
Scalable Detailed Placement Legalization for Complex
Sub-14nm Constraints

Kwangsoo Han‡, Andrew B. Kahng†‡ and Hyein Lee‡
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA 92093

{kwhan, abk, hyeinlee}@ucsd.edu

Abstract—Technology scaling to 10nm and below introduces complex
intra-row and inter-row constraints in standard-cell detailed placement.
Examples of such constraints are found in rules for drain-drain
abutment, minimum implant region area and width, oxide diffusion
(OD) notching and jogging, etc. Typically, these rules are too complex
for the normal global-detailed placement flow to fully consider. On the
other hand, guardbanding the library cell design so that arbitrary cell
placement adjacencies are all “correct by construction” has increasingly
high area cost. This motivates the introduction of a final legalization
phase for standard-cell placement tools in advanced (particularly 10nm
and 7nm) foundry nodes. In this work, we develop a mixed integer-
linear programming (MILP)-based placer, called DFPlacer, for final-
phase design rule violation (DRV) fixing. DFPlacer finds (near-)DRV-
free solutions considering various complex layout constraints including
minimum implant width, drain-drain abutment, and oxide diffusion
jogs. To overcome the runtime limitation of MILP-based approaches, we
implement a distributable optimization strategy based on partitioning
of the block layout into windows of cells that can be independently
legalized. Using layouts in an abstracted 7nm library, we find that
DFPlacer fixes 99% of DRVs on average with minimal impacts on area
and timing. We also study an area-DRV tradeoff between two types of
standard-cell library strategies, namely, with and without dummy poly
gates.

I. INTRODUCTION

Continued technology scaling to the foundry 10nm node (42nm
minimum metal pitch, 36nm fin pitch) and below leads to more
constraints in physical implementation. Not only do new metal-
layer (back end of line, or BEOL) ground rules arise from multi-
patterning techniques, but rules for device layers (front end of line,
or FEOL) also become considerably more complex and restricted.
For example, at the foundry 10nm node (henceforth referred to as
N10), there are minimum width and area constraints for implant
regions, as well as notch and jog width constraints for oxide
diffusion (OD) regions. In older technology nodes, such layer rules
were fairly benign: while of concern to the library cell designer,
once the library cells were correctly designed, design rule violations
(DRVs) could not occur during placement due to the correctness by
construction of any non-overlapping cell placement.

Unfortunately, correctness by construction no longer holds for
detailed placement at N10 and below. Cell sizes and minimum
metal pitches have continued shrinking to stay on the Moore’s Law
density curve. However, patterning resolution in device (FEOL)
layers has not kept pace due to challenges in device definition
(e.g., ion implant) or lithographic variation (e.g., corner rounding).
Thus, placing several ‘legal’ standard-cell layouts next to each
other may cause violations of FEOL layer rules such as minimum
implant width or area [4] rules. Such violations could in theory
be prevented with larger cell area budgets (similar in spirit to how
BEOL colorability, especially on the M1 layer, can be preserved)
that permit correct-by-construction cell layout styles. However, this
runs counter to a core purpose of shrinking to the next node,
and reduces the return on investment from enabling that node.
Our present work proposes a new, final phase of detailed cell
placement that can potentially maintain placement legality in the
face of new N10 FEOL rules – without loss of density, routability
or performance metrics.

A. N10 FEOL and Cell Placement Constraints

Figure 1 illustrates the layout of an inverter cell in the N10 node.
The figure shows two fins each for PMOS and NMOS.1 Source
nodes of PMOS and NMOS are connected to M2 power/ground rails
with M1. The input A is connected to the PMOS and NMOS gates
using middle-of-line (MOL), a complementary metal layer below
M1 that is used for intra-cell routing. The output Y is connected
to the drain nodes of PMOS and NMOS. The FEOL layers which
affect legal placement (i.e., in the context of other cells’ placements)
include implant layer, OD layer and poly, as follows.

• Implant layers, which indicate regions for ion implantation,
decide the threshold (Vt) of transistors. Regions of the implant
layer are typically aligned to the boundaries of standard cells.

• Oxide diffusion (OD) defines the active region of transistors.
• Dummy poly gates are inserted at the (vertical) standard cell

boundaries to avoid edge device variability.

M2 Power/ground
Cell boundary, implant region

Oxide diffusion (OD)

Poly

M1

Fin

Middle of line
A Y

Fig. 1. Illustration of inverter cell layout in N10 node.

