
Mixed Cell-Height Implementation for Improved Design Quality in
Advanced Nodes

Sorin Dobre†, Andrew B. Kahng‡
+

and Jiajia Li‡
UC San Diego, ‡ECE and +CSE Depts., La Jolla, CA 92093, {abk, jil150}@ucsd.edu

†Qualcomm Technologies, Inc., San Diego, CA 92121, sdobre@qti.qualcomm.com

Abstract—In advanced nodes, standard-cell libraries can be developed
with different cell heights (e.g., in FinFET technology, corresponding
to different numbers of fins). Larger cell heights provide higher drive
strengths, but at the cost of larger area and power consumption as well
as pin capacitance. Cells with smaller heights are relatively smaller in
area, but have weaker drive strengths and are more likely to suffer
from routing congestion and pin accessibility issues. Existing design
methodologies and tool flows are able to mix cells with different heights
at the block level (i.e., each block contains cells of a particular cell
height). To our knowledge, no design methodology in the literature
mixes cells of different heights in a fine-grained manner. In this work,
we propose a novel physical design optimization flow to implement
design blocks with mixed cell heights in a fine-grained manner. Our
optimization resolves the “chicken-and-egg” loop between floorplan site
definition and the optimized choices of cell heights after placement.
Comprehending the constraints and costs of mixing cells of different
heights (e.g., the “breaker cell” area overheads of row alignment
between sub-blocks of 8T and 12T cell rows), our optimization achieves
25% area reduction versus 12T-only implementation while maintaining
the same performance, and 20% performance improvement versus 8T-
only implementation while maintaining similar total cell area.

I. INTRODUCTION

Standard cell-based implementation has been widely used for
VLSI designs due to its relatively accurate abstraction and semi-
regular layout. In advanced nodes, cells are designed with different
heights (e.g., different numbers of fins in FinFET node). Larger cell
heights have higher drive strengths at the cost of larger area and
power consumption as well as pin capacitance. Smaller cell heights
result in relatively smaller area, but have weaker drive strengths
and are more likely to suffer from routing congestion and pin
accessibility issues.1 Figure 1 shows the delay and area tradeoff
of buffers and inverters at foundry 28nm LP technology. In red are
12T cells, and in blue are 8T cells. We observe that 12T cells tend
to achieve smaller delay at the cost of larger area.

Given that cells of different heights exhibit different tradeoffs
among performance, power and area, mixing cells of different
heights in a design is able to provide a larger solution space and
improved design quality. Figure 2 shows the post-synthesis area
and timing comparison among implementations of an open-source
design AES [14] with 12T-only, 8T-only and mixed cell heights.
Due to generally larger areas of cell instances (particularly those
with low drive strengths), 12T-only implementation tends to have
larger design area. On the other hand, weak drive strengths of 8T
cells result in a large number of buffer insertions to meet timing
constraints, which also increases design area.2 We observe from
the example that mixing cell heights achieves 14% and 18% area
reduction at the post-synthesis stage versus the 12T-only and 8T-
only implementations, respectively.

Motivated by the above observations, in this work we propose
to mix cell heights at the sub-block level (i.e., within a single
P&R block) of physical implementation, to achieve improved design
quality – specifically, tradeoffs of achievable performance, power
and area. However, optimizing a design by mixing cell heights is
highly nontrivial. The challenges include the following.

1Although a cell with smaller height can be designed with large width to
gain drive strength, the additional poly capacitance and metal capacitance
can lead to area and power overheads as compared to a cell with the larger
height.

2The larger total cell area of the 8T-only netlist as compared to that
of the 12T-only netlist is due to tight timing constraints. We demonstrate
in Section V that with loose timing constraints, 12T-only implementations
typically incur area overhead as compared to 8T-only ones.

Fig. 1: Delay-area tradeoff of 8T and 12T buffers/inverters in 28nm
LP foundry libraries. Load cap = FO4 + 20µm M3 wire.

Fig. 2: Post-synthesis netlist with mixed cell heights has
significant area reduction compared to 12T-only and 8T-only
netlists. Technology: 28nm LP. Design: AES. Frequency: 1.5GHz.
Corner: (SS, 0.95V, 125◦C). Total cell area and number of instances
are normalized to those of the 8T-only case. In the right figure,
the solid bar indicates WNS, and the shaded bar indicates TNS.
Implementations with 12T-only and mixed cell heights have no
timing violations.

• Current design methodologies and tool flows can only mix
cells of different heights at the block level, i.e., each block of
a design uses cells with a particular height, with fine-grained
mixing not available with today’s EDA tools.

• There is a “chicken-and-egg” quandary: heights of cell rows
are defined (in the placement site map) at the floorplan stage,
but the optimized choices of cell heights are highly dependent
on the placement outcome and timing constraints.

• There are costs associated with mixing cells of different
heights. For instance, “breaker cells” must be inserted for
row alignment between sub-blocks of cell rows with different
heights.3

The contributions of this paper are as follows.
• To our knowledge, we are the first in the literature to propose

mixed cell-height implementation at the sub-block or sub-
island level in advanced nodes.

