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Abstract—Embedded memories are critical to success or failure of
complex system-on-chip (SoC) products. They can be significant yield
detractors as a consequence of occupying substantial die area, creating
placement and routing blockages, and having stringent Vccmin and
power integrity requirements. Achieving timing-correctness for embedded
memories in advanced nodes is costly (e.g., closing the design at multiple
(logic-memory) cross-corners). Further, multiphysics (e.g., crosstalk, IR,
etc.) signoff analyses make early understanding and prediction of timing
(-correctness) even more difficult. With long tool and design closure
subflow runtimes, design teams need improved prediction of embedded
memory timing failures, as early as possible in the implementation flow.
In this work, we propose a learning-based methodology to perform early
prediction of timing failure risk given only the netlist, timing constraints,
and floorplan context (wherein the memories have been placed). Our
contributions include (i) identification of relevant netlist and floorplan
parameters, (ii) the avoidance of long P&R tool runtimes (up to a week
or even more) with early prediction, and (iii) a new implementation of
Boosting with Support Vector Machine regression with focus on negative-
slack outcomes through weighting in the model construction. We validate
accuracy of our prediction models across a range of “multiphysics”
analysis regimes, and with multiple designs and floorplans in 28FDSOI
foundry technology. Our work can be used to identify which memories
are “at risk”, guide floorplan changes to reduce predicted “risk”, and
help refine underlying SoC implementation methodologies. Experimental
results in 28nm FDSOI technology show that we can predict P&R slack
with multiphysics analysis to within 253ps (average error less than 10ps)
using only post-synthesis netlist, constraints and floorplan information.
Our predictions are 40% more accurate than the predictions (worst-case
error of 358ps and average error of 42ps) of a nonlinear Support Vector
Machine model that uses only post-synthesis netlist information.

I. INTRODUCTION

Timing closure in modern systems-on-chip (SoCs) is complex and
time-consuming, due to multiple iterations between various analyses
and design fixes. Early, accurate prediction of post-layout slack can
potentially deliver dramatic design turnaround time and design cost
reductions. However, to the best of our knowledge, no existing
tool can predict slack at an early design stage (in particular, the
post-synthesis, physical floorplanning stage).1 Predicting post-layout
slack without physical synthesis or trial placement information is
challenging because wire delay must be estimated without spatial
embedding information. The prediction problem becomes even more
difficult because of (i) embedded memories, and (ii) “multiphysics”
analysis.

Embedded memories (SRAMs) complicate SoC physical
implementation on several fronts [8] [31]. They occupy significant
die area [13] and are typically placed in arrays, which not only
makes floorplanning difficult, but also creates placement and routing
blockages. Timing analysis and closure are costly, e.g., with respect
to cross-corners in low-power, split-rail designs. Hence, despite long
tool runs and complex design subflows, SoCs with multiple SRAMs
can have unpredictable timing at the post-P&R stage, not to mention
in silicon.

Verification of timing correctness in advanced nodes increasingly
demands analyses that close the loop across crosstalk, IR and

1A long history of RTL signoff and RTL planning tools is best exemplified
today by Atrenta SpyGlass [24], which performs early analysis of designs but
uses its own simplified placement, clock tree synthesis and routing engines
that do not necessarily match production back-end tool outcomes.

temperature [19] [25], i.e., more than one “physics”. We use
multiphysics analysis to mean performing multiple analyses such as
IR, thermal, reliability, crosstalk, etc., and then performing static
timing analysis (STA) using reports from these analyses. Timing
assessments can vary widely with the specific analyses performed, e.g.,
turning SI mode on can worsen slack by 100ps due to crosstalk [16].
Figure 1(a) shows slack values of five memories in a small block2,
according to four different analyses that combine IR analysis and STA:
(i) STA with no IR analysis; (ii) STA with static IR analysis; (iii) STA
with dynamic voltage drop (DVD) IR analysis; and (iv) four iterations
of STA with DVD IR analysis, i.e., STA is performed with back-
annotated instance-specific DVD IR drop, going around this loop four
times. Figure 1(b) shows that across different implementations of the
same netlist (i.e., when clock period and maximum transition time
constraints are varied), the slack difference between (i) STA with
no IR, and (ii) two iterations of STA with DVD IR, can vary by
∼15ps depending on the implementations. By closing multiphysics
analysis loops, design teams achieve more accurate timing results, but
the results of such analyses are non-trivial to predict in early stages
of implementation.

