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Abstract—In advanced technology nodes, physical design engineers
must estimate whether a standard-cell placement is routable (before
invoking the router) in order to maintain acceptable design turnaround
time. Modern SoC designs consume multiple compute servers, memory,
tool licenses and other resources for several days to complete routing.
When the design is unroutable, resources are wasted, which increases
the design cost. In this work, we develop machine learning-based models
that predict whether a placement solution is routable without conducting
trial or early global routing. We also use our models to accurately predict
iso-performance Pareto frontiers of utilization, aspect ratio and number
of layers in the back-end-of-line (BEOL) stack. Furthermore, using data
mining and machine learning techniques, we develop new methodologies
to generate training examples given very few placements. We conduct
validation experiments in three foundry technologies (28nm FDSOI, 28nm
LP and 45nm GS), and demonstrate accuracy ≥ 85.9% in predicting
routability of a placement. Our predictions of Pareto frontiers in the
three technologies are pessimistic by at most 2% with respect to the
maximum achievable utilization for a given design in a given BEOL
stack.

I. INTRODUCTION

Physical design of digital integrated circuits in advanced
technology nodes is complicated by multiple design rules that must
be satisfied before tapeout. Design rule violations are reported by
commercial place-and-route (P&R) tools after the routing stage.
However, discovering many design rule violations post-routing is
costly: at best, it consumes engineer resources to fix all the violations
and increases design turnaround time. Sometimes, the number of
design rule violations is so large as to be unfixable; this scenario
leads to disruptive changes to the placement, layout contexts and
constraints. Early prediction of routability in the physical design
flow is therefore critical to reduce design turnaround time and
cost. Multiple factors affect routability such as timing constraints,
utilization, aspect ratio, the number of metal layers, etc. However, to
our best knowledge, no routability models exist today that enable IC
physical design engineers to perform fast and accurate design-space
exploration of timing constraints, utilization, aspect ratio and the
number of metal layers in the back-end-of-line (BEOL) stack. Today,
designers use congestion maps from P&R tools at the placement stage
to predict routability. Congestion maps may be insufficient (and even
misleading) for prediction of routability as measured by the number
of design rule check (DRC) violations.1 This is because routing tools
are themselves highly unpredictable, and because congestion maps
may not comprehend design rules or other factors that affect local
routability such as pin density or timing criticality.

A. Motivation
Physical design engineers typically use congestion maps from

trial routing at the placement stage to determine whether a given
placement is likely to be routable. However, this is still largely
an “art”, akin to reading tea leaves, as congestion maps are not
straightforward indicators of design rule violations in detailed routing.

As a motivating illustration, we consider implementations of
aes cipher top [39] and ARM Cortex M0 designs in 28nm FDSOI
with eight-track cells and a five-layer BEOL stack, obtained using
a commercial P&R tool. We implement aes cipher top with aspect
ratio 1.0 and Cortex M0 with aspect ratio 2.0. Figures 1(a) and (b)

1In the following, we use #DRCs to denote the number of design rule
violations (after the routing tool has run).

show layouts and congestion maps of aes cipher top and Cortex
M0, respectively. Red regions indicate congestion overflow (i.e.,
difference in supply and demand of routing resources) < −5 and
≥ −7; white regions indicate overflow < −7. From these maps, a
user might surmise that the aes cipher top placement is unroutable
due to many regions of high congestion, while the Cortex M0
placement is routable (or, routable with a manually-fixable number
of DRCs) since it has only a few hotspots in the right-bottom region.
However, Figure 2(a) shows that the ∼6 post-routing DRC violations
for aes cipher top do not occur in the highly congested regions.
Figure 2(b) shows that post-routing DRC violations for Cortex M0
occur in both the congested and uncongested regions, and that the
placement is unroutable. The reasons for these DRC violations are not
intuitive from examination of the congestion maps. We demonstrate
below that by using relevant placement-derived parameters beyond
congestion map information, we can train models that accurately
predict routability of a given BEOL stack-specific placement.2

(a) (b)
Fig. 1. Congestion maps at placement stage in 28nm FDSOI foundry
technology, with 8T cells, of (a) aes cipher top implementation with 77%
utilization, aspect ratio 1.0 and five-layer BEOL stack and (b) ARM Cortex
M0 implementation with 77% utilization, aspect ratio 2.0 and five-layer BEOL
stack. Red and white regions indicate large congestion with overflow < −5.

(a) (b)
Fig. 2. DRC violations after routing in 28nm FDSOI foundry technology,
with 8T cells, of (a) aes cipher top implementation with 77% utilization,
aspect ratio 1.0 and five-layer BEOL stack and (b) ARM Cortex M0
implementation with 77% utilization, aspect ratio 2.0 and five-layer BEOL
stack. The white crosses show the DRC violations and the yellow ovals further
highlight the violations.

2We use the term “BEOL stack-specific placement” to acknowledge that the
placement tool will output different placement solutions for the same netlist
and site map, according to the specific metal layer stack.



B. Our work

We define a placement to be routable when the #DRCs is
< threshold after the routing stage; conversely, a placement is
unroutable when the #DRCs is ≥ threshold after the routing stage.3

In this work, we develop models using data mining or machine
learning techniques to accurately predict whether a BEOL stack-
specific placement is routable. We study and propose placement-
derived parameters that enable us to achieve high prediction accuracy.
Applications of our models include the following use cases.
• Given a netlist, clock period, utilization, aspect ratio and

BEOL stack-specific placement, our models predict whether the
placement will be routable. In existing implementation flows,
our models will evaluate solutions at the placement stage and
guide designers to either proceed with the solution or modify it
to make it routable.