Minimum implant width constraints (IW). Minimum implant
width (IW) constraints induce placement illegalities due to both
inter- and intra-row IW violations, as shown in Figure 2(a). Below,
we refer to the inter-row IW violation as being of type IW1. We
refer to the intra-row IW violation as being of type IW2. An
example of IW1 is shown in the figure, where two same-Vt cells
are misaligned vertically and thus result in a narrow, “staircase”
implant layer shape. IW2 occurs when a narrow cell is sandwiched
between different-Vt cells, which results in a narrow implant region.
Interestingly, the IW rules cause interactions between placement and
sizing optimizations (e.g., Vt-swapping) that compromise the notion
of, e.g., “post-route leakage optimization”. This interaction has been
recently studied in [4].
Minimum OD jog length (OW). Standard cells can have different
oxide diffusion (OD) region heights according to functionality, drive
strength, etc. When cells with different OD heights abut, OD jogs
can result as shown in Figure 2(b). This is forbidden in N10
and below due to lithographic corner rounding, and the resulting
device performance variability, e.g., under misalignment. In N10, a
minimum OD jog length rule is violated if the jog length is less than

1A more typical library in N10 might have 9-track (M2 tracks) cell height,
and three fins each for PMOS and NMOS, with a gear ratio of M2:fin pitch
anywhere from 7:6 to 4:3.

H HL

H L

L

H

H

IW2

IW1
(a) (b)

OD

Cell boundary

Fig. 2. (a) Examples of minimum implant width violations [14]. (b) The
design rule for OD jogs.

a given minimum value. Introducing sufficient spacing between the
violating cells can cure the OD jog violation.

Cell boundary

(a)

(b)

Active region
Poly

Power/ground
Connection

D DS

D DS

D D D S

SD

0.5 poly pitch

√

√

Fig. 3. (a) Drain-drain abutment violation with an example standard cell
layout. (b) Use of dummy poly gates in the library design style can avoid
DDA violation in a correct-by-construction manner.

Drain-drain abutment (DDA). Dummy poly gates create extra
dummy transistors connected to logic transistors within standard
cells. The dummy transistors can induce leakage power and logic
failure if they are not fully turned off. Hence, gate and source nodes
of dummy transistors must be tied off to power/ground rails; in
particular, if two drain nodes are abutted, an extra dummy poly
gate is needed to create an additional source node to be tied up with
power/ground rails. The recent work of Du and Wong [6] studies
cell instance flipping as a way of mitigating this issue in detailed
placement. Figure 3(a) depicts the DDA problem. The leftmost
diagram shows an example inverter layout, and the middle and right
diagrams respectively show DDA and no-DDA cases. To avoid the
DDA problem, we can consider two approaches [11]: (i) a smart
detailed placement with comprehension of DDA; and (ii) standard
cells with embedded dummy poly gates as shown in Figure 3(b).
With approach (ii), the width overhead for each cell is one poly
pitch. (We study the area-DRV tradeoff between approaches (i) and
(ii) in Section IV below.)

B. This Work

As noted above, [4] and [6] have respectively made initial
studies of IW- and DDA-induced placement issues. However, to our
knowledge, there is no existing work that addresses all the issues
above simultaneously in detailed placement. Popular techniques
used for conventional placement legalization, including graph-based,
dynamic programming-based, etc. appear ill-suited to handling of
complex FEOL layer rules at N10 and below. For example, previous
techniques have focused on removing overlaps between cells while
maintaining the ordering of cells within a row, while minimizing
half-perimeter wirelength or placement perturbation. Such previous
works are largely single-row-based, and are applied row by row.

Thus, they do not capture inter-row constraints such as IW1 that
arise in N10. Furthermore, a number of implicit assumptions made
by placement legalizers are broken when placement correctness
by construction no longer holds, e.g., when more than two cells
can interact and create DRVs. This challenges the use of dynamic
programming frameworks, since decomposition into independent
placement subproblems is no longer obvious. Finally, filler cell
insertion has not previously been a concern of placement legalizers,
but in N10 the filler cells can cause additional implant layer rule
violations.

In this work, we propose a mixed integer-linear programming
(MILP)-based placement legalization that considers complex N10
FEOL-layer design rules including minimum implant width,
minimum oxide diffusion jogs and drain-drain abutment. We also
propose a distributable optimization approach based on partitioning
a given placement into many windows of cells, with each window
being independently optimizable. The main contributions of our
work are summarized as follows.