We show two examples to illustrate the challenges of predicting
post-layout slack. (1) Sensitivity of slack to spacing between
memories. Figure 2(a) shows a floorplan with five embedded SRAMs,
blockages, and a rectilinear standard-cell placement region. Figure
2(b) shows variation of worst timing slack (at any timing endpoint
in a given SRAM) across these five SRAMs when the spacing (i.e.,
channel width) between memories is varied in steps of 10μm. Due to
congestion, buffer placement, etc., the difference in slack can be larger
than 300ps at a spacing of 10μm, and slacks vary in a highly non-
obvious and/or noisy manner as the spacing is changed. (2) Sensitivity
of IR drop map to power pad locations. Figures 3(a)–(c) show
three IR drop maps when the locations of power pads are varied.
When power pads are placed uniformly on all edges of the die as
in Figure 3(a), the IR map has very few hotspots. When the power
pads are placed only on the left and right edges of the die as in
Figure 3(b), or on the bottom and top edges as in Figure 3(c), the IR
drop map has multiple hotspots. The IR drop map, and timing slacks,
have similarly challenging sensitivities to SRAM placement relative
to power distribution network stripes (PDN stripes), the availability of
buffer placement locations within or near memory channels, etc.

In this work, we apply machine learning to achieve accurate
predictive modeling of slacks at embedded SRAM timing endpoints.
Given only a post-synthesis netlist, constraints and a floorplan, we
predict (i) post-P&R slack, and (ii) slack with multiphysics analysis,
of SRAMs.

Figure 4 shows the stages of physical implementation that we must
comprehend with our modeling, as well as the stages from which we
can extract available modeling parameters. We estimate the combined
effects of placement, clock network synthesis, routing, extraction and
timing using our modeling function f as shown in the figure. Our

2We place only one power/ground pad pair at the south edge for this testcase
(OpenCore THEIA) to emulate a severe voltage-drop situation. The signoff
clock period for this example is 3.5ns.

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

2C-2

178



SRAM #1

S
R

A
M

 S
la

ck
 (p

s)

SRAM #4

13ps

10ps

(a)

Implementation index

S
R

A
M

 s
la

ck
 (p

s)

(b)

Fig. 1. Multiphysics analysis. (a) SRAM slack with (i) no IR, (ii) static IR,
(iii) dynamic voltage drop (DVD) IR, and (iv) four iterations of DVD IR and
STA. (b) Difference in slack between (i) no IR and (ii) STA + DVD IR with
two loops. The indices in the x-axis of (b) refer to different implementations
when clock period and maximum transition time constraints are varied.
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Fig. 2. Sensitivity of slack to spacing between SRAMs: (a) floorplan, and
(b) slack variation.
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Fig. 3. Sensitivity of IR drop map to power pad placement: (a) on all four
edges of layout; (b) left and right edges only; and (c) bottom and top edges.

work envisages two basic use scenarios. (1) For products in the early
planning stage, our predicted slacks enable floorplans and constraints
– as well as physical implementation methodology – to be adjusted to
prevent post-layout timing failures on SRAMs. (2) For products in the
production stage, our model enables designers to filter out floorplans
and constraints that have high risk of post-layout timing failures under
voltage and frequency scaling, or process variation. Our model can
prevent costly iterations of floorplan and constraint adjustments.

Our main contributions are summarized as follows.

• To the best of our knowledge, we are the first to propose
a modeling methodology that can effectively predict post-
P&R slack values at endpoints on embedded SRAMs, using
information available at the floorplanning stage. Our model
applies machine learning techniques to predict post-P&R slack
within a worst-case error of 224ps and average error of 4.0ps
across all designs and floorplans tested in a 28nm foundry FDSOI
technology.
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Fig. 4. Traditional IC design flow from [14], with dotted horizontal lines
bounding the scope of our model. We comprehend multiple stages of the
physical design flow in our model, which is represented by the function f
in the figure.

• We confirm the robustness of our prediction methodology by
predicting slack values after multiphysics analysis – a very
difficult prediction problem – to within a worst-case error of
253ps and average error of 9.0ps. A model that uses information
from the post-synthesis netlist results in multiphysics slack worst-
case prediction error of 358ps.3

• We automate using commercial EDA tools the extraction of
relevant model parameters, and prediction of timing failure
risks, from given netlist, constraints and floorplan context.
By predicting multiphysics slack for every embedded memory
endpoint, our model enables early filtering and improvement of
floorplans that would otherwise eventually lead to timing failures
at the post-layout and signoff stages.

• We advance application of machine learning for predictive IC
design with a new implementation of the Boosting technique that
uses Support Vector Machines (SVMs) as weak learners. We
also propose a weighting strategy for negative-slack outcomes
during our model construction, to accurately focus our model on
avoidance of critical timing failures. SVM in Boosting reduces
worst-case prediction errors by 30ps relative to use of SVM only.

In the following, Section II reviews related literature, while Section
III describes our multiphysics analysis methodology, selection of
modeling parameters and our modeling methodology with machine
learning techniques. Section IV describes our testcases, design of
experiments and results. We give conclude in Section V.