• Our models predict iso-performance Pareto frontiers of
utilization, number of metal layers and aspect ratio based on
very few (≤ 20) placements (and, no routing or trial routing) of
a design. Using these Pareto frontiers, a designer can determine
the minimum number of metal layers4 or the maximum
achievable utilization of a block. In existing implementation
flows, our predictions of Pareto frontiers can guide designers
to perform better implementation-space exploration of BEOL
stack options and layout contexts at the floorplan stage.

To the best of our knowledge, the above use cases are not well-
supported in current design methodologies and flows. As noted above,
physical design engineers estimate routability based on congestion
maps from commercial P&R tools, but such maps can be quite
misleading. Currently, to our knowledge, no tool exists that predicts
the Pareto frontiers of utilization, number of metal layers and aspect
ratio based on very few placements.

The key contributions of our work are as follows.
1) We demonstrate that congestion maps from commercial tools

are likely insufficient to predict routability. E.g., we obtain a
classification error of 33.6% in 45nm GS technology when only
values from congestion maps are used to predict routability.

2) We describe a methodology based on machine learning to
predict whether a placement will be routable, given a netlist,
clock period, utilization, aspect ratio and BEOL stack.

3) We describe new parameters that we identify – related to
congestion distribution, critical timing path distribution, and
available routing resources [13] [14] – that guide our learning-
based models to accurately predict routability of a placement,
given a netlist, clock period, utilization, aspect ratio and BEOL
stack. In doing this, we do not use any information from trial
routing or early global routing from P&R tools. The worst-
case classification error in our models is 14.1% in 45nm GS.
In 28nm FDSOI, the classification error of our model is no
more than 13%.

4) Our models also enable accurate prediction of iso-performance
Pareto frontiers of utilization, number of metal layers and
aspect ratio, based on very few placements.

The remainder of this paper is organized as follows. In Section
II, we review related works. Section III describes our methodology
to identify new and relevant parameters, interpolation / extrapolation
methods of parameter values and modeling methodology. In Section
IV, we describe our design of experiments for training and testing
and present results in three different foundry technologies. In Section
V, we provide conclusions and outline ongoing work.

3In this work, we set the threshold to 50, i.e., we assume (rather
conservatively) that 50 DRC violations remaining after detailed routing can
be manually fixed.

4In advanced nodes, due to complexity of lithography (e.g., double-
patterning, triple-patterning, etc.) and process options such as airgaps in
intralayer dielectrics, each metal layer can account for a sizeable percentage
of wafer cost.

II. RELATED WORK

We review related work that addresses (i) requirements for and
optimizations of the number of metal layers needed for routing, and
(ii) early placement-based estimation of congestion and routability.
Number of metal layers. Dong et al. [4] show that only five metal
layers are required for designs with up to 5M gates for signal and
clock routing only (i.e., no PDN). Thereafter, the number of layers
scales linearly, e.g., 50M gates require eight layers and 100M gates
require 10 layers. The study in [4] uses analytical models and gate
areas from a 65nm process, but does not specify metal layer pitches
relative to the pitch of the minimum-width layer. Andreev et al.
[1] have patented a dynamic programming technique that assigns
segments of signal nets from M1 through to the top metal layer,
minimizing the amount of metal layer area consumed by vias. The
patent assumes that all layers have the same pitch. It does not describe
a way to achieve a minimum number of metal layers or a maximum
achievable utilization consistent with routability. The patent of Lin
[17] describes a method to choose widths of various metal layers in
the stack to minimize IR drop and RC delay of nets. The patent also
describes material choices for pads and dielectric to achieve minimum
RC delay.
Early estimation of congestion. Congestion estimation has attracted
much attention in the research community. To address routability
issues prior to the routing stage and to minimize turnaround time,
modern placers are equipped with congestion estimators to guide the
placement to achieve router-friendly placement solutions. Brenner et
al. [2] and Jiang et al. [10] propose approaches to estimate congestion
at the global routing stage for congestion-driven placement. Caldwell
et al. [3] accurately estimate routed wirelength by comprehending
floorplan aspect ratios for routability-driven placement. Roy et al.
[24] propose a congestion-driven whitespace allocation algorithm
during placement and they apply their algorithm in their placement
tool ROOSTER. Wang et al. [32] and Zhong et al. [36] propose
approaches to cure hotspots at the global routing stage. To predict
congestion, Tsota et al. [30] use density of nets within a bounding
box; He et al. [6] apply decomposition of multi-pin nets into two-
pin nets; Spindler and Johannes [27] exploit the ratio of a net’s wire
area (obtained by enumerating all possible RSMTs) to the area of a
net’s bounding box; and Hsu et al. [8] use pin density and routing
resources. The authors of [8] use the predicted congestion to modify
their global placer’s cost function and reduce congestion. Westra et
al. [34] extract routing patterns (L/Z-shapes) to predict congestion.
Kahng and Xu [15] propose a statistical model for congestion that
comprehends effects of blockages and routing bends. He et al. [7],
Liu et al. [18] [19] [20], Pan and Chu [22], and Kim et al. [16]
use global routers to predict congestion. Westra et al. propose a
constructive approach in [35] for placement. Furthermore, Taghavi
et al. [29] propose MILOR to avoid routing infeasibility due to local
congestion at the placement stage. Shojaei et al. [25] [26] propose
a congestion-estimation framework with integer linear programming
at the global routing stage. Wei et al. [33] propose Glare for local
and global congestion estimation. Qi et al. [23] use multivariate
adaptive regression splines (MARS) to develop predictors of routing
congestion using pin density and congestion maps from global
routing. The authors report 13% reduction in the number of design
rule violations when their predictor is used, as compared to using
analytical models of routing congestion. Zhou et al. [37] propose a
learning-based congestion model for detailed routing. The authors
use parameters from global routing and achieve accuracy of ∼80%
using MARS.