• We formulate as an MILP a placement problem that addresses
new DRVs caused by complex N10 design rules. In contrast to
previous approaches, our formulation captures new inter-row
violation types. We further implement our solution approach
in a prototype tool, DFPlacer.

• DFPlacer handles whitespace in the problem formulation
and determines filler cell insertions to solve implant width
constraint violations.

• We propose a distributable optimization based on partitioning
of an input placement into windows of cells, and demonstrate
that our optimization is scalable via this mechanism.

• We implement our proposed methods in C++ with OpenAccess
2.2.43 [15] and incorporate them into a commercial tool-based
placement and routing (P&R) flow for evaluation.

• A further study provides insight into timing and area impacts
of the dummy poly gate library cell strategy, using two kinds
of libraries: (i) standard cells with dummy poly gates (drain-
drain abutment violation free) and (ii) standard cells without
dummy poly gates.

The remainder of this paper is organized as follows. In Section II,
we review relevant prior work. To address N10 rules, we formulate
an MILP in Section III-A and describe our distributable optimization
strategy in Section III-B. Section IV provides experimental results
and analysis. We give conclusions and future research directions in
Section V.

II. PREVIOUS WORK

We now summarize relevant previous works on detailed
placement and placement legalization.
Dynamic programming-based approaches. Dynamic programm-
ing (DP), typically for a single cell row, has been used by a
number of authors. Kahng et al. [5] use DP to legalize placement
of a single row with various minimization objectives: total
perturbation, maximum perturbation, and wirelength. A shortest-
path algorithm is applied to a directed acyclic graph constructed
from the input ordering of cells. Gupta et al. [1] perform
detailed placement optimization to enable sub-resolution assist
feature insertion for improved manufacturability. A DP-based single
row placement achieves this assist-feature correctness (AFCorr)
while minimizing (timing criticality-weighted) perturbations of
cell locations. Subsequent work addresses a 2D formulation that
considers both horizontal and vertical interactions between adjacent
cells [2]. The 2D AFCorr approach uses DP in which vertical and
horizontal costs are calculated with restricted perturbations. Hur and
Lillis [7] propose optimal interleaving for intra-row optimization in

detailed placement. Their work splits the cells of a single row into
two groups with a given window size, and the two sequences are
optimally interleaved via DP while preserving the initial relative
ordering of cells in each group. At the global placement level,
cells are assigned to bins and optimized via relaxation-based local
search.
Integer Linear Programming (ILP)-based approaches. Another
important class of previous methods is based on integer linear
programming. Ramachandaran et al. [10] apply branch-and-price
for improved scaling of the placement optimization. Li and
Koh [8] propose ILP-based detailed placement approaches using
placement site variables. Dantzig-Wolfe decomposition is applied
to improve scalability, and single-cell-placement (SCP) variables
enable grouping and mapping of placement site variables into
patterns. The extension [9] supports mixed-size circuits and
improves runtime by bounding solution spaces. In our present work,
we begin with the MILP model of [8] [9], extending it to provide
the first-ever comprehensive support (to our knowledge) of N10-
relevant design rules such as minimum implant width, diffusion
jogs and drain-drain abutment.
N10 design rules-aware placement. Du and Wong [6] address the
abutment of source and drain in FinFET-based cell placement (i.e.,
for the foundry 14nm node onward), where the DDA constraint
becomes prominent. The authors use cell flipping and adjacent-
cell swapping as underlying operations for detailed placement
perturbation that minimizes drain-drain abutments. As in [5], the
authors of [6] apply a shortest-path algorithm with their proposed
graph model, in which each operation and the violations are
modeled as nodes and node/edge costs, respectively. However,
the approach only swaps and flips cells within a single row, and
does not handle interactions between placement rows. Hence, the
optimization is made with respect to a highly restricted portion
of the overall detailed placement solution space. Moreover, DDA-
related optimization cannot be performed in isolation at the N10
node: many other neighborhood-related constraints (e.g., constraints
for implant and oxide diffusion (OD) layers) have interactions with,
and constrain, the drain-drain abutment solution. In our present
work, we handle neighborhood-related constraints along with drain-
drain abutment, with a larger solution space that includes multiple
rows.

III. OUR APPROACH

A. Problem Formulation

We now formulate a MILP for our detailed placement problem
to address N10 related design rules including IW, DDA and OW in
Section I-A. Our notation is described in Table I.