• We develop methodologies which can easily be integrated
within existing physical design flow, using standard
commercial tools, for mixed cell-height implementation.

• We show that mixing 12T and 8T cells in a 28nm LP foundry
technology achieves 25% area reduction versus 12T-only
implementation while maintaining the same performance, and

3We define a breaker cell as the space (i.e., placement and/or routing
blockages) that must be inserted between the boundaries of regions of
different cell heights.

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 854

20% performance improvement versus 8T-only implementation
with similar total cell area.

II. RELATED WORKS

To our knowledge, there is no previous work on mixed cell-
height design methodology within a block. However, the mixed
cell-height placement problem bears some similarity to the problem
of voltage island placement, in that both problems try to assign
a certain attribute with different values (e.g., cell height or supply
voltage) to standard-cell instances, in order to improve performance
or reduce power. Further, both problems must comprehend a type of
incurred cost (e.g., area overhead of “breaker cells” or insertion of
level shifters) when performing the assignment. We therefore review
exemplary works from the literature on voltage island placement.

Wu et al. [12] and Ching et al. [2] propose partitioning
methodologies to divide post-placement die area into regions which
will be assigned to different supply voltages. The objectives are
respectively to minimize the number of partitions and to handle
non-rectangular partitions. Wu et al. [13] further consider timing
constraints during the voltage assignment. However, the interaction
with standard-cell placement is missing in all of these works.
An improved optimization proposed in [11] performs incremental
placement to move timing-critical cells out from the low-voltage
regions by adjusting net weights and cell delays. Guo et al. [5]
embed their voltage-island-aware placement optimization to a
partitioning-based placement algorithm to minimize the number of
level shifters.

Although the voltage island placement problem has been well-
studied in previous literature, there is still no available solution for
mixed cell-height design implementation due to the existence of
“chicken-and-egg” loop between floorplan and cell height selection,
additional layout constraints, and area impact of cell height choices.

III. PROBLEM FORMULATION

Table I gives notations used in the following discussion.

TABLE I: Notations used in our work.
Term Meaning
hi available cell heights, (0 ≤ i ≤ N ; h0 is the minimum one)

(Xl, Y b, Xr, Y t) coordinates of block area (i.e., standard-cell placement region)
Pj partition in which cells are of the same height, (0 ≤ j ≤M)

(xl
j , yb

j , xr
j , yt

j) coordinates of partition Pj , (0 ≤ j ≤M)
Hj height of partition Pj , (0 ≤ j ≤M)
Wj width of partition Pj , (0 ≤ j ≤M)
tj cell height corresponding to partition Pj , (0 ≤ j ≤M)

wsite placement site pitch (width)
d shift of cell rows in vertical direction to avoid cell overlap

We state the mixed cell-height placement problem as follows.
Given a design (i.e., gate-level netlist), timing constraints, Liberty
and technology models, and floorplan constraints (i.e., P&R block
area and aspect ratio bounds), place the design such that each cell
instance is legally placed in a row with corresponding height. The
objective of the placement is to achieve minimum design area while
maintaining the (same) target performance.

Additional layout constraints for mixed cell-height
implementation applied in our studies below are as follows.4

C1: To ensure manufacturability, each region of a particular cell
height must have at least two cell rows.
C2: Due to N-well sharing, each region of a particular cell height
must have an even number of rows.

4Our proposed approaches transparently handle other values of the
parameters (e.g., minimum number of cell rows in a given-height region, or
minimum separation between two different-height regions, etc.) mentioned
here.

C3: Every region with a particular cell height must align with the
block’s overall metal and poly track definitions.

C4: The horizontal distance between two regions of different cell
heights must be no less than four placement sites.

C5: The minimum vertical distance between two partitions of
different cell heights must ensure that the power/ground (P/G) rail
of one cell does not encroach beyond the P/G rail of another cell.
(Figure 3 shows an example with M2 pitch = 64nm, and P/G
rail width = 48nm and 64nm for 8T and 12T cells, respectively.
Although the P/G rail width difference between 8T and 12T cells is
less than one M2 pitch, to align cells to routing tracks, the minimum
d in the example is 64nm.)

C6: “Breaker cells” must be inserted to ensure the minimum
horizontal and vertical distances between two regions of different
cell heights.

Fig. 3: Area cost of “breaker cells”.

IV. METHODOLOGY

We now describe our optimization methodology for mixed cell-
height implementation. The overall optimization flow is shown in
Figure 4. Given an input design (i.e., RTL netlist) and timing
constraints, we first synthesize it with Liberty files of all available
cell heights having been made available to the logic synthesis tool.
To resolve the “chicken-and-egg” loop between floorplan and cell
height selection, we modify standard-cell LEF files such that all
cells have the same height (i.e., the minimum cell height among all
the available heights), while maintaining the original area of each
cell.5 In the discussion below, we refer to such modified LEF files as
mLEF. In this way, we break the “chicken-and-egg” loop and enable
a commercial placement tool to “freely” place cells with timing-
awareness. Since we use the original Liberty timing/power models
and preserve the original area for each standard cell (although with
different aspect ratio of cell layout), this placement optimization is
able to comprehend the tradeoff between timing constraints, power
and area overheads. As a result, timing-critical cells tend to have
larger heights (i.e., larger width with mLEF), while non-critical
cells are smaller. An example initial placement solution of design
AES is shown in Figure 4(a), in which 12T cells (with mLEF) are
in red, and 8T cells are in blue.