III. OUR APPROACH

We now describe our modeling parameters, how we have identified
them, and our modeling methodology.

A. List of Parameters
We divide the placement region into grids whose height and width

are multiples of the P&R tool’s global routing cell (gcell) height



and width.5 We extract modeling parameters from these grids that
intuitively affect local routing of net segments on various metal layers.
The placement-derived parameters that we obtain from each grid are:
• pin density;
• minimum proximity of any pair of pins;
• number of complex cells (i.e., AOI, OAI, three-input XOR and

XNOR, and MUX);
• sum of incoming and outgoing hyperedges (signal nets with pins

both inside and outside the grid);
• number of buried nets, that is, the number of nets that have all

of their pins within the grid;
• arithmetic and geometric mean values of placement-based Rent

parameter;
• the worst signal transition time of all pins at the worst corner;

and
• the smallest values of the worst negative slack (WNS) of setup

time of any pin within the grid.
Figures 3(a) and (b) show correlation of #DRCs (our routability

metric) to the sum of incoming and outgoing hyperedges6 and
minimum proximity of pins, respectively. When a grid has small
values of minimum proximity of pins, it indicates that pins of adjacent
cells within a grid are placed very closely and can lead to spacing-
related DRC violations at the routing stage. When a grid has pins
with large transition times or small WNS, it indicates that cells can be
sized up and buffers can be inserted that can worsen local routability
and increase the number of DRC violations.
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Fig. 3. Correlations of #DRCs with (a) sum of incoming and outgoing
hyperedges and (b) minimum proximity of pins within a grid.

From the above parameters, we compute the coefficient of variation
(i.e., the ratio of standard deviation to mean) of pin density, minimum
proximity, number of complex cells, sum of incoming and outgoing
hyperedges, number of buried nets, arithmetic and geometric mean
values of placement-based Rent parameter, worst transition time and
worst WNS. We use the following as our modeling parameters.7

1) Coefficient of variation of pin density, minimum proximity,
number of complex cells, sum of incoming and outgoing edges,
number of buried nets, arithmetic and geometric mean values
of Rent parameter, worst transition time and worst WNS.

2) Maximum values (across all grids) of pin density, number of
complex cells, sum of incoming and outgoing edges, number
of buried nets, arithmetic and geometric mean values of Rent
parameter and worst transition time.

3) Minimum values (across all grids) of minimum proximity and
worst WNS.

4) Utilization of standard cells.
5) Clock period of design used for P&R.
6) Aspect ratio of the floorplan.
7) Numbers of horizontal and vertical tracks, which we calculate

from the height and width of the placement region and pitches
of all horizontal and vertical layers of the BEOL stack. For
example, if there are three horizontal layers, each with pitch

5Typical grid size in a commercial P&R tool is 15 tracks × 15 tracks [38],
where a track is equal to the M2 pitch value.

6We use the term edges below to denote hyperedges.
7We greedily select parameters by incrementally adding each parameter one

by one, creating models using our training dataset and checking accuracy of
models using the test dataset. The next parameter to be selected is the one
which improves model accuracy the most. We list the parameters that achieve
the highest accuracy in our experiments.

ph, and core height H , then the number of horizontal tracks is
3 ·H/ph.

The parameters listed in (1)–(3) above are an indication of the
quality of a BEOL stack-specific placement and how it spreads
across multiple grids. If the spread (indicated by coefficient of
variation) is large, it suggests that grids may have local congestion.
The timing parameters capture how critical paths and critical pins
are distributed, and the extent of violation. Large violations at the
placement stage indicate that buffers can be inserted during routing,
which can increase local congestion and violate design rules. The
parameters listed in (4)–(6) above describe the layout context and
timing constraints, and the parameters listed in (7) above capture
details of the BEOL stack and the amount of routing resources
available for the design.8

B. Parameter value interpolation and extrapolation
Given a few (≤ 20) placement solutions of a design that span some

values of clock period, utilization, aspect ratio and BEOL stack, we
need to generate additional values of parameter to train our models.
We propose the following methodology, partially adapted from [21],
to interpolate and extrapolate values of parameters (e.g., {maximum,
coefficient of variation, . . .} × {pin density, sum of edges, . . .})
from Section III-A across multiple values of clock period, utilization,
aspect ratio and BEOL stack. We train models for each parameter
as a function of clock period, utilization, aspect ratio, number of
horizontal (#H) and vertical (#V) tracks and known values of the
parameter extracted from the given placements. We train models for
each parameter that achieves a given error bound UBerror as follows.

Algorithm 1 Interpolation / extrapolation of parameter values.
Procedure genParamModel
Input : P (3 < |P| ≤ 20), UBerror
Output: Model fm for parameter m ∈ {max pin density, max # edges, etc.}.

1: Ptr ← {pi, pj , pk} ∈ P, i, j, k ≤ |P|
2: P← P \ {pi, pj , pk} // remove pi, pj , pk from P
3: pf ← {pl} ∈ P, l ≤ |P|
4: P← P \ {pl}
5: Xtr ← Ptr ∪ {pf} // extract inputs to fm, e.g., ratio of util, clk period, ...
6: ytr ← pf // extract value of parameter m in pf

7: ŷtr ← fm(Xtr) // fm is trained using MARS, SVM, etc.
8: e← 2× UBerror
9: while |P| > 0 && |e| > UBerror do

10: for all p ∈ P do
11: y ← p
12: Xtest ← Ptr ∪ {p}
13: e← f(Xtest)− y
14: if |e| > UBerror then
15: Ptr ← Ptr ∪ {p}
16: P← P \ {p}
17: Xtr ← Ptr ∪ {pf}
18: ytr ← pf