Minimize:
X
c∈C

(|xc − xc,init|+ |yc − yc,init|) (1)

Subject to: X
k∈Kc

λk
c = 1, ∀c ∈ C, λk

c ∈ {0, 1} (2)

fc =
X

k∈Kc

fk
c λk

c (3)

xc =
X

k∈Kc

xk
cλk

c , yc =
X

k∈Kc

yk
c λk

c , ∀c ∈ C (4)

scrq =
X

k∈Kc

sk
crqλ

k
c , ∀c ∈ C (5)X

c∈C

scrq ≤ 1, ∀q ∈ Q, r ∈ R (6)

TABLE I
NOTATIONS.

Notation Meaning
C, R, Q sets of cells, rows, columns

fc a binary indicator of whether cell c is flipped
x(y)c,init initial x (y) coordinate of cell c

scrq a binary indicator of whether cell c occupies site (r, q)
Kc a set of candidate states of cell c
λk

c a binary indicator of the kth candidate state for cell c
xk

c , yk
c x and y coordinates corresponding to λk

c

fk
c fc corresponding to λk

c

sk
crq scrq corresponding to λk

c
mrq inter-row variable for IW1
hrq intra-row variable for IW2
W minimum implant width (unit: site)

For a given input layout, our objective is to minimize the sum
of cell displacements while achieving a legal placement with
respect to given N10 design rules. We assume a given perturbation
range for each cell g (g.l, g.r, g.t and g.b are respecting the
maximum allowed displacements of the cell in the left, right, top
and bottom directions, respectively); a cell cannot move beyond
its given perturbation range. Thus, we have a limited number of
possible states (locations and orientations) within g, for each cell.
To represent each candidate state for a cell, we adopt the single-
cell-placement (SCP) model of [9]. The binary SCP variable λk

c

represents a candidate state k for a cell c. The variable λk
c is

associated with the location and orientation of cell c, e.g., xk
c , yk

c ,
fk

c , which are pre-defined values. Also, sk
crq , where r ∈ |R| and

q ∈ |Q|, is pre-defined for λk
c .

From Constraint (2), exactly one state is chosen for cell c among
multiple candidate states λk

c , k ∈ Kc, which determines the location
and orientation of c. Constraints (3), (4) and (5) determine the final
x, y of cell c and scrq for r ∈ |R|, q ∈ |Q| from a selected candidate
site for cell c. To ensure a legal placement (no overlap), Constraint
(6) forces a site at (r, q) to be occupied by at most one cell. In
addition to the basic formulation, we add extra constraints to address
OW, DDA, IW1 and IW2 rules, as follows.

OW and DDA constraints. To handle OW and DDA constraints, we
pre-characterize all adjacency conditions which violate OW and/or
DDA for each library cell pair. We note that our pre-characterization
considers the orientations of cells (i.e., the adjacency conditions
change depending on the orientations of cells). We then generate a
set P of forbidden pairs of λk

c . Based on P , we formulate Constraint
(7) for every forbidden pair (λi

c1 , λj
c2).

λi
c1 + λj

c2 ≤ 1 where c1, c2 ∈ C, (λi
c1 , λj

c2) ∈ P (7)

IW1 and IW2 constraints. IW1 violations occur across rows when
vertically-adjacent same-Vt layers form a narrow staircase shape
with width less than the minimum implant width (see Figure 2(a)).
To handle IW1, we define a 0-1 inter-row variable, mrq , that
indicates whether the site at (r, q) (row r and column q) and the
site at (r + 1,q) have the same Vt (mrq = 1) or not (mrq = 0).
Figure 4(a) illustrates the mrq variables and IW1 constraints. As
shown in the figure, if a 0-1 sequence of m values is found (e.g.,
m12, m13), the implant region has a staircase shape, and hence
(W − 1) consecutive m variables must be one. Thus, we formulate
constraints that, if mr(q−1) = 0 and mrq = 1, force at least W
consecutive inter-row variables mrq = . . . = mr(q+W−1) = 1,
so as to satisfy IW1 (e.g., m13, m14, m15 = 1 where W = 3, in
Figure 4(a)).