Based on the initial placement solution, we partition the block
area into regions of particular cell heights with awareness of area

5In doing so, we round cell widths to the nearest whole site with no cell
area reduction. E.g., given three libraries with heights 8T, 9T and 12T, (i) a
12T, 6-site cell would be represented by an 8T, 9-site cell; (ii) a 9T, 5-site
cell would be represented by an 8T, 6-site cell; etc.

855

Fig. 4: Overall flow of our optimization. In the example, the
maximum cut number (K) = 30.

cost due to “breaker cells”.6 We then legalize the placement solution
by (i) displacement of cells (i.e., placement perturbation) and (ii)
swapping of cells across different heights (i.e., gate sizing). Here,
we say that a placement solution is legal when each cell instance
is placed in a region with the same height (e.g., as shown in
Figure 4(b)). Once the placement solution is legal, we update the
floorplan with space inserted to model the cost of breaker cells. In
the end, we map cells to the cell rows of the updated floorplan and
route the design (Figure 4(c)).

A. Floorplan Partitioning and Region Definition
We perform slicing-based partitioning using dynamic

programming to divide the block area into regions of particular
cell heights. Algorithm 1 shows our partitioning procedure.
We first evaluate the cost of each candidate partition, i.e.,
cost(xl, yb, xr, yt, 0), in which the fifth parameter indicates the
number of cuts within the partition (Line 1). We define the height
of a partition based on its majority cells, that is, the cell height
with maximum corresponding total area of cells inside the partition
is defined to be the height of the partition. We then estimate the
cost of each partition as the sum of areas of minority cells in the
partition (i.e., cells whose heights differ from the height of the
partition). Figure 5 shows examples of partitioning solutions, in
which the cost of a given 12T (resp. 8T) partition is the total area
of 8T (resp. 12T) cells in the partition. Furthermore, we set the
cost of a candidate partition to infinity if it violates any of the
constraints (e.g., Constraints C1 and C2) described in Section III.
More specifically, a partition (xl, yb, xr, yt) with height hj must
satisfy

yt − yb ≥ 2 · hj (1)

byt − yb

2 · hj
c · 2 · hj · (xr − xl) ≥ (yt − yb) · (xr − xl) · Uj (2)

Inequality (1) forces each partition to have at least two rows.
Inequality (2) ensures that partitions in the updated floorplan, after
rounding to an even number of rows per partition according to
Constraint C2, have enough sites to place cells; here, Uj is the
placement utilization within the partition.

6Here cell height indicates the original cell height as opposed to the cell
height in mLEF.

Algorithm 1 DP-based partitioning.

1: calculate cost(xl, yb, xr, yt, 0)
∀Xl ≤ xl ≤ xr ≤ Xr, Y b ≤ yb ≤ yt ≤ Y t

2: for k := 1 to K do
3: for xl := Xl to Xr −∆x do
4: for yb := Y b to Y t −∆y do
5: for xr := xl + ∆x to Xr do
6: for yt := yb + ∆y to Y t do
7: cost(xl, yb, xr, yt, k)= min

xl≤x≤xu,yb≤y≤yt
(

cost(xl, yb, x, yt, k′) + cost(x, yb, xr, yt, k′′) + 4 · wsite · (yt − yb),
cost(xl, yb, xr, y, k′) + cost(xl, y, xr, yt, k′′) + d · (xr − xl)

) ∀k′, k′′ s.t. k′ + k′′ = k − 1
8: end for
9: end for

10: end for
11: end for
12: if cost(Xl, Y b, Xr, Y t, k) ≥ cost(Xl, Y b, Xr, Y t, k − 1) then
13: return cost(Xl, Y b, Xr, Y t, k − 1)
14: end if
15: end for
16: return cost(Xl, Y b, Xr, Y t, K)

Fig. 5: Examples of partitioning solutions for the AES testcase. In
red are 12T cells (with mLEF); and in blue are 8T cells. Yellow
lines are cuts. The cell height of a partition is marked on its side.
(a) Cut number = 5, cost = 4818µm2. (b) Cut number = 10, cost
= 4584µm2.