19: ŷtr ← fm(Xtr) // retrain model
20: end if
21: end for
22: end while

In procedure genParamModel of Algorithm 1, we assume that we
are given a set P of placements of a design and an error upper
bound UBerror . We expect a minimum of four and a maximum of 20
placements, that is 3 < |P| ≤ 20.9 In Lines 1–4, we choose a subset
of three placements Ptr from P for training and one placement pf
for model fitting. In Line 5, we extract values of the parameter (e.g.,
max pin density, etc.) as well as other inputs used to fit a model.
These inputs are the ratio of clock periods, utilization, aspect ratio,
#H and #V tracks of pf to those in Ptr , as well as the values of the
same parameter from the placements in Ptr . In Line 6, we obtain

8Our models are sensitive to the implementation flow and tools used to
generate training data, and do not generalize across flows and tools. Therefore,
our models must be re-trained when the flow or tools change.

9Given placement solutions of a new design, we do not know how each
parameter varies with the inputs. We use at least three data points to capture
parameters that can be polynomial (with polynomial degree ≥ 2) with respect
to the input parameters.



the value of the parameter from pf that we use to fit, and in Line
7 we train a model fm. For example, to train a model for max pin
density, we use the max pin density values of placements in Ptr and
the ratio of clock periods, utilization, aspect ratio, #H and #V tracks
of pf to those in Ptr . In Line 8, we initialize the error e to 2×
UBerror . In Lines 9–22, we refine fm by retraining to achieve e ≤
UBerror . In Lines 9–13, we choose the remaining placements in P
for testing, extract the fitting parameters and the actual values of the
parameters. We then use fm to test the model. In Lines 14–20, we
check if the error e > UBerror in the placements used for testing,
we add these placements to our set of placements used for training
Ptr , and remove these from P. The while loop exits when either
all the remaining placements in P have been added to Ptr or when
fm achieves e ≤ UBerror .10 Using fm, we can now interpolate or
extrapolate values of the parameter. That is, for any new value of
clock period, utilization, aspect ratio and BEOL stack, we calculate
the ratios of clock periods, utilization, aspect ratio, #H and #V tracks,
etc. and use fm to estimate the values of the parameters. We train
one model fm for each parameter described in Section III-A.

To train each fm, we use MARS [5] and Support Vector Machine
(SVM) [5] using a Radial Basis Function (RBF) kernel [5] and
combine their responses using weights determined by least-squares
regression, and train a model for each parameter. Once we have
obtained a set of estimated values of parameters using the above
methodology, we will use these as our modeling parameters to predict
routability as described in Section III-A, and predict Pareto frontiers
as described in Section IV-C.

C. Modeling methodology
The goal of modeling is to predict whether a BEOL stack-

specific placement is routable (for a given router). We classify an
implementation to be unroutable when the number of design rule
violations at the post-route stage (or, the number of DRCs) obtained
from commercial place-and-route (P&R) tools is ≥ 50. When the
number of violations is < 50, these violations are typically fixed
by designers manually. Our model for each technology is a binary
classifier developed using the SVM algorithm using a RBF kernel. We
use the label “+1” when a design is routable and the label “-1” when
an implementation is unroutable. We use five-fold cross-validation to
generalize our models.11

IV. EXPERIMENTAL SETUP AND RESULTS

We now describe our experimental setup, design of experiments
(DoE), and present our results. In Section IV-A, we describe our
DoE for three foundry technologies and designs that we use to train
our models. To test our models, we use new designs that the training
data has not seen. We describe the DoE of our test dataset and its
applications to our models in Sections IV-B and IV-C.

A. Model construction
We conduct our experiments on multiple designs: aes cipher top

and vga enh top from OpenCores [39]; aes x2 and aes x3 created
by instantiating and stitching two and three aes cipher top designs
respectively; and ARM Cortex M0 core, leon3mp core, DW dct
and jpeg x5 created by instantiating and stitching five jpeg encoder
designs [39]. We synthesize these designs using Synopsys Design
Compiler vI-2013.12-SP3 [40]. Table I shows the DoE used to obtain
ground truth for modeling of designs with 28nm FDSOI eight-
track (8T), 28nm LP 12-track (12T) and 45nm GS nine-track (9T)
technology libraries. We use these data points to train our models
(one model for each technology). We create custom LEF files with
eight, seven, six, five and four metal layers, all having 1× pitch as
the Mx layer. We run P&R using Cadence Innovus v15.2 [38]. We

10Note that it is possible that we use all the placement solutions to train a
model for a parameter, but error is > UBerror .

11Interested readers can find further details of kernel-based SVM
classification in [5].

perform denoising [9] [11] by executing P&R for each point in our
DoE six times, i.e., by perturbing each P&R clock periods {-5, +0,
+5}ps with an utilization value, and by perturbing each utilization
value by {-0.05, +0.00, +0.05}% with a clock period.12 We classify
a placement as unroutable when all the six runs indicate that the
#DRCs is ≥ 50. We then use custom scripts in Tcl to extract the
parameters described in Section III-A as follows.
• We use grids to divide the entire layout. Note that the number

of grids varies with designs and utilizations.
• To obtain pin density per grid, we count the number of pins in

each grid and divide it by the grid area.
• To obtain the minimum proximity of pins, we calculate half-

perimeter wirelength (HPWL) of all pairs of pins within a grid.
We then use the minimum HPWL of these values as minimum
proximity.

• To obtain the number of complex cells, we obtain all cells within
the bounding box of a grid and their cell masters. We then count
the cells whose master names are either AOI, OAI, three-input
XOR and XNOR, or MUX.

• To obtain the number of buried nets, we count nets that have all
of their pins within a grid.