II. RELATED WORK

Very few previous works predict timing of SRAMs in early stages
of the design flow. We categorize previous works into (i) P&R
timing prediction from netlist, (ii) applications of machine learning for
prediction of physical design metrics, and (iii) applications of Boosting
[7] and Support Vector Machine (SVM) [9] for regression.4

In the category of post-P&R timing prediction from netlist, Alpert
et al. [2] propose the adoption of physical synthesis in design flows
to have better correlation with post-layout metrics such as worst
negative slack (WNS), at the post-synthesis stage. Alpert et al. [3]

3We use parameters N1 through N6 from Table I and use three different
modeling techniques – LASSO, linear SVM and SVM with a Radial Basis
Function (RBF) as kernel – to predict multiphysics slack. The worst-case (resp.
average) prediction errors are 565ps (resp. 87ps) for LASSO, 412ps (resp. 55ps)
for linear SVM method, and 358ps (resp. 42ps) for SVM with RBF kernel.
The SVM model with RBF kernel has smaller prediction errors as compared to
those of linear SVM and LASSO models. Therefore, we compare our results
with those from the SVM model with RBF kernel.

4As noted in the Conclusions below, an eventual target for methods such
as what we describe here is the prediction of embedded memory defectivity
in silicon (and, floorplan guidance to correct or avoid such defectivity). The
difficulty and significance of such a prediction is noted in such works as [31].
While we have not had access to SoC design and product/test engineering
data that would allow us to attempt this future application, our work has been
motivated by (and kept consistent with) such an end goal.
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propose analytical buffered delay models in the presence of blockages
and report errors within 1% for three-pin nets. The authors propose
integration of their models within a floorplanner for fast and accurate
estimation of timing. Clarke et al. [4] propose detection of congestion-
induced timing issues during synthesis, and prevention of congestion
by avoiding decomposition of complex cells such as MUX and XOR to
NAND and AOI cells during logic synthesis so as to reduce pin counts.
Hutton and Karchmer [11] propose efficient design-space exploration
of metrics such as operating speed, power and area during synthesis
of FPGAs. The authors propose to create models using regression on
existing synthesized designs. Jones et al. [12] derive wireload models
to estimate wire delay due to parasitics at the placement stage. The
authors propose to divide the block into equal-sized regions, perform
Steiner tree routing and use Rent’s rule for fanout distributions in
each region. Kim et al. [17] characterize standard cells and parasitics
at different temperatures and propose thermal-aware delay models at
the floorplanning stage. Vujkovic [22] proposes the use of multiple
wireload models during synthesis for better correlation of post-layout
wire delay. Yaldiz et al. [23] develop a closed-form model of SRAM
latency that comprehends inter- and intra-die process variations. The
authors demonstrate accuracy of their models in 90nm and report
errors within 15%.

In the category of applications of machine learning to predict
physical design metrics, Huang et al. [10] use SVM classification
to predict defects in analog chips at the post-silicon stage. They use
low noise amplifiers as their test circuit and are able to predict defects
within an error of 2.9%. Kahng et al. [15] propose use of nonlinear
machine learning-based models to estimate cell delay and slew under
noise in the power delivery network (PDN), and clock skew after clock
tree synthesis.

In the category of applications of Boosting and SVM for
regression, Kotisantis et al. [18] create an ensemble of regressors
by using Bagging [9], Boosting with SVM without a kernel, and
Random Forests [9]. The authors then combine outcomes of each
regressor using weights that are proportional to the inverse of the error
of the outcomes from each regressor. In their method the weights are
calculated based on error in the test set, and not on the training set.
Ogutu et al. [20] compare Random Forests, Boosting with a linear
regressor, and SVM to predict genomic breeding values. The authors
conclude that SVM is more accurate than the other two techniques.
Our implementation of Boosting builds on [7] [18] by using SVM
with a nonlinear kernel.

III. OUR METHODOLOGY

We now describe the key elements of our work: multiphysics
analysis flow, model parameter selection, and machine learning-based
modeling methodology. We also note how our analyses and modeling
flows would be reproduced in a new environment.

A. Multiphysics STA
Figure 5 shows our multiphysics analysis flow. Due to the very

large number of testcase implementations, we focus on an IR-
STA multiphysics analysis loop.5 We perform STA using Synopsys
PrimeTime-SI (PTSI) [32]. The inputs to the tool are Liberty timing
libraries characterized at multiple voltage corners, Verilog netlist of the
design, SPEF parasitics [30] with coupling capacitances, and Synopsys
Design Constraints (SDC) [5] with timing constraints as well as back-
annotated rail voltages of all instances based on the IR drop map. Note
that STA is always performed with SI enabled in our flows.

