt mb 35.68 31.28 2.28 69.24 (0.82) 274 77 110 2 9 43 25 1 45535 460 43545
opt mb’ 35.64 31.85 3.12 70.62 (0.84) 83 37 537 0 0 0 28 1 45898 428 43607

ref 1b 5.88 28.93 10.72 45.53 (1.00) 3181 0 0 0 0 0 92 -17 18169 149 12291
ref mb1 6.52 26.99 5.19 38.70 (0.85) 1225 27 17 15 18 14 53 -34 17757 195 10079

MPEG ref mb2 6.03 25.62 3.30 34.95 (0.77) 161 381 187 0 0 0 29 -11 17136 159 9849
opt mb 5.66 25.12 0.98 31.76 (0.70) 120 9 2 3 1 46 15 -3 16666 176 9183
opt mb’ 5.65 25.33 2.24 33.22 (0.73) 77 16 382 0 0 0 21 -23 16780 149 9531

ref 1b 14.32 108.34 42.19 164.84 (1.00) 17053 0 0 0 0 0 361 -5 88015 960 56039
ref mb1 16.63 101.63 20.73 138.99 (0.84) 7325 42 77 75 50 96 215 -2 84537 1337 45793

VGA ref mb2 14.60 94.51 10.24 119.35 (0.73) 129 1299 1466 0 0 0 110 -2 80710 1032 41656
opt mb 15.29 93.99 2.04 111.32 (0.68) 33 1 6 0 2 266 28 3 80083 1132 39129
opt mb’ 14.33 94.29 8.41 117.03 (0.71) 56 51 2114 0 0 0 89 -13 80538 1001 40909

Figure 11: Layout comparison between implementations with only single-bit flops and with optimized flop trays. In the flop
tray-based solutions, the candidate flop tray sizes are 4-bit, 8-bit, 16-bit, 32-bit and 64-bit.

tray options to 4-bit and 8-bit flop trays in opt mb’ for a fair
comparison. Table 4 shows that with the same set of flop tray
options our optimization achieves 13% clock power reduction
on average compared to opt mb’, along with smaller datapath
power for most of the testcases (the exception is the JPEG
testcase with <1% power overhead).

4.2 Optimization with Various Flop Tray Sizes
We further perform flop tray optimization with various

combinations of flop tray sizes. More specifically, we implement
designs with (i) single-bit flops only, (ii) {4-bit} flop trays, (iii)
{4-bit, 8-bit} flop trays, (iv) {4-bit, 8-bit, 16-bit} flop trays,
and (v) {4-bit, 8-bit, 16-bit, 32-bit, 64-bit} flop trays with
various α values (i.e., 20, 40, 60, 80). We note that setups (ii)-
(v) can also use single-bit flops. For each setup, we select the
minimum total block power solution with <5% power penalty
on datapaths as compared to the case with only single-bit flops.
Figure 12 shows flop power and clock power, normalized to
implementations using only single-bit flops. We observe that
with only 4-bit flop trays, our optimization achieves >7% power
reduction on flops and flop trays. However, including larger
flop trays does not afford much further reduction of flop power.
(This may be due to our conservative assumptions regarding

power-per-bit in larger flop trays, as shown in Table 3). On the
other hand, application of large-size flop trays can effectively
reduce clock power. For example, optimizations with {16-
bit, 32-bit, 64-bit} flop trays achieve 11% more clock power
reduction on average as compared to the cases with only {4-
bit, 8-bit} flop trays.

4.3 Study of Useful Skew Optimization with
Flop Trays

Last, we evaluate the benefits of useful skew optimization
in terms of leakage power reduction on (i) designs with only
single-bit flops (ref 1b), and (ii) flop tray-based designs (opt mb
as shown in Figure 13.9 Based on the approach proposed in [1],
we formulate the useful skew optimization as a maximum mean
weight cycle problem and apply iterative shortest path search
to maximize the average endpoint slack. We then perform
leakage power optimization using a commercial tool [24],
i.e., we exploit the increased timing slacks for leakage power
reduction. We observe from Figure 13 that due to clustering

9In the technology we use, we do not observe significant
dynamic power benefits from useful skew optimization. We
therefore study leakage power reduction from useful skew
optimization in this experiment.