The heart of the dynamic programming recurrence (i.e., in
determining the partitioning solution with minimum cost) is given in
Lines 2-16. We recursively search for the minimum-cost partitioning
solution of a rectangular region with k cuts, and increase the value
of k in each iteration up to a given maximum allowable number
of cuts, K, which is a user-defined parameter.7 To find the best
partitioning solution of a region (xl, yb, xr, yt) using exactly k
cuts, we observe that such a solution can always be seen as a
single “top-level” cut, along with the best solutions of the two
sub-regions induced by that cut. Hence, to find the best k-cut
solution, we enumerate all potential vertical and horizontal cuts
of the region, and select the solution that minimizes the sum of
the costs of the two separate parts (sub-regions) – with respective
number of cuts k′ and k′′ satisfying k′ + k′′ = k − 1 – plus the
cost of the single vertical or horizontal “top-level” cut. Note that the
proposed partitioning comprehends the area cost of breaker cells,
for which width = 4 · wsite for a vertical cut, and height = d for
a horizontal cut (Line 7). For the example shown in Figure 3, d
must be larger than 64nm. The procedure terminates when the cost
does not decrease with an increased cut number (Line 13), or the
maximum cut number K is achieved (Line 16). To improve the
scalability, we divide the block area into M × N grids (where M
and N are also user-defined parameters), and perform the proposed
partitioning method on these grids. The runtime complexity of the
procedure is O((M + N)(M · N · K)2).8

7In our experiments, we set K to a large value (e.g., 30 for a
100µm×100µm floorplan) in order to ensure good solution quality.

8In our experiments, partitioning with number of grids no larger than 30
× 30, and maximum cut number no larger than 40, requires less than one
minute of a single thread on a 2.5GHz Intel Xeon server.

856

B. Timing-Aware Placement Legalization
Based on the partitioning solution, we perform iterative

optimization to achieve a legal placement. Note that we still use
mLEF at this optimization stage, but boundaries and cell heights
of regions have been defined. We apply two knobs in our iterative
heuristic: displacement of a cell (e.g., moving a 12T cell from an
8T region to a 12T region), and cell-height swapping (e.g., assign
an 8T cell to a 12T cell master in a 12T region via gate sizing).
Both of these knobs affect timing, and cell-height swapping also
affects area. Thus, to ensure that the optimization does not lead to
large design quality degradation, we evaluate the timing and area
impacts of each potential move (one move is a cell displacement or
a cell-height swap).

Because timing analysis with commercial P&R tools is typically
slow, our optimization approach requires a relatively accurate and
fast timing engine. We have developed an internal timing analysis
engine (i.e., internal timer) to guide the optimization. Our internal
timer estimates gate delay and slew at an output pin based on the
Liberty lookup tables. It further uses D2M [1] and PERI [9] models
that respectively estimate wire delay and slew propagation along
the interconnect. Wirelength change due to cell displacement is
measured by net HPWL (Half-Perimeter Wire Length), and wire
capacitance and resistance are scaled correspondingly.

To comprehend wire congestion effects, we add a penalty in
the form of wire resistance and capacitance scaling, based on
routing demand vs. supply overflows within the bounding box
of a given net.9 More specifically, if the average horizontal
(resp. vertical) routing congestion within the bounding box of a
net is X%, we penalize the horizontal (resp. vertical) portion
of HPWL by a multiplicative factor of (X%-Xth%) whenever
X > Xth. Here, Xth% is a threshold that we set to 95% based
on separate studies. The value Xth% = 95% is used in all
experiments reported below.10 To maintain the accuracy of our
internal timer, we correlate timing slack, wire capacitance and
overflow information during the optimization through a Tcl socket
with Cadence SoC Encounter [17]. Figure 6 shows our optimization
framework. We believe that our internal timer approach most closely
resembles that of the previous work [8]; however, our internal
timer better comprehends the impact of cell displacement on timing
by considering both wirelength change and routing congestion
information.

Fig. 6: Framework of our optimization.

Algorithm 2 describes our heuristic to legalize the placement. We
first evaluate the cost (in terms of area and timing) of each potential
move (i.e., cell displacement or swapping) (Line 4). We consider

9We estimate overflow based on the trial routing solution from Cadence
SoC Encounter [17].

10For example, if the average horizontal congestion is 98%, we multiply
the x-component of HPWL by 1.03 = 0.98 / 0.95.

Algorithm 2 Heuristic to legalize placement.

1: while there exists a cell with different height than its partition do
2: list← ∅
3: for all cell g with different height than its partition do
4: calculate cost function of g
5: add g to list
6: end for
7: sort list in order of decreasing cost
8: swap cnt← 0
9: for all g ∈ list do

10: apply displacement/swapping based on cost function
11: incremental timing analysis
12: if slack of g < min(0, original slack of g) || whitespace of grid < ω

then
13: undo change
14: else
15: ++swap cnt
16: end if
17: if swap cnt ≥ γ · total gate count then
18: apply ECOs in SoC Encounter
19: correlate internal timer with SoC Encounter
20: for all cell g in the design do
21: downsize g
22: incremental timing analysis
23: if slack of g < min(0, original slack of g) then
24: undo change
25: end if
26: end for
27: if WNS ≤ −θ · clock period then
28: fix maximum transition violations
29: timing recovery
30: apply ECOs in SoC Encounter
31: correlate internal timer with SoC Encounter
32: end if
33: end if
34: end for
35: end while

cell displacement in eight directions (i.e., {N, S, E, W, NE, NW, SE,
SW}) with the maximum movement distance of D (D = 15µm in
our experiments). The set of candidate cell displacements is similar
to what is applied in the local optimization of [6]. For cell-height
swapping, we consider candidate library cells whose heights match
that of the partition. We use the cost function shown in Equation (3)