• To obtain the number of edges, we count the number of incoming
incident edges to pins within a grid and the number of outgoing
edges from pins within a grid. We then add the number of
incoming and outgoing edges.

• To obtain the placement-based Rent parameter, we use the
RentCon tool [41] with 15 tracks × 15 tracks grid size, and
shifting of evaluation windows by 1

4
× the size of the grid. Thus,

16 grids over the layout region are used for evaluation of the
placement-based Rent parameter.

• To obtain the worst signal transition time of all pins within a
grid, we obtain all pins over all critical paths that are within a
grid in the worst corner. We then take the worst signal transition
time of all these pins using the get property command.

• To obtain the worst setup WNS within a grid, we check all pins
within a grid and obtain WNS of the paths to which these pins
belong. We then take the worst (i.e., minimum value) WNS as
our parameter.

• We obtain statistical information, i.e., max and min values
by considering the maximum and minimum values of our
parameters across all grids. We calculate the coefficient of
variation by dividing the standard deviation by the mean value
of parameters (across all grids).

We now explain our choice of grid sizes. We use grid sizes of 45
tracks× 45 tracks because these are multiples of gcell sizes (15 tracks
× 15 tracks) used by our P&R tool. We have tried grid sizes of 15
tracks × 15 tracks, 30 tracks × 30 tracks and 90 tracks × 90 tracks as
well. Small grid sizes hide the correlation between #DRCs and our
parameters because multiple neighboring gcells can together cause
DRC violations. Large grid sizes blur the differences between various
utilizations, i.e., do not capture local hotspots. We use 45 tracks × 45
tracks because these grids show correlation with #DRCs and at the
same time does not blur differences across utilizations. Figures 4(a)
and (b) show that by using grid sizes of 15 tracks × 15 tracks the
correlation between pin density and #DRCs is not apparent in 28nm
FDSOI. By using grid sizes of 45 tracks × 45 tracks, the correlations
between #DRCs and pin density become more apparent. We compare
the coefficient of determination R2 in both figures and observe that
Figure 4(b) has larger R2 value than Figure 4(a). Similarly, Figures

12On a 2.6GHz Intel Xeon E5-2690 processor, placement takes around 1.5
hours (on average) for aes cipher top, 2.4 hours (on average) for aes x2 and
3.3 hours (on average) for aes x3 with two cores. On average, routing executes
in 2.5, 3.1 and 5 hours, respectively for these designs when the placement
is routable, and takes around 3.5, 5.1 and 6.3 hours, respectively when the
placement is unroutable. We choose clock periods so that the implementations
meet timing at the post-route stage. Note that out of six runs, one of the runs
that uses the utilization and clock period values from the DoE is duplicated.



TABLE I
DESIGN OF EXPERIMENTS USED TO OBTAIN GROUND TRUTH FOR

TRAINING OUR MODELS.
aes cipher top aes x2 aes x3

Syn Clk 28FDSOI, 8T 0.6 0.6 0.6
Period 28LP, 12T 0.6 0.6 –

(ns) 45GS, 9T 1.0 1.0 –

#Instances
28FDSOI, 8T 11461 22770 34834

28LP, 12T 11783 24744 –
45GS, 9T 13601 28562 –

#FFs
28FDSOI, 8T 530 1060 1590

28LP, 12T 530 1060 –
45GS, 9T 530 1060 –

P&R Clk 28FDSOI, 8T {0.6, 0.9, 1.1} {0.6, 0.9, 1.1} {0.6, 0.9, 1.1}
Period 28LP, 12T {0.6, 0.9, 1.1} {0.6, 0.9, 1.1} –

(ns) 45GS, 9T {1.0, 1.2, 1.8} {1.0, 1.2, 1.8} –

Util (%)
28FDSOI, 8T {70, . . ., 86} {70, . . ., 86} {70, . . ., 86}

28LP, 12T {70, . . ., 86} {70, . . ., 86} –
45GS, 9T {70, . . ., 86} {70, . . ., 86} –

Aspect 28FDSOI, 8T {1.0, 1.3, 1.8} {1.0, 1.3, 1.8} {1.0, 1.3, 1.8}

Ratio 28LP, 12T {1.0, 1.3, 1.8} {1.0, 1.3, 1.8} –
45GS, 9T {1.0, 1.3, 1.8} {1.0, 1.3, 1.8} –

#Metal 28FDSOI, 8T {6, 5, 4} {6, 5, 4} {6, 5, 4}

Layers 28LP, 12T {6, 5, 4} {6, 5, 4} –
45GS, 9T {6, 5, 4} {6, 5, 4} –

Grid 28FDSOI, 8T 45 × 45 45 × 45 45 × 45
Size 28LP, 12T 45 × 45 45 × 45 –

(#tracks) 45GS, 9T 45 × 45 45 × 45 –

#Routable
28FDSOI, 8T 306 306 294

28LP, 12T 437 424 –
45GS, 9T 317 311 –

#Unroutable
28FDSOI, 8T 153 153 165

28LP, 12T 22 35 –
45GS, 9T 142 148 –

5(a) and (b) show that by using grid sizes of 15 tracks × 15 tracks,
the correlation between #DRCs and the number of complex cells
is not apparent in 28nm FDSOI. By using grid sizes of 45 tracks
× 45 tracks, the correlation between #DRCs and the number of
complex cells becomes more apparent. We compare the coefficient
of determination R2 in both figures and observe that Figure 5(b) has
larger R2 value than Figure 5(a).13
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Fig. 4. Correlations of #DRCs with pin density at 28nm FDSOI. The size
of grids is set to (a) 15 tracks × 15 tracks, and (b) 45 tracks × 45 tracks.