Figure 12: Flop (tray) power and clock power of designs with
various flop tray sizes. Candidate tray sizes are 4-bit, 8-bit, 16-bit,
32-bit and 64-bit.

of endpoints, flop tray-based designs have 9% less leakage
power reduction on average across four designs as compared
to cases with only single-bit flops. To reduce the impact of
flop tray generation on benefits from useful skew optimization,
we study skew-aware flop tray generation that only allows
clustering of flops with desired skew less than θ (we use θ =
20ps in our experiments). Figure 13 shows that the skew-aware
clustering (opt mb (skew aware)) can achieve similar leakage
power reduction as compared to the cases with only single-bit
flops (green vs. blue bars), but at the cost of more sinks.

Figure 13: Datapath leakage power results, normalized to
implementations with only single-bit flops. Useful skew-aware flop
tray optimization is able to achieve similar leakage power reduction
as compared to the optimized design with only single-bit flops (green
skew-aware multi-bit vs. blue reference single-bit bars), but with an
average of 21% less reduction in number of sinks.

5. CONCLUSION
In this work, we present a novel flop tray-based optimization

for improved design power reduction. We propose a
capacitated K-means algorithm which iteratively applies a min-
cost flow-based clustering and a LP-based flop tray placement.
We also propose an ILP-based matching optimization to
generate flop trays while minimizing the perturbation to
the initial placement solution. Our work achieves several
improvements as compared to previous works: (i) awareness of
flop tray aspect ratio and (large) size; (ii) explicit minimization
of relative displacement of timing-critical start-end flop pairs;
and (iii) global optimization instead of local search. The
proposed techniques allow us to achieve up to 32% total block
power reduction as compared to designs with only single-
bit flops, and up to 16% total block power reduction over
designs with flop trays generated by logical clustering during
synthesis. We also achieve 13% clock power reduction on
average compared to the previous work in [10]. We further
study the impact of flop tray sizes on optimization solution
quality. Finally, we study useful skew optimization in the

context of our flop tray-based designs. Our future works
include (i) scalable optimization considering all flop tray
candidate sizes simultaneously; (ii) awareness of IR-drop in the
flop tray clustering and placement; and (iii) floorplan blockage-
aware and routing congestion-aware flop tray generation.

Acknowledgments
We are very grateful to the authors of [10] for providing binary
of their optimizer for use in our study.

6. REFERENCES
[1] C. Albrecht, B. Korte, J. Schietke and J. Vygen, “Maximum Mean

Weight Cycle in a Digraph and Minimizing Cycle Time of a Logic
Chip”, Discrete Applied Mathematics 123(1-3) (2002), pp.
103-127.

[2] C. J. Alpert, Z. Li, G.-J. Nam, S. Ramji, C. N. Sze, P. G.
Villarubia and N. Viswanathan, “Structured Placement of
Latches/Flip-Flops to Minimize Clock Power in High-Performance
Designs”, U.S. Patent 8,954,912, May 2014.

[3] D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of
Careful Seeding”, Proc. Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2007, pp. 1027-1035.

[4] L. Chen, A. Hung, H. M. Chen, E. Tsai, S. H. Chen, M. H. Ku
and C. C. Chen, “Using Multi-bit Flip-Flop for Clock Power
Saving by DesignCompiler”, Proc. Synopsys User Group, 2010.

[5] C. Deng, Y.-C. Cai and Q. Zhou, “Register Clustering
Methodology for Low Power Clock Tree Synthesis”, J. of
Computer Science and Technology 30(2) (2015), pp. 391-403.

[6] S. Dobre, Qualcomm CDMA Technologies, Inc., personal
communication, April 2016.

[7] G.-J. Nam, IBM, personal communication, March 2016.
[8] C.-C. Hsu, Y.-T. Chang and M. P.-H. Lin, “Crosstalk-Aware

Power Optimization with Multi-Bit Flip-Flops”, Proc. ASP-DAC,
2012, pp. 431-436.