IW2 violations occur when small-width cells are sandwiched in
between different-Vt cells in the same row. Similar to how we

handle IW1, we define a 0-1 intra-row variable, hrq , that indicates
whether the site at (r, q) and the site at (r, q + 1) have the same Vt

(hrq = 1) or not (hrq = 0), as shown in Figure 4(b). If hrq = 0,
i.e., sites (r, q) and (r, q + 1) have different Vt, we force (W − 1)
consecutive binary variables hr(q+1) = . . . = hr(q+W−1) = 1, so
as to have at least W consecutive same-Vt sites. Figure 4(b) shows
the case when hrq = 0, where r = 1, q = 2, W = 3.

m11=0 m12=0 m13=1 m14=1 m15=1 m16=0 m17=0

W = 3
h11=1 h12=0 h13=1 h14=1 h15=0 h16=1

W = 3

(a) (b)

Fig. 4. (a) Inter-row variable mrq for IW1. (b) Intra-row variable hrq for
IW2. The color (gray and white) of regions indicates Vt.

The generalized constraints for IW1 and IW2 are as follows:

mr0 = 0, hr0 = 0 1 ≤ r < |R|
(8)

mrq + (1−mr(q+1)) + yr(q+2) ≥ 1

0 ≤ q < |Q| −W, 1 ≤ r < |R|
(9)

yrq ≤ mr(q+w)

2 ≤ q ≤ |Q| − 2, 1 ≤ r < |R|, 0 ≤ w < W − 1
(10)

hrq + zrq ≥ 1

0 ≤ q < |Q| −W, 1 ≤ r < |R|
(11)

zrq ≤ hr(q+1+w)

2 ≤ q ≤ |Q| − 2, 1 ≤ r < |R|, 0 ≤ w < W − 1
(12)

• Constraint (8) initializes the leftmost m and h variables where
q = 0.

• Constraint (9) detects the condition of mrq = 0 and
mr(q+1) = 1, and forces yr(q+2) = 1.

• When yr(q+2) = 1, Constraint (10) forces (W−1) consecutive
binary variables mr(q+2) = . . . = mr(q+2−(W−1)) = 1.

• Constraint (11) detects the condition of hrq = 0 and forces
zrq = 1.

• When zrq = 1, Constraint (12) forces (W − 1) consecutive
binary variables hr(q+1) = . . . = hr(q+(W−1)) = 1.

We now describe our method of obtaining inter- and intra-row
variables (mrq and hrq). We first set the Vt of cell c as the binary
vector ~kc. The length of ~kc is determined by dlog2(nVt + 1)e where
nVt is the number of available Vt options. For example, if we have
three Vt options, then ~kc is {k1

c k2
c}. Concretely, the binary vectors

{0 1}, {1 0} and {1 1} represent HVT, NVT and LVT, respectively.
We then define the Vt variable ~vrq as a binary vector variable
{v1

rq v2
rq} indicating the Vt of the site (r, q). Given that mrq = 1

if ~vrq = ~v(r+1)q , we add the following constraint to obtain mrq:

mrq = (v1
rq ⊕ v1

(r+1)q
) + (v2

rq ⊕ v2
(r+1)q

) (13)

Constraint (13) is rewritten in our MILP formulation, using binary
variables u1, u2 and mrq , as follows:

mrq + mrq ≤ 1;

mrq ≤ u1 + u2; mrq ≥ u1; mrq ≥ u2;

u1 ≤ v1
rq + v1

(r+1)q ; u1 ≥ v1
rq − v1

(r+1)q ;

u1 ≥ v1
(r+1)q − v1

rq ; u1 ≤ 2− v1
rq − v1

(r+1)q

u2 ≤ v2
rq + v2

(r+1)q ; u2 ≥ v2
rq − v2

(r+1)q ;

u2 ≥ v2
(r+1)q − v2

rq ; u2 ≤ 2− v2
rq − v2

(r+1)q (14)

Similarly, hrq can be formulated as follows:

hrq = (v1
rq ⊕ v1

r(q+1)
) + (v2

rq ⊕ v2
r(q+1)

) (15)

We also consider whitespace (empty sites), which can be filled
with filler cells. We have the freedom to choose Vt of filler cells
to satisfy IW1 and IW2 constraints. To exploit this flexibility, we
define a binary vector variable ~erq= {e1

rqe
2
rq} which indicates Vt

of the site at (r, q). From variables ~kc, scrq and ~erq , vrq is defined
as follows:

~vrq =
X
c∈C

~kc · scrq + ~erq (16)

Thus, ~vrq is determined by either
P

c∈C
~kc ·scrq or ~erq . We add

a constraint below for ~erq:

e1
rq ≤ 1−

X
c∈C

scrq ; e2
rq ≤ 1−

X
c∈C

scrq (17)

Constraint (17) states that if a site is occupied by any cell, ~erq=
0. Then, Constraint (16) becomes independent of ~erq . Otherwise,
Constraint (16) becomes ~vrq = ~erq .
Analysis of the number of variables and constraints. The number
of variables and constraints depends on the number of sites in a
target window (|R| · |Q|), the number of instances (|C|) and the
size of the perturbation range (g.size = (g.l + g.r) · (g.t + g.b)).