In total, we use 1377 data points for training our model in
28nm FDSOI, out of which 906 data points are from routable
implementations and the remaining 471 are from unroutable
implementations. In 28nm LP, we use a total of 918 data points
for training, out of which 861 are from routable and 25 are from
unroutable implementations. In 45nm GS, we use a total of 918 data
points for training, out of which 618 are from routable and 290 are
from unroutable implementations. We train our models using Matlab
scripts. We conduct two experiments to demonstrate applications of
our models, as follows.

• Experiment 1. To determine whether a placement is routable
using our models on “unseen” data points from new designs
across various technologies.

• Experiment 2. To predict Pareto frontiers of utilization, aspect
ratio and number of metal layers at iso-performance.

13Commercial P&R tools use pitch of the M2 layer as track size. In our
technology libraries, 28nm FDSOI and LP technologies have M2 pitch of
0.1µm, and 45nm GS technology has M2 pitch of 0.14µm. Therefore, our
grid sizes are 4.5µm × 4.5µm for 28nm FDSOI and LP, and 6.3µm × 6.3µm
for 45nm GS.
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Fig. 5. Correlations of #DRCs with the number of complex cells at 28nm
FDSOI. The size of grids is set to (a) 15 tracks × 15 tracks, and (b) 45 tracks
× 45 tracks.

B. Results of Experiment 1

Experiment 1 uses our models to predict whether a placement is
routable for a fixed utilization, aspect ratio, clock period and BEOL
stack. We test our models on completely unseen data points from
new designs. Table II shows the DoE used to obtain ground truth
for testing our models in 28nm FDSOI, 28nm LP and 45nm GS
technologies. We use five new designs such as Cortex M0 (Cortex),
DW dct (dct), vga enh top (vga), jpeg x5 and leon3mp,14 as well as
eight- and seven-layer BEOL stacks that we did not use for training.
These make the classification problem more difficult and help assess
whether our models are generalizable and scalable. We eliminate tool
noise in the same manner as described for the training dataset, i.e.,
we execute six P&R runs for each point in the DoE by perturbing the
clock period (by keeping utilization fixed) and utilization (by keeping
clock period fixed) values.15

We use standard classification metrics to assess our training and
test classifications such as accuracy, precision, recall and negative
predictive value (NPV). We use confusion matrices to illustrate
classification performed by our models on training and test data
points. Accuracy is defined as the ratio of the sum of true positives
(TPs) and true negatives (TNs) to the sum of all data points used for
classification (either for training or testing). Precision is defined as
the ratio of TPs to the sum of TPs and false positives (FPs); recall
is defined as the ratio of TPs to the sum of TPs and false negatives
(FNs); and NPV is defined as the ratio of TNs to the sum of TNs
and FNs.

Table III shows the confusion matrices of our predictions in 28nm
FDSOI, 28nm LP and 45nm GS by using parameters listed in Section
III-A. For each technology, we use the data points from Table I for
training, and the data points from Table II for testing. “True” refers to
a placement being routable, that is, having a label “+1”, and “False”
refers to a placement being unroutable, that is, having a label “-1”.

Table IV shows error metrics (i.e., accuracy, precision, recall and
NPV) for training and test datasets in 28nm FDSOI, 28nm LP and
45nm GS. We observe that the accuracy values are ≥ 85.9% in
the test dataset, that is, our models are able to accurately classify
placements as routable and generalizes to unseen data points. The
accuracy is 90% for 28nm LP because the prediction problem is less
difficult than the other two technologies as the number of unroutable

14We use a variety of open-source designs to represent blocks in complex
real-world SoCs since industrial designs were not available to us.

15Note that we do not use all six runs for training or testing. These runs are
for denoising and generate only one data point. The data point is unroutable
if each of the six runs contains #DRCs ≥ 50; otherwise, it is routable. A
designer can choose to skip the denoising step and execute only one run.



TABLE II
DESIGN OF EXPERIMENTS USED TO OBTAIN GROUND TRUTH FOR TESTING OUR MODELS.

Cortex jpeg x5 leon3mp dct vga
Syn Clk 28FDSOI, 8T 0.8 1.0 1.0 0.8 0.6
Period 28LP, 12T 0.8 1.0 – 1.0 0.7

(ns) 45GS, 9T 1.2 1.5 – – –

#Instances
28FDSOI, 8T 9282 111342 442734 11987 71080

28LP, 12T 9380 111463 – 12015 71096
45GS, 9T 13601 168310 – – –

#FFs
28FDSOI, 8T 840 23560 108817 798 17057

28LP, 12T 840 23560 – 798 17057
45GS, 9T 840 23560 – – –

P&R Clk 28FDSOI, 8T {0.8, 1.0, 1.5, 2.0} {1.3, 1.5} {1.5, 2.0} {0.9, 1.2} {0.7, 1.2}
Period 28LP, 12T {0.8, 1.0, 1.5, 2.0} {1.3, 1.5} – {1.0, 1.2} {0.8, 1.3}

(ns) 45GS, 9T {1.5, 2.0, 2.2} {1.5, 2.0} – – –

Util (%)
28FDSOI, 8T 76, . . ., 90 76, . . ., 90 76, . . ., 90 76, . . ., 90 76, . . ., 90

28LP, 12T 76, . . ., 90 76, . . ., 90 – 76, . . ., 90 76, . . ., 90
45GS, 9T 76, . . ., 90 76, . . ., 90 – – –

Aspect 28FDSOI, 8T {1.0, 1.8, 2.0, 2.2} {1.0, 1.2, 1.5, 2.1} {1.0, 1.2} {1.0, 1.5, 2.0} {1.0, 1.5, 2.0}