[9] W. Hou, D. Liu and P. H. Ho, “Automatic Register Banking for
Low-Power Clock Trees”, Proc. ISQED, 2009, pp. 647-652.

[10] I. H.-R. Jiang, C. L. Chang and Y. M. Yang, “INTEGRA: Fast
Multibit Flip-Flop Clustering for Clock Power Saving”, IEEE
TCAD 31(2) (2012), pp. 192-204.

[11] S. Khuller and Y. J. Sussmann, “The Capacitated K-Center
Problem”, SIAM J. Discrete Math. 13(3) (2000), pp. 403-418.

[12] Y. Kretchmer, “Using Multi-Bit Register Inference to Save Area
and Power: The Good, The Bad, and The Ugly”, EE Times Asia,
2001.

[13] M. P.-H. Lin, C. C. Hsu and Y.-T. Chang, “Post-Placement Power
Optimization with Multi-Bit Flip-Flops”, IEEE TCAD 30(12)
(2011), pp. 1870-1882.

[14] M. P. H. Lin, C. C. Hsu and Y. C. Chen, “Clock-Tree Aware
Multibit Flip-Flop Generation During Placement for Power
Optimization”, IEEE TCAD 34(2) 2015, pp. 280-292.

[15] S. S. Y. Liu, W. T. Lo, C. J. Lee and H. M. Chen,
“Agglomerative-Based Flip-Flop Merging and Relocation for
Signal Wirelength and Clock Tree Optimization”, ACM TODAES
18(3) (2013), pp. 40:1-40:20.

[16] S.-C. Lo, C.-C. Hsu and M. P.-H. Lin, “Power Optimization for
Clock Network with Clock Gate Cloning and Flip-Flop Merging”,
Proc. ISPD, 2014, pp. 77-84.

[17] A. D. Mehta, Y.-P. Chen, N. Menezes, D. F. Wong and L. T.
Pileggi, “Clustering and Load Balancing for Buffered Clock Tree
Synthesis”, Proc. ICCD, 1997, pp. 217-223.

[18] D. Papa, N. Viswanathan, C. Sze, Z. Li, G.-J. Nam, C. Alpert
and I. L. Markov, “Physical Synthesis with Clock-Network
Optimization for Large Systems on Chips”, IEEE Micro 31(4)
(2011), pp. 51-62.

[19] P. J. Rousseeuw, “Silhouettes: A Graphical Aid to the
Interpretation and Validation of Cluster Analysis”, Journal of
Computational and Applied Mathematics 20 (1987), pp. 53-65.

[20] C. C. Tsai, Y. Shi, G. Luo and I. H.-R. Jiang, “FF-bond:
Multi-Bit Flip-Flop Bonding at Placement”, Proc. ISPD, 2013,
pp. 147-153.

[21] S. H. Wang, Y. Y. Liang, T. Y. Kuo and W. K. Mak,
“Power-Driven Flip-Flop Merging and Relocation”, IEEE TCAD
31(2) (2012), pp. 180-191.

[22] C. Xu, P. Li, G. Luo, Y. Shi and I. H.-R. Jiang, “Analytical
Clustering Score with Application to Post-Placement Multi-Bit
Flip-Flop Merging”, Proc. ISPD, 2015, pp. 93-100.

[23] J. T. Yan and Z. W. Chen, “Construction of Constrained
Multi-Bit Flip-Flops for Clock Power Reduction”, Proc. ICGCS,
2010, pp. 675-678.

[24] Cadence Innovus User Guide.
[25] IBM ILOG CPLEX. www.ilog.com/products/cplex/
[26] CAD/CAM/CAE Wallchart.

http://www.garysmitheda.com/wp-
content/uploads/2015/05/All WC-15.pdf

[27] LEMON (Library for Efficient Modeling and Optimization in
Networks).
http://lemon.cs.elte.hu/trac/lemon

[28] OpenCores. http://opencores.org
[29] Synopsys Design Compiler User’s Manual.