IR (voltage drop) analysis is the first dimension of multiphysics
analysis that must be joined with timing analysis. To assess the

5This can be extended to more complete multiphysics analyses that include
temperature and reliability - e.g., using ANSYS Sentinel-TI and RedHawk-
SEM. While we have prototyped such analyses, they are cumbersome with
available tools, and we do not report any studies here.
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Fig. 5. Our multiphysics analysis flow.

vulnerability of various floorplans to timing failures from IR drops, we
parameterize the stripe width and pitch of on-chip PDNs, the width
of power rings, the metal layers that are used for the PDN stripes,
and the placement of memories relative to the nearest power pad.
To supply power to memories, we generate secondary meshes on a
metal layer that is different from the ones used for PDN stripes. For
standard cells, we use M2 metal layers to connect PDN stripes. We
connect power meshes and stripes in the lower metal layers to the
upper metal layers (M9 and M10) through via stacks, as in normal SoC
methodology. We perform vectorless dynamic voltage drop (DVD)
analysis using ANSYS RedHawk [28]; inputs consist of the post-
layout design database, technology Layout Exchange Format (LEF)
[29] files, Liberty timing libraries, and the minimum and maximum,
rise and fall arrival timing windows of all signal pins as reported from
PrimeTime-SI [32]. Our DVD IR analysis is vectorless due to lack of
representative simulation vectors; to our understanding, this reflects
common industry practice. We place power pads uniformly along the
block periphery so that the IR drop tends to be worst at the block
center.

Once we have obtained an IR drop map, we back-annotate
individual cell instances with rail voltage in PrimeTime-SI, and
perform STA using timing libraries that have been characterized at
multiple voltage and temperature corners using Synopsys SiliconSmart
[32]. Again, we view this STA as “multiphysics” in its integration
of the IR drop map on a per-instance basis. The standard practice in
industry is to perform the above-described multiphysics analysis once.
But, recall from Figure 1(a) above that more than one iteration can
help remove pessimism in timing analysis by up to 15ps.

B. Model Parameter Selection

We use model parameters that span netlist structure, floorplan
context and layout constraints. The modeling problem is high-
dimensional when we consider multiple knobs in commercial tools,
as well as multiple netlist and layout context parameters. To make our
modeling methodology practically applicable, we focus on only those
parameters that we have so far found to affect modeling accuracy.
We assess the sensitivity of slack to each parameter independently by
varying values of one parameter at a time and keeping the remaining
parameters the same. We also assess the combined impact of various
parameters on the slack of memories using variance inflation factor
(VIF) [1]. We choose parameters whose VIF values are less than 0.5
[15] and let the modeling techniques (described in Section III-C)
combine relevant parameters. Some of our parameters are for the
entire layout, whereas the remaining parameters are for each memory
instance so that the modeling can capture variable number of memories
in the netlist, variations of floorplans, and the placement of memories
within these floorplans. Table I lists our modeling parameters. The first
column gives the parameter identifier; the second column describes the
parameter; the third column shows whether the parameter is of type
netlist, floorplan or constraint; and the last column indicates that the
parameter is obtained per memory instance when it is “Yes”. Some of
our modeling parameters are based on guidance provided in [2], [4]
and [15].
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TABLE I
PARAMETERS USED IN OUR MODELING.

Parameter Description Type Per-memory?
N1 Max delay across all timing paths at the post-synthesis stage Netlist Yes

N2
Area of cells in the intersection of startpoint fanout

Netlist Yes
and endpoint fanin cones of max-delay incident path

N3 Number of stages in the max-delay incident path Netlist Yes

N4, N5, N6
Max, min and average product of #transitive fanin

Netlist Yes
and #transitive fanout endpoints

N7 Width and height of memory Netlist Yes

FP1 Aspect ratio of floorplan Floorplan No

FP2 Standard cell utilization Floorplan No

FP3, FP4 PDN stripe width and pitch Floorplan No

FP5 Size of buffer screen around memories Floorplan No

FP6 Area of blockage (%) relative to floorplan area Floorplan No

FP7, FP8 Lower-left placement coordinates of memories Floorplan Yes

FP9, FP10 Width, height of channels for memories Floorplan Yes

FP11 #memory pins per channel Floorplan Yes

C1
Sum of width and spacing of top-three routing Constraint No
layers after applying non-default rules (NDRs)

C2 % cells that are LVT Constraint No

C3, C4 Max fanout of any instance in data and clock paths Constraint No

C5, C6 Max transition time of any instance in data and clock paths Constraint No

C7 Delay of the largest buffer expressed as FO4 delay Constraint No

C8 Clock period used for P&R expressed as FO4 delay Constraint No

C9 Ratio of clock periods used during synthesis and P&R Constraint No

C. Modeling Techniques

Recall from Figure 4 that we seek to model (i) multiple stages of
the physical design flow such as placement, clock network synthesis,
routing, extraction, etc., (ii) inherent noise in commercial tools, and
(iii) a very high-dimensional space of parameters that span across
netlists, floorplan contexts and timing constraints. Interactions between
parameters are complex, e.g., an increase in PDN stripe density can
cause a large congestion on upper metal layers and thereby increase
coupling capacitances which will ultimately result in timing failures
even when the IR drop is small. The type of timing analysis can
contribute to large difference in slack, e.g., turning SI mode on can
worsen slack by 100ps or more [16].