Cost =α · max(0,−∆slack)

max(1ps, slackorig)

+(1− α) · max(0, ∆area)
max(1µm2, whitespaceorig)

(3)

where ∆slack and ∆area are respectively the timing slack and
cell area changes due to displacement and/or swapping. slackorig

and whitespaceorig are the original timing slack of the cell and
whitespace of the corresponding grid. We divide the block area into
an M × N mesh of grids. For each grid, we estimate whitespace
based on placement utilization. The parameter α is a weighting
factor, which has an initial value of 0.5. We adaptively change
the value of α for each cell during the iterative optimization, such
that when an attempt leads to timing violation (resp. placement
utilization violation), we increase (resp. decrease) α of the cell by
1.5×.

We sort all cells which have different height than their partition
in decreasing order of cost, and apply moves to legalize the
placement (Line 7). When a move results in timing failure or
violation of placement density, we undo the move (Lines 12-13);
here ω is the required whitespace according to the area of breaker
cells and maximum placement density constraints.11 To ensure
the convergence of the flow (i.e., that optimization can lead to a
legalized placement), we commit the move of a cell which has
been visited F times, regardless of its impact on timing and area.

11In our experiments, we set the maximum placement density of the entire
block as the placement density from the initial placement plus 5%.

857

We use F = 5 in our optimization.12 In addition, we apply a
form of Tabu search [4] during the optimization to increase the
likelihood of finding feasible solutions for cells. Specifically, we
record the latest three attempts and forbid these moves for the
current move of optimization. During the optimization, we (re-
)correlate our internal timer with SoC Encounter in terms of timing
slack/slew, cell location, wire parasitic, and routing overflow after
every γ% of the total number of cells has been changed (Lines
17-19). We use γ = 2 in our optimization. We also include area
recovery (Lines 20-26) and timing recovery (Lines 27-32) in our
optimization to maintain timing and area quality. The parameter θ
is a threshold of slack violation that triggers timing recovery; we
empirically set this to 0.15. Note that during the timing recovery,
we perform backward (in which we downsize fanout cells) and
forward (in which we upsize cells) maximum transition violation
fixes, which enhance the timing recovery quality.

We observe from our experimental results that the ratio between
the number of cells being swapped and the number of cells being
displaced ranges from 1.2 to 5.4. This ratio seems highly dependent
on the partitioning solution, timing constraints, netlist structure, etc.
For instance, fewer partitions and/or tighter timing constraints can
lead to more swaps relative to displacements.

C. Mapping from mLEF to Original LEF in Assigned Regions
As discussed above, during the initial placement, partitioning and

legalization stages, we use mLEF with adjusted aspect ratio for cell
layouts, such that a cell originally with large height becomes shorter
and wider. When the placement solution is legalized, we update the
floorplan to have cell rows according to the height of each partition.
We also allocate space to model the area cost of breaker cells. To
map cells to the updated cell rows, we recover the original aspect
ratio of cell layouts. For example, assume that there are 20 10T cells
uniformly placed on five 8T cell rows (i.e., as a 5 × 4 mesh). To
update the floorplan, we maintain the same partition area and place
cell rows according to the height of the partition. We therefore have
four 10T cell rows. Given that the layout of these 10T cells (with
the same cell area) are scaled back to their original height with a
reduced cell width, five cells now can fit into one row in the updated
floorplan. The mapped cell placement becomes a 4 × 5 mesh. As
shown in the example, cell mapping in the updated floorplan can
be viewed as embedding a graph to another graph with a different
aspect ratio (e.g., embed a 5 × 4 mesh to a 4 × 5 mesh). We
therefore revisit the graph embedding literature.

Fig. 7: Illustration of graph embedding (a) from [3], and (b) for
proposed cell mapping. Vertical connections are not shown.

Ellis [3] shows that to embed a 2D mesh of size w × h (with
unit distance between every two adjacent nodes in both horizontal
and vertical directions) to another 2D mesh of size w′ × h′, where
w′ < w and h′ is the smallest integer satisfying w′ · h′ ≥ w · h,
if w

w′ is no larger than 2, the maximum wirelength of a two-pin
net (in Manhattan distance) in the embedded graph is no more than
two units. An example with w

w′ = 5
4

is shown in Figure 7(a): the
wirelength of each connection in the original graph is one, and
the maximum wirelength in the embedded graph (i.e., the diagonal
connection) is two. Note that our optimization of cell mapping

12We observe in our experiments that the number of cells which have
been visited six times without a feasible solution is quite small, e.g., less
than 60 in a design with 15K cells.

Algorithm 3 Cell mapping.