Ratio 28LP, 12T {1.0, 1.5, 1.7} {1.0, 1.1, 1.6} – {1.0, 1.5, 2.0} {1.0, 1.5, 2.0}
45GS, 9T {1.0, 1.5, 1.7} {1.0, 1.3, 2.0} – – –

#Metal 28FDSOI, 8T {8, . . ., 4} {8, . . ., 4} {8, . . ., 4} {6, 5, 4} {6, 5, 4}

Layers 28LP, 12T {6, 5, 4} {6, 5, 4} – {6, 5, 4} {6, 5, 4}
45GS, 9T {6, 5, 4} {6, 5, 4} – – –

Grid 28FDSOI, 8T 45 × 45 45 × 45 45 × 45 45 × 45 45 × 45
Size 28LP, 12T 45 × 45 45 × 45 – 45 × 45 45 × 45

(#tracks) 45GS, 9T 45 × 45 45 × 45 – – –

#Routable
28FDSOI, 8T 900 502 195 180 177

28LP, 12T 508 246 – 240 235
45GS, 9T 277 195 – – –

#Unroutable
28FDSOI, 8T 300 98 105 90 93

28LP, 12T 32 24 – 30 35
45GS, 9T 128 75 – – –

placements are few. Across all technologies and designs, our precision
is ≥ 91% and recall is ≥ 86%. That is, there are few false positives
and few false negatives in the classification results of the test dataset.
In 28nm LP, only 10% of the data points are unroutable, that is, the
training data is biased towards the routable label of “+1”. Therefore,
the modeling problem is relatively easy. However, our 28nm LP
model does not overfit the routable data points and is able to identify
23 out of 121 unroutable placements correctly. Even though the sizes
of our test datasets are up to ∼1.9× the sizes of our training datasets,
our classifications are accurate across technologies. For example, in
45nm GS, accuracy degrades from 97.0% in the training dataset to
85.9% in the test dataset.16

Tables V and VI show the confusion matrices and error metrics by
using only congestion maps from the placement that are typically
used by physical design engineers to predict routability. NPV
is a measure of how accurately a model can predict unroutable
placements. In other words, NPV measures the ratio of placements
that are truly unroutable to the placements that are predicted to
be unroutable.17 The overhead of incorrectly classifying a routable
placement as unroutable is high, as design turnaround time increases
and quality of results worsens. In Section I-A, we illustrated the
poor correlation of #DRCs with placement congestion maps; now
we quantify the error across technologies and designs. We observe
that accuracy for 28nm LP placements is 77.3% with NPV of 20.8%
in the test dataset, whereas by using our new parameters, the accuracy
is 90.5% and NPV is 48.2% for the same test dataset.18

16To test robustness of our conclusions, we performed modeling by
interchanging the training and test datasets. We train our models using DoE
data points from Table II and test the models on data points from Table I. In
the training dataset, the worst-case differences in accuracy is 2.4%, precision
is 1.1%, recall is 1.6% and NPV is 4.4%, across all technologies. In the test
dataset, the worst-case differences in accuracy is 3.3%, precision is 1.6%,
recall is 2.4% and NPV is 9.7%.

17For example, if every placement is always predicted to be routable, then
NPV will be zero.

18We experimentally demonstrate that it is important to include #H, and
#V tracks as parameters (to represent BEOL stacks) in our models. We have
conducted experiments in 28nm FDSOI by removing these parameters and
observe that the modeling accuracy in the test dataset reduces from 87.2% to
77.5%.

TABLE III
CONFUSION MATRICES FOR ROUTABILITY PREDICTION FOR TRAINING

AND TEST DATASETS.
Training Testing

Actual Actual
True False True False

28nm Pred True 869 11 True 1790 173
FDSOI False 37 460 False 164 513
28nm Pred True 829 1 True 1124 23

LP False 32 56 False 105 98
45nm Pred True 612 11 True 406 29
GS False 16 279 False 66 174

TABLE IV
CLASSIFICATION ERROR METRICS FOR TRAINING AND TEST DATASETS.

Dataset Accuracy Precision Recall NPV
(%) (%) (%) (%)

28nm Training 96.5 98.8 95.9 92.5
FDSOI Testing 87.2 91.9 91.6 75.8
28nm Training 96.4 99.8 96.3 63.6

LP Testing 90.5 98.0 91.5 48.2
45nm Training 97.0 98.2 97.4 94.6

GS Testing 85.9 93.3 86.0 72.5

TABLE V
CONFUSION MATRICES FOR ROUTABILITY PREDICTION BY USING

CONGESTION MAP ONLY FOR TRAINING AND TEST DATASETS.
Training Testing

Actual Actual
True False True False

28nm Pred True 833 66 True 1427 298
FDSOI False 73 405 False 527 388
28nm Pred True 790 11 True 978 55

LP False 71 46 False 251 66
45nm Pred True 586 47 True 334 89
GS False 42 243 False 138 114



TABLE VI
CLASSIFICATION ERROR METRICS BY USING CONGESTION MAP ONLY FOR

TRAINING AND TEST DATASETS.

Dataset Accuracy Precision Recall NPV
(%) (%) (%) (%)

28nm Training 89.9 92.6 91.9 84.7
FDSOI Testing 68.8 82.7 73.0 42.4
28nm Training 91.1 98.6 91.7 39.3

LP Testing 77.3 94.7 79.6 20.8
45nm Training 90.3 92.6 93.3 85.3

GS Testing 66.3 78.9 70.8 45.2

C. Results of Experiment 2

In this experiment, our goal is to determine the iso-performance
Pareto frontiers of utilization, aspect ratio and number of metal
layers for various designs using our models. Our models can predict
“iso-performance” because we comprehend clock period and timing-
related parameters in our modeling, and our results are actually
different from “performance-oblivious” models. We are given only a
few placements, so we must interpolate and extrapolate our modeling
parameters from these placements to predict the Pareto frontiers.
This is very challenging because the metrics do not scale in a
known manner (e.g., unimodal, linear, etc.) when utilization, aspect
ratio and the BEOL stack is changed. Sometimes the P&R tools
stop fixing timing or congestion violations at the placement stage
when the utilization is very tight or the BEOL stack has insufficient
number of metal layers. To overcome these challenges, we devise an
interpolation and extrapolation method as described in Section III-B
using machine learning.