We use both linear as well as nonlinear machine learning techniques.
We use LASSO regression with L1 regularization [21] as a linear
technique, and Support Vector Machine (SVM) regression [9] with a
Radial Basis Function (RBF) kernel [9], Artificial Neural Networks
(ANN) [9], and Boosting [7] with a weak SVM learner as the nonlinear
techniques. The Boosting learning technique combines predictions
of multiple weak learning techniques to create an accurate learning
model. Learning techniques such as linear classification and regression
trees are used commonly as weak learners. For a comprehensive
discussion on LASSO, SVM, ANN and Boosting, see [9]. For each
technique, we use training and validation data sets that are 50% and
10% of the total data points, respectively, and we search for values of
hyperparameters using grid search such that the training and validation
mean-square errors (MSEs) are comparable. For SVM with RBF
kernel, the hyperparameters are ε along with the cost C that control
the margin errors of the support vectors, and the width parameter γ of
the RBF kernel. For ANN, we define the architecture as one input and
one output layer and two hidden layers. The hyperparameters are the
number of epochs for back propagation and the number of neurons
per hidden layer. For LASSO, the hyperparameter is the regularization
coefficient λ. For Boosting with SVM, the hyperparameters are ε, C,
γ, and the number of iterations.

For each machine learning technique, we perform five-fold cross-
validation so as to make the models generalizable. We normalize
the parameters to within [0, 1] before we proceed with modeling.6

The nonlinear techniques (SVM, ANN and Boosting) help to capture
complex interactions between parameters. Our preliminary studies
indicate that SVM with a RBF kernel method achieves higher accuracy
(less than 300ps worst-case error) than linear SVM without a kernel
(more than 335ps worst-case error). Therefore, we use SVM with
a kernel method. The LASSO technique has large modeling error
(greater than or equal to 300ps) when the number of parameters is

6We have tried normalization using z-scores to within [−1, 1] as well. The
predicted values change by less than 0.5%. Therefore, we use normalization
to within [0, 1] in our experiments.

larger than five. So, we use the linear LASSO technique to make
predictions with a simplified model and use the outcomes of this linear
technique as the bias in the final step in which we combine outcomes
of all the techniques using Hybrid Surrogate Modeling (HSM) [15]
to obtain the final predicted slack of each memory instance. Even
though the procedure to combine predictions from various linear and
nonlinear techniques is not obvious, the HSM technique enables us to
combine the predictions using appropriate weights and improve overall
prediction accuracy. Figure 6 shows our modeling flow. We implement
our modeling in Matlab vR2013a [26] using default toolboxes for
ANN and LASSO, the open-source libsvm [6] toolbox for SVM, and
our own implementation of Boosting.

Figure 7 shows our high-level implementation of Boosting.7 We
implement Boosting with weak SVM learners as follows.

• Initially, we set the weight W0 of all training datapoints to be
uniform, i.e., W0 = 1/Ntr , where Ntr is the number of training
data points.

• We use SVM as a weak learner by restricting the grid search to
only three different values of each hyperparameter.

• We calculate the error ei for the ith stage using the validation set
and Wi values of datapoints are set for the subsequent (i + 1)st

stage as exp(0.5 log( 1−ei
ei

)) when the error in slack prediction
is greater than or equal to 50% of the clock period, and are set
to 1 otherwise.

• To make our predictions pessimistic on datapoints for which the
actual slack is negative, we increase Wi by a factor of five when
the predicted slack value for such a datapoint is positive.

• We terminate when worst-case error in the validation set is less
than 20% of the clock period or when the number of iterations
reaches k = 40.8

• We combine outcomes of each iteration using coefficients βi

(determined by using least-squares regression), where i =
1, ..., k, to determine the final outcome of Boosting.
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Fig. 6. Modeling flow with linear and nonlinear regression techniques.
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Fig. 7. Flow with Boosting [7] with weak SVM learners.

7Of possibly independent interest is that to our knowledge, Boosting with
SVM as a weak learner (i.e., regressor) has not been tried before in the machine
learning and VLSI CAD literatures. Our scripts are available at http://vlsicad.
ucsd.edu/Riskmap/.

8With values of k > 40 we do not observe significant improvement in error.
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From the above discussion, the reader will note that the proposed
methodology will in practice use post-P&R databases of various
projects taped-out in a given (technology node, library, tool flow) as
the basis of netlist structural analyses, floorplan structural analyses,
and multiphysics performance analyses. Designers of new projects in
the same technology node would use our model to filter out floorplans
and constraints that can cause timing failures. In a new technology or
design environment, the one-time initial model fitting effort that we
describe above must be performed.

IV. VALIDATION AND RESULTS

In this section, we describe our testcases, design of experiments and
present our modeling results.

A. Testcases

We have developed a generator to create testcases to vary (i) the
number of SRAMs in the netlist,9 (ii) the floorplan context such as
aspect ratio, utilization, buffer screens, PDN structure, etc., and (iii)
the placement of SRAMs in the floorplan. Figure 8 illustrates various
parameterizations of floorplans in our testcase generator, using the
floorplans shown in Figures 10(a) and 12(a). We can independently
change the width and height of buffer screens around SRAMs or
blockages, the dimensions of each blockage, and the area for standard
cell placement.