1: Wavg = (
P

g∈Pj
wg) /R′

2: i = 1
3: list← cells on ith row of original floorplan
4: sort list in order of increasing cell width
5: for i′ := 1 to R′ do
6: list′ ← ∅; W = 0
7: while (i′ == R′) || (W < Wavg) do
8: g ← list.pop front()
9: list′.push(g)

10: W += wg

11: if list == ∅ then
12: ++i
13: if i == (R + 1) then
14: return
15: end if
16: list← cells on ith row of original floorplan
17: sort list in order of increasing cell width
18: end if
19: end while
20: place cells in list′ on i′th row of updated floorplan
21: legalize cell placement on i′th row
22: end for

differs from [3], in that [3] varies the area of the graph (i.e., mesh)
while our optimization assumes a fixed mesh area (i.e., area of a
partition).

Following the discussions in [3], we can show that if we map a
2D-mesh placement with cell height h0, in which all cells have the
same cell area, to another 2D-mesh placement with cell height h1,
the maximum wirelength scaling of a mesh edge (i.e., two-pin net)
according to the mapping is no more than h0

h1
+ h1

h0
.13 Figure 7(b)

shows an example with 10T and 8T cells. Assuming unit wirelength
for each two-pin connection between any horizontally or vertically
adjacent cells in the original 2D-mesh placement, the maximum
wirelength increase is 1.05.

Inspired by the graph-embedding theory, we propose a method
to map cells onto cell rows with recovered cell heights for general
cases, in which cells can have different widths and are not
necessarily placed as a 2D mesh. Algorithm 3 shows our procedure
to map cells from an original floorplan with R rows of height h0

to an updated floorplan with R′ rows of height hj . Our method
is similar to legalization approaches such as those in [7] and [10]
in that we sort cells first and then legalize one at a time. We first
estimate the average total cell width of each row in the updated
floorplan (Line 1), in which g is a cell in partition Pj ; wg is
the actual width of the cell corresponding to height hj . We then
sort the cells on the ith row of the initial floorplan by increasing
widths (Line 4).14 We iteratively assign cells to the i′th row of
the updated floorplan (Lines 5-22). When all cells from the ith

row of the initial floorplan are mapped, we collect cells from the
(i + 1)th row (Lines 11-18). When the total width of the mapped
cells exceeds the average total width of each row (i.e., Wavg), we
place the selected cells on the i′th row of the updated floorplan
with their original X-coordinates (Line 20). Finally, we legalize the
placed cells in each row with awareness of area of breaker cells
by traversing the cells from left to right, and from right to left
(Line 21). It is obvious that the proposed algorithm can achieve
the mapping solution shown in Figure 7(b), given appropriate tie-
breaking, i.e., when sorting cells with the same width (Lines 4,
17), we prioritize the one with a smaller X-coordinate value; when
legalizing placement of cells with the same X-coordinate (Line 21),
we prioritize those originally located on even-numbered rows.

13Proof details are given in [3].
14Our separate studies of different sorting criteria (X-coordinate, cell

width, overlap with placed cells, etc.) find that sorting by cell width
leads to smallest perturbations of cell placement, and achieves the smallest
wirelength. Further, we observe in our experiments that the average
wirelength increase due to cell mapping, taken over 23 designs, is only
0.8%.

858

V. EXPERIMENTAL RESULTS

We perform experiments in a 28nm LP foundry technology with
dual-VT libraries, 0.95V nominal supply voltage, and cell height
choices 12T and 8T. To confirm that our optimization can perform
a fine-grained mixed cell-height implementation, we select four
design blocks (AES, DES, DMA, MPEG) from the OpenCores [14]
website. Parameters of these four testcases are shown in Table II.
For each design, we determine a range of clock periods starting from
a clock period with relative loose timing constraint, up to the clock
period at which the 8T-only implementation shows setup timing
violations. These designs are synthesized using Synopsys Design
Compiler vH-2013.03-SP3 [15] and then placed and routed using
Cadence SoC Encounter vEDI14.1 [17]. We set the gate density
at the floorplan stage as 60%. We respectively use Cadence SoC
Encounter and Synopsys PrimeTime-PX vH-2013.06-SP2 [16] for
timing and power analysis at the post-routing stage (with ideal
clocks) and wire parasitics (SPEF) obtained from SoC Encounter.
We use Synopsys PrimeTime vH-2013.06-SP2 [16] to search for the
minimum supply voltage that satisfies a given frequency target. Our
optimization flow is implemented in C++. Functions used in P&R
tools and the socket between our optimizer and the P&R tool are
implemented in Tcl. We conduct our experiments on a 2.5GHz Intel
Xeon server.

TABLE II: Benchmarks.
Design #Instances #Flip-flops Clock period range
AES ∼15K 530 700ps – 1ns
DES ∼22K 1984 650ps – 800ps
DMA ∼1.5K 277 350ps – 500ps
MPEG ∼13K 3193 600ps – 750ps

Modeling breaker cell costs. The placement site pitch (width)
and the M2 metal pitch in the 28nm LP technology that we use
are respectively 0.136µm and 0.1µm. Based on the discussion in
Section III, the horizontal and vertical shifts between any 8T and
12T regions must be no less than 0.544µm and 0.1µm, respectively.
In addition, to preserve cell row alignment in the design, we shift
cell rows by 0.8µm in the vertical direction between any 12T
and 8T regions. We also insert placement and routing blockages
correspondingly. Figure 8 shows one layout example.