Our test dataset in each technology contains around 100–300
implementations of Cortex and jpeg x5 designs that span different
utilizations, aspect ratio values and BEOL stacks. We choose 20 of
these placements per design that are implemented with the smallest
clock period for these designs from Table II.19 We then execute our
method in Section III-B. Obtaining 20 placements is inexpensive –
especially, relative to the cost of a failed routing job or wasting area
and/or wafer cost – from both CPU and wall time standpoints.20

We set the error upper bound UBerror for each metric to be
20%. We use cubic splines for the MARS technique and use grid
search to determine the best values of hyperparameters (e.g., the SVM
regularization hyperparameter C, error margin ξ and RBF weight for
each radius γ [5]) for SVM with RBF kernel. We train one model
for each parameter, e.g., {max, average} × {pin density, #complex
cells, sum of incoming and outgoing edges}, etc. as described in
Section III-A. Figures 6(a) and (b) compare average pin density and
average #complex cells respectively for the 20 placements of jpeg x5
in 28nm FDSOI when using our method to interpolate or extrapolate
parameter values and actual values obtained from the placements. We
then create a test dataset using estimates from the models of each
parameter, and use our models (developed using the DoE for training
dataset in Table I) to predict routability.

Figures 7(a) and (b) show the predicted Pareto frontiers of
#metal layers, utilizations and aspect ratios for Cortex and jpeg x5
respectively in 28nm FDSOI. Figures 8(a) and (b) show the predicted
Pareto frontiers of #metal layers, utilizations and aspect ratios for
Cortex and jpeg x5 respectively in 45nm GS. Figures 9(a) and (b)
show the ground truth Pareto frontiers of #metal layers, utilizations
and aspect ratios, respectively for Cortex in 28nm FDSOI and jpeg x5

19For example, in 28nm FDSOI we choose utilizations {80, 82, 83, 84,
85}% for both designs; the corresponding numbers of metal layers for these
utilizations are {4, 4, 5, 5, 6}. For Cortex, we use aspect ratios {1.0, 1.8, 2.0,
2.2}, and for jpeg x5 we use aspect ratios {1.0, 1.2, 1.5, 2.1}.

20Only the ground truth of the Pareto frontiers is obtained from the actual
routing information of these placements.
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Fig. 6. Prediction accuracy of our interpolation / extrapolation method in
28nm FDSOI for jpeg x5 for average (a) pin density, and (b) #complex cells.

(a)

(b)
Fig. 7. Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis)
for multiple aspect ratios using our models in 28nm FDSOI: (a) Cortex, and
(b) jpeg x5.

in 45nm GS.21 From Figures 7(a) and 9(a), we observe that in 28nm
FDSOI, Cortex is routable with five metal layers when aspect ratio is
1.8 and utilization is 79%, but our model predicts that the maximum
utilization in 78% (i.e., 79% requires six metal layers). Similarly,
from Figures 8(b) and 9(b), in 45nm GS jpeg x5 is routable with
four metal layers when aspect ratio is 1.5 and utilization is 77%, but
our model predicts that no placement of jpeg x5 is routable with four
metal layers at aspect ratio 1.5. Across three foundry technologies
and two designs (that were not used for training), our predictions
of maximum achievable utilization are within 2% of the maximum
achievable utilization value in the ground truth.

V. CONCLUSIONS

Efficient exploration of the space of utilization, aspect ratio
and BEOL stack at iso-performance is very important for design

21The two designs show limited value from the M5 layer because beyond
82% utilization, both horizontal and vertical routing tracks are required for
routability. Adding only M5 does not cure the routability issues.



(a)

(b)
Fig. 8. Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis)
for multiple aspect ratios in 45nm GS: (a) Cortex, and (b) jpeg x5.

(a) (b)
Fig. 9. Ground truth Pareto frontiers of #Metal Layers (y-axis) versus
utilization (x-axis) for multiple aspect ratios of (a) Cortex in 28nm FDSOI,
and (b) jpeg x5 in 45nm GS.

turnaround time and to achieve good quality of results. Currently,
physical design engineers use congestion maps of P&R tools from
the placement stage to predict routability as measured by the #DRCs.
However, our experimental results indicate that these maps can
sometimes be misleading and inaccurate in predicting routability.
We present new modeling parameters that enable us to analyze
local hotspots in a placement and achieve accurate predictions of
routability. We also present a new method of using only a few
placements to predict (using our models) the Pareto frontiers of
utilizations, aspect ratios and BEOL stacks at iso-performance. Our
experimental results indicate that our predictions are pessimistic by
2% of the maximum achievable utilization across three different
foundry technologies and two designs (that were not used for
training). Overall, our classification accuracies are 87.0% in 28nm
FDSOI, 90.4% in 28nm LP and 85.9% in 45nm GS. We achieve
significant improvements as compared to using only congestion maps;
classification accuracies by using only congestion maps are 61.7%
in 28nm FDSOI, 73.5% in 28nm LP and 66.3% in 45nm GS. Our
ongoing works include (i) predicting timing and routability with
nonuniform BEOL stacks, (ii) adding confidence intervals of our
routability predictions, and (iii) extending our models to predict
routability of 3DIC placements.
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