Our netlists contain both logic and SRAMs. For logic, we use
open-source designs such as THEIA10 and nova from OpenCores [27],
our own artificial testcases with an embedded processor, and blocks
from OpenCores such as aes cipher top and reed solomon codec. We
perform synthesis using 28nm foundry FDSOI libraries and Synopsys
Design Compiler vI-2013.12-SP3.11 Table II summarizes our netlists
with post-synthesis metrics.

TABLE II
DESCRIPTION OF OUR NETLISTS.

Netlist Clock #Std #SRAMs Logic Area SRAM Area
Period (ns) Cells (μm2) (μm2)

THEIA v0 3.0 147274 40 157416 347252

THEIA v1 2.7 146505 5 157068 40027

THEIA v2 3.0 146914 6 157012 48032

THEIA v3 3.0 146243 8 156212 64043

THEIA v4 3.0 146606 10 155991 80054

nova 2.0 66031 5 68970 25117

artificial 2.0 201015 6 213075 14925

Figure 9 illustrates a PDN structure used in our testcases. We use
metal layers M9 and M10 for the power ring around the core; we
also use M9 and M10 for the top-level power mesh. We use M6
to generate secondary meshes to supply power to SRAMs, and M2
to connect standard cells to the VDD and ground rails. From the
post-P&R databases we generate the routed Design Exchange Format
(DEF) [29] file using Synopsys IC Compiler vH-2013.03-SP3 and
provide it as an input to ANSYS/Apache RedHawk v10.1.7 along
with technology LEF and Liberty timing libraries. We use Synopsys
PrimeTime-SI vH-2013.06-SP2 to obtain timing windows of all signal
pins.

B. Design of Experiments

Using our generator described in Section IV-A and netlists in Table
II, we create various testcases in which we vary floorplans, PDN
structures and constraints. Table III lists the parameters we vary
in our design of experiments. We vary the standard-cell placement

9We use single-port SRAMs of two different sizes from the 28nm FDSOI
foundry libraries.

10We have used the original OpenCores THEIA design as well as modified
versions of the design. In the modified designs (THEIA v1, ..., THEIA v4), we
vary the number of SRAMs. The unmodified design is THEIA v0.

11Modeling based on physical synthesis tools such as Design Compiler
Topological and RTL Compiler Physical is part of our ongoing work.

SRAM

Outer blockage 
(emulate buffer 
screen) 

Inner
blockage 
(emulate 
SRAMs) 

core_h

core_w 

sram_hi

screen_w 

screen_w 

sram_pitch 

screen_w 

bl
oc

ka
ge

_h
 

blockage_w

bl
oc

ka
ge

_h
 

blockage_w

bl
oc

ka
ge

_h
 

blockage_w

screen_w 

screen_w 

screen_w 

screen_w screen_w 

screen_w 

hc

vc

Fig. 8. Parameterized floorplan used to generate testcase instances.
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Fig. 9. Example of PDN structure in our testcase with SRAMs.

region to have cross-, L- and T-shapes as shown in Figures 10(a)-
(c). Each of these region shapes changes P&R tool outcomes since it
changes degree of nonconvexity (i.e., number of nonconvex corners)
in the placement region, as well as the placement of IO pins. For
example, the cross-shaped floorplan has more nonconvex corners and
is expected to have higher congestion near these corners as compared
to the L-shaped floorplan.

To emulate real designs from the industry, we frame our experiments
in the context of a general, “tic-tac-toe” floorplan. We divide the
block with two shiftable gridlines in each axis; each of the nine
resulting gridcells can be fully or partially occupied by essential
components of a floorplan, that is, hard macros, standard cells or
blockages. The tic-tac-toe implementation (i) enables generality and
parameterizability, (ii) enables the ability to explore a discrete design
space systematically, and (iii) captures how designers tend to floorplan
their blocks. Figure 11 shows an example instance of a tic-tac-toe
floorplan. (Note that the tic-tac-toe framework allows us to explore
floorplans either at the die-level or block-level, but not in between.)

(a) (b) (c)

Fig. 10. Variations in floorplans in our testcases: (a) cross-shape, (b) L-shape,
and (c) T-shape. The red lines are used to highlight these shapes.

We create multiple variations of floorplans for netlists with five, six,
eight, 10 and 40 memories. Figures 12(a)–(f) show examples of six
variations that we generate. All of these floorplans can be created with
the tic-tac-toe implementation. Specifically, we create the floorplans
with eight, 10 and 40 memories using this implementation. For the tic-
tac-toe implementation, we focus on testcases with more than eight
memories. Note that our modeling parameters listed in Table I can
handle variations of floorplans shown in Figures 10 and 12 because
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we include parameters that are floorplan-specific as well as memory
instance-specific. We allow only buffer instances to be placed within
the buffer screens around SRAMs.