Fig. 8: Inserted space on the boundaries between 12T and 8T
regions to model the cost of breaker cells.

A. Comparison at Vnom

We implement our benchmark designs using our proposed flow
with mixed 8T/12T cells. We also perform conventional SP&R
(synthesis, placement and routing) with 12T-only cells and 8T-
only cells for comparison. The designs are implemented with clock
periods shown in Table II. We use the nominal voltage 0.95V at (SS,
125◦C) corner for design implementation and timing analysis. We
further use corner (TT, 1.05V, 25◦C) for leakage power analysis.
Total power values are reported at the signoff frequency. We divide
the block area of each design into grids of size around 6µm ×
6µm for partitioning and placement density evaluation. Parameters
of the implemented designs are described in Table III, in which
the clock period is the clock period used for implementation.
Figure 9 further shows the Pareto curves illustrating tradeoffs
between area and performance of implemented designs at the post-
routing stage, where the frequency given is the maximum achievable

operating frequency. Our experiments show that with loose timing
constraints, 8T-only implementation has minimum design area, and
12T-only implementation has large area overhead. On the other
hand, the maximum achievable performance of an 8T-only design
is limited by the weak drive strengths of 8T cells. Designs with
mixed cell heights achieve significant (i.e., 20%) area reduction on
average as compared to 12T-only designs, while maintaining similar
performance (i.e., post-routing slack differences that are less than
40ps). Moreover, mixed cell-height design improves performance
significantly (e.g., by 20% for design AES) over the 8T-only design
with the same total cell area.15 However, we also observe large
wirelength increase for certain optimized designs (e.g., DMA). This
is because our cost function for displacement of cells only considers
timing penalty but not its impact on wirelength. Understanding
the effects of legalization on wirelength and corresponding power
overhead is among our future works.

B. Comparison with Voltage Scaling
Given that certain designs have timing violations, to achieve a

fair power comparison we perform voltage scaling on each design
so that all designs meet the timing constraints. We then compare
power at the scaled supply voltage. In our experiments, we define
scaling lib group in the PT-PX tool to enable such comparisons.
Note that to compensate the slack discrepancy between SoC
Encounter and PrimeTime, we apply a constant slack shift of
the entire block to correlate the post-routing worst slack values,
then perform voltage scaling. When the difference between the
scaled voltage and the signoff voltage is larger than 30mV, we
perform SP&R with the scaled voltage and use the smaller power
value between that of the initial implementation and that of the
additional implementation in our comparison. Figure 10 shows
the power comparison. We observe that designs implemented with
8T-only, 12T-only and mixed cell heights in general have similar
total power. A possible explanation: although 12T cells have larger
capacitance, an 8T-only implementation tends to have a larger
number of instances, thus leading to similar total capacitance and
power consumption. The design MPEG implemented with 12T-only
cells shows larger power, apparently due to its large number of flip-
flops, which have high toggle rates. We note that the relatively high
power of the optimized designs (e.g., AES, DES, DMA) with mixed
cell heights is likely due to our cost function (i.e., Equation (3))
being unaware of power consumption. This is the subject of current
investigations.

VI. CONCLUSION AND FUTURE WORKS

In this work, we have proposed a novel physical design
optimization flow to mix cells with different heights in a fine-grained
manner within a single place-and-route block. Our flow addresses
the “chicken-and-egg” loop between floorplan site definition and
the post-placement choice of cell heights, and correctly models
(based on industry feedback from 20SOC and 16FF design
experience) “breaker cell” overheads of the mixed-height placement.
Our optimization, applied to production 12T and 8T libraries
in a 28LP foundry technology, can achieve 25% area reduction,
while maintaining performance, as compared to a 12T-only design
flow. Moreover, our optimized mixed-height designs can achieve
significant performance increase as compared to designs with 8T-
only cells.

We observe from our results that the mixed cell-height
implementation can, for certain testcases, have relatively larger
values of power and wirelength as compared to the 12T-only and

15We recognize that the larger number of instances in the 12T-only
implementation of AES is unexpected. We believe that this is partly due
to the 12T implementation’s superior performance as compared to the 8T-
only and mixed-height implementations. The 12T-only AES implementation
also has more small-size buffers (e.g., 488 more than the mixed-height
implementation), which may ultimately stem from having different post-
synthesis netlists.