A real industry flow will run Design Compiler in topographical
mode with floorplan constraints and generate a DEF with placement of
standard cells. However, this requires a license which is not available
to us. We denoise each P&R run by varying the parameters by ±0.5%
from its value. We generate a total of 2515 data points for modeling,
out of which we use 1248 (50%) data points for training, 226 (9%)
data points for validation, and the remaining 1041 (41%) data points
for testing. We challenge our modeling by testing on all data points of
testcases nova and values of aspect ratio, utilization, and PDN width
and height, which are not used for training.

We use the multiphysics analysis flow described in Section III-A,
and the modeling methodology described in Section III-C to derive our
model. Each P&R and analysis run requires approximately 10 hours
using a single core, and the training time is around three hours for
2515 data points on an Intel Xeon E5-2640 2.5GHz when using four
cores. The testing time for 1041 data points is less than two minutes.

Memory

Blockage

STD cells

Fig. 11. Example of a floorplan enumerated with tic-tac-toe implementation.

SRAM

(a) (b) (c)

(d) (e) (f)

Fig. 12. Examples of memory placements in our testcases: (a) 5×1 vertical
stacking, (b) 3×1, 2×1 side-by-side arrays at upper-left, (c) 3×1, 2×1 arrays
at upper-left and lower-right, (d) 3×1, 2×1 arrays at upper-left and upper-right,
(e) 4×1, 4×1 side-by-side arrays at upper-left, and (f) 4×1, 2×1 side-by-side
arrays at upper-left and 4×1 at lower-right.

We conduct three experiments to validate our model. In all of our
experiments we use datapoints from testcases THEIA v0 and nova
exclusively for testing, i.e., no datapoints from these two testcases are
used to train the model.

• Experiment 1 tests accuracy of our model in predicting post-
P&R slack values of SRAMs. With the training data generated
by the design of experiments described above in Table III, we
apply our modeling flow described in Figure 6 to predict the post-
P&R memory timing slack values. We also compare the accuracy
of various modeling techniques and present our results in Table
IV.

• Experiment 2 tests accuracy of our model in predicting slack
values with multiphysics analysis. We use the same design of
experiments and modeling flow as in Experiment 1 to predict

TABLE III
OUR DESIGN OF EXPERIMENTS.

Parameter Value(s) (* is default)

Aspect ratio {1.2, 1.1, 1.0*, 0.8}
Utilization (std cells) {40%, 50%*, 60%, 70%}

PDN stripe width {0.5, 0.75, 1.0*, 1.5, 2.0, 2.5, 3.5}μm

PDN stripe pitch {7, 15, 20, 30*, 40}μm

SRAM spacing (channel width) {6, 8, 12, 16, 20*, 24}μm

Buffer screen width {10, 12, 14*, 16}μm

Routing metal layers {7, 8*}
Memory placement {Face-to-face*, face-to-back}

Clock period

THEIA {v0, v1, v3, v4} = {3.0, 3.5*, 4.0}ns
THEIA v2 = {3.0*}ns

nova = {3.2*, 3.7, 4.2}ns
artificial = {2.0*}ns

Max transition {200*, 240, 280}ps

Max fanout {8*, 10}
Threshold voltage mixes {{LVT}, {LVT, RVT}*, {RVT}}

Clock buffer sizes {{X32}*, {X32, X24}, {X32, X24, X16}}
NDRs on clock nets {1W1S*, 2W2S, 3W3S, 3W2S, 2W3S}

SRAM timing slack values after annotating IR drop from the
RedHawk reports to cell instances.

• Experiment 3 tests fidelity of our model in providing floorplan
guidance to reduce timing failures at signoff with multiphysics
analysis. We report the confusion matrix of timing pass or fail
predictions, again using the same design of experiments and
modeling flow.

C. Results

For all of our experiments, we separately report modeling errors
(i.e., predicted slack − actual slack) for both training and test datasets.
Figures 13(a) and (b) show the ground truth that we predict. Figure 14
compares post-synthesis slack of SRAMs with post-P&R slack. Due
to changes in constraints and implementations, post-P&R slack has
no apparent correlation with post-synthesis slack.
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(a)
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(b)

Fig. 13. Ground truth data. (a) Slack at post-P&R stage without multiphysics
analysis, and (b) slack with multiphysics analysis.
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Fig. 14. Slack at post-synthesis stage vs. post-P&R stage across six of
our testcases. There is no correlation due to constraints and implementations.
(Compare with Figure 15, below.)
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Results of Experiment 1. Table IV shows error metrics of our
modeling techniques on the test dataset for the various machine
learning techniques. Rows 4 and 5 in the table show that the worst-case
error in slack prediction reduces by 30ps with our implementation of
Boosting with SVM regressors, compared to the SVM-only technique.
Figure 15(a) shows predicted versus actual slack values of memories at
the post-P&R stage. Our model has worst-case error of 224ps (48%)12

and average error of 4.0ps (7.2%). Note that most of the predicted
slack values (when the actual slack values are negative) are below
the solid black line (i.e., line of perfect correlation) as a result of
negative-slack weighting strategy. Figure 15(b) shows a histogram of
error in slack prediction in the test dataset, and Figure 15(c) shows the
outcome of our negative slack weighting strategy during our model
construction, i.e., greater magnitudes of the negative slack values have
pessimistic predictions.

TABLE IV
ERROR METRICS OF MODELING TECHNIQUES USED IN OUR EXPERIMENTS.

Technique Min Max Mean Standard Mean-Square
Error (ps) Error (ps) Error (ps) Deviation (ps) Error

LASSO -380.5 281.6 -86.7 64.1 11.6

ANN -250.6 272.9 -8.5 60.1 3.7

SVM -243.7 252.9 -9.0 55.2 3.1

Boosting -253.7 200.8 -5.1 55.7 3.1

HSM -223.1 223.7 -4.0 58.9 3.5

Results of Experiment 2. Figure 16(a) shows predicted versus actual
slack values of memories with multiphysics analysis. Our model has
worst-case error of 253ps (44%) and average error of 9.0ps (5.9%).
Figure 16(b) shows a histogram of error in slack prediction in the
test dataset. Even though our worst-case error is large, only a small
number of predictions have error greater than 100ps. Some of these
predictions are more pessimistic due to our negative-slack weighting
strategy. Since prediction of slack with multiphysics analysis is more
difficult than predicting post-P&R slack, the errors are larger than
those in Experiment 1.
Results of Experiment 3. Figure 17 shows the confusion matrix of
our predictions on the test set. Our predictive model of SRAM slack
values with multiphysics analysis has few (∼3%) false negatives (fn),
that is, pessimistic predictions in which we provide guidance to change
a floorplan that is actually not required. Our model also has few false
positives (fp), that is, cases for which our model incorrectly deems a
floorplan to be good. Such wrong predictions have a ∼4% incidence.
The number of true positives (tp), that is, both the predicted and actual
slack values are positive, is 584. The number of true negatives (tn),
that is, both the predicted and actual slack values are negative, is 384.

In our model, the precision [9] (i.e., the ratio of tp to the sum of
tp and fp) is 93.3%, and the recall (i.e., the ratio of tp to the sum
of tp and fn) is 95.0%. Similarly, the precision for negative slack
datapoints (referred to as negative predictive value in the machine
learning literature) is 92.5% and the recall for negative slack datapoints
(referred to as specificity in the machine learning literature) is 90.1%.
Based on these large values of precision and recall metrics, we believe
that our model can provide guidance to designers on the risk of SRAM
timing failures with high fidelity.

V. CONCLUSIONS AND FUTURE WORK

Early prediction of post-layout timing failures is important to reduce
design cost and turnaround time. However, this prediction problem is
very difficult as it must comprehend tool flows, noise, and the physics
used during timing analysis. We propose a machine learning-based
methodology to predict post-P&R slack of SRAMs at the floorplanning

12The worst-case error in Experiment 1 occurs when the actual slack is
466ps, whereas the predicted slack is 242ps. The error is 242ps − 466ps =
−224ps; we calculate the magnitude of relative error for this datapoint (relative
to the actual slack) as 224ps

466ps
= 48%. We measure average error as the mean

of all absolute errors, and average percentage error as the mean of magnitudes
of relative errors (relative to actual slack values) expressed as a percentage.
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Fig. 15. Accuracy of our model in predicting post-P&R SRAM slack values
with HSM. (a) Scatter plot of actual and predicted data points in training and
testing, (b) error distribution in the test dataset, and (c) effect of weighting
strategy for negative slack values. Note in (c) that when actual slack values
are less than -0.15ns, the error values are negative, i.e., the predicted slack is
always pessimistic as compared to the actual slack.

stage, given only a netlist, constraints and floorplan context. We
demonstrate that our methodology can be extended to predict slack
with multiphysics (STA and DVD IR) analysis. We develop a new
implementation of Boosting with SVM in which we use a negative-
slack bias strategy. This strategy guides model predictions to be less
optimistic when the actual slack values are negative. We report worst-
case modeling error of 253ps in predicting slack with multiphysics
analysis, and average error of 9.0ps. The number of predictions with
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Fig. 16. Accuracy of predicted multiphysics SRAM slack values with HSM.
(a) Scatter plot of data points in training and testing, and (b) error distribution
for the test dataset.
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Fig. 17. Confusion matrix of our predictions with HSM. False positives (42)
are optimistic predictions, while false negatives (31) are pessimistic predictions.

error greater than 100ps are few (∼15) in our test dataset. Fidelity
of our predictions is high as measured by the precision and recall
metrics. We believe that SoC designers can use our methodology to
avoid floorplans and constraints that may cause timing failures at
signoff. Our ongoing works include: (i) applying our methodology
to product/test engineering data from an SoC design company, (ii)
predicting defectivity in silicon and providing floorplan guidance to
correct or avoid such defectivity, (iii) performing physical synthesis
and use its outcomes for modeling, and (iv) developing a flow to
consider SRAM variability.
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