859

TABLE III: Parameters and results of implemented designs.
Design (Clock period) AES (700ps) DES (650ps) DMA (350ps) MPEG (600ps)

Flow 12T 8T mix 12T 8T mix 12T 8T mix 12T 8T mix
#Instances 16006 14441 15544 21878 23503 23360 1554 1735 1667 12548 14609 14524

12T/8T 16006/0 0/14441 11799/3745 21878/0 0/23503 20204/3156 1554/0 0/1735 1339/328 12548/0 0/14609 2425/12099
LVT/RVT 8110/7896 13168/1273 12171/3373 8009/13869 21146/2357 10791/12569 1102/452 1517/218 1134/533 5983/6565 9992/4617 7296/7228

Setup WNS (ps) 0 -94 -37 0 0 0 -4 -90 -17 3 -34 -12
Setup TNS (ns) 0 -12.42 -4.57 0 0 0 -0.03 -14.83 -0.27 3 -2.47 -0.09
#Hold violations 0 0 0 0 0 0 0 0 0 0 0 0

Area (µm2) 17169 12966 11097 23328 21913 16816 2445 1975 1837 20386 14967 14789
Utilization 77% 95% 65% 69% 86% 51% 79% 75% 54% 63% 69% 59%
WL (µm) 190514 152437 214240 200573 197147 255468 14614 16205 20657 219516 150520 183450

Leakage power (mW) 0.086 0.08l 0.119 0.065 0.114 0.088 0.012 0.009 0.014 0.054 0.049 0.048
Total power (mW) 34.2 27.3 32.1 53.6 56.5 57.2 4.59 3.84 4.74 23.9 20.0 20.3

Runtime (min) 48 58 149 78 77 132 14 9 17 13 27 21

Fig. 9: Pareto curves of performance-area tradeoff for implementations with 8T-only, 12T-only and mixed cells.

Fig. 10: Iso-performance power comparison with voltage scaling among implementations with 8T-only, 12T-only and mixed cells.

8T-only implementations. We believe that this is because our cost
function only considers timing and area during the optimization.
A clear direction for future work is to better comprehend power
and wirelength costs in our optimization. Other future and ongoing
works include: (i) a clock tree synthesis flow with mixed cell
heights; (ii) a more comprehensive cost function that can trade
off performance, power, area and wirelength in guiding the
optimization; (iii) more holistic understanding of the interactions
among partitioning, cell displacement and cell-height swapping;
(iv) an iso-utilization comparison between our optimization and
single cell-height implementations; (v) improved logic synthesis
(e.g., constraints methodologies or target library models) for the
mixed-height regime; and (vi) mitigation of routing congestion and
pin accessibility issues (e.g., by mixing in a small portion of cells
with larger height).

ACKNOWLEDGMENTS

We thank Ms. Nancy MacDonald for valuable feedback and
discussions during the course of our project.

REFERENCES

[1] C. J. Alpert, A. Devgan and C. Kashyap, “A Two Moment RC Delay Metric for
Performance Optimization”, Proc. ISPD, 2000, pp. 73-78.

[2] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung and C. Chu, “Post-Placement
Voltage Island Generation”, Proc. ICCAD, 2006, pp. 641-646.

[3] J. A. Ellis, “Embedding Rectangular Grids Into Square Grids”, IEEE Trans.
Computers 40(1) (1991), pp. 46-51.

[4] F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1999.
[5] L. Guo, Y. Cai, Q. Zhou and X. Hong, “Logic and Layout Aware Voltage Island

Generation for Low Power Design”, Proc. ASP-DAC, 2007, pp. 666-671.

[6] K. Han, A. B. Kahng, J. Lee, J. Li and S. Nath, “A Global-Local Optimization
Framework for Simultaneous Multi-Mode Multi-Corner Clock Skew Variation
Reduction”, Proc. DAC, pp. 26:1-26:6, 2015.

[7] D. Hill, “Method and System for High Speed Detailed Placement of Cells Within
an Integrated Circuit Design”, US Patent 6370673, April 2002.

[8] A. B. Kahng, S. Kang, H. Lee, I. L. Markov and P. Thapar, “High-Performance
Gate Sizing with a Signoff Timer”, Proc. ICCAD, 2013, pp. 450-457.

[9] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “PERI: A Technique for
Extending Delay and Slew Metrics to Ramp Inputs”, Proc. TAU, 2002, pp. 57-
62.

[10] P. Spindler, U. Schlichtmann and F. M. Johannes, “Abacus: Fast Legalization of
Standard Cell Circuits with Minimal Movement”, Proc. ISPD, 2008, pp. 47-53.

[11] H. Wu and M. D. F. Wong, “Improving Voltage Assignment by Outlier Detection
and Incremental Placement”, Proc. DAC, 2007, pp. 459-464.

[12] H. Wu, I.-M. Liu, M. D. F. Wong and Y. Wang, “Post-Placement Voltage Island
Generation under Performance Requirement”, Proc. ICCAD, 2005, pp. 309-316.

[13] H. Wu, M. D. F. Wong and I.-M. Liu, “Timing-Constrained and Voltage-Island-
Aware Voltage Assignment”, Proc. DAC, 2006, pp. 429-432.

[14] OpenCores. http://opencores.org
[15] Synopsys Design Compiler User’s Manual.
[16] Synopsys PrimeTime User’s Manual.
[17] Cadence SOC Encounter User Guide.

APPENDIX
We list all the user-defined parameters of our optimizer in

Table IV.
TABLE IV: User-defined parameters.

Term Meaning
K maximum number of cuts

M ×N number of grids
D maximum displacement distance
γ determines correlation frequency
θ slack violation tolerance threshold
F maximum number of visits of a cell before a move is applied

860

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