• The number of variables scrq is |C| · |R| · |Q|.
• The number of variables xc, yc is (each) |C|; the number of

variables xk
c , yk

c , λk
c is (each) g.size · |C|.

• The number of inter-/intra-row variables m, h is (each) |R|·|Q|.
• The number of variables v and e is (each) n · |R| · |Q|, where

n is dlog2(nVt + 1)e.
• The numbers of Constraints (2), (4), (5) and (6) are |C|, |C|,
|C| · |R| · |Q| and |R| · |Q|, respectively.

• The number of Constraint (7) is g.size · |C|2.
• The number of Constraints (9), (10), (11) and (12) is (each)
|R| · |Q|.

B. Overall Flow
We implement our flow in C++ with OpenAccess 2.2.43 [15] to

support LEF/DEF [14], and with CPLEX 12.5.1 [13] as our MILP
solver. Figure 5 shows the overall flow of our tool, which we call
DFPlacer. DFPlacer has two optimization stages: global and local
optimization. In the global optimization, we split the given routed
layout T uniformly into a set of windows D and optimize each of
the windows d ∈ D in parallel. We use a fixed boundary margin
b for each window to enable independent optimization among
windows. In the local optimization, we generate a new window for
each remaining violation γ ∈ Γ such that the violation is located at
the center of the window. We then remove overlapping windows so
that no window affects another. With the new set of windows D′,
we optimize each window d′ ∈ D′ again in parallel. The output cell
location solution is saved in DEF file format, which can be fed into

Fig. 5. Overall flow of detailed placement legalization.

a commercial P&R tool. We perform ECO routing with the solution
and finally obtain a new layout Topt with number of violations |Γ|
less than the given target number δ.

Algorithm 1 Overall flow of DFPlacer.

Procedure DFPlacer(T, U, z, b, g, δ)
Input : Layout T , set of design rule constraints U , window size z,
boundary margin b, perturbation range g, target number of DRVs δ
Output : Layout Topt with |Γ| < δ

1: // Global optimization
2: for i = 1 to 3 do
3: A set of windows D ← Partition(T, i, z, b, g);
4: Solve all MILP instances for windows D in parallel;
5: Update MILP solutions to T ;
6: end for
7: // Local optimization
8: Γ ← getDRV (T, U);
9: while |Γ| < δ do

10: D ← ∅;
11: for all γ ∈ Γ do
12: d ← MakeNewWindows(T, γ, z, b, g);
13: D ← D ∪ d;
14: end for
15: D′ ← NonOverlapWindows(D)
16: Solve all MILP instances for windows D′ in parallel;
17: Update MILP solutions to T ;
18: Γ ← getDRV (T, U);
19: if |Γ| is the same as |Γ| in the previous iteration then
20: IncreaseWindow(z);
21: IncreasePerturb(g);
22: end if
23: end while
24: Topt ← T ;
25: return Topt;

Algorithm 1 gives further details of our optimization flow. In
Lines 2-6, the global optimization phase solves D in parallel with
a small perturbation range g (e.g., g.l = 4, g.r = 4, g.t = 1 and
g.b = 1 sites) of cells. This distributable method overcomes the
runtime limitation of MILP-based approaches and fixes more than
90% of initial |Γ| (see Figure 7). In Line 3, we first partition a
given routed T into D, and we solve each d ∈ D in parallel using
OpenMP [17] in Line 4. We set a window width z.w as 47 sites,

and a window height z.h as nine cell rows in our experiments. 2

When running optimizations for the windows in parallel, we set
the vertical (resp. horizontal) boundary margin b.v (resp. b.h) so
that the solution of one window can be isolated from the solutions
of neighbor windows. We set b.v as the minimum implant width
W and b.h as two cell row heights. Figure 6 shows the boundary
margin in green color. We then update the MILP solutions to the
layout T .

Fig. 6. Partitioning of layout for parallel global optimization.

Since the fixed boundary cells corresponding to b of the first
iteration can contain DRVs which are not fixed in the first iteration,
we perform a second iteration with a new partitioning that is shifted
by half of z.w and z.h in the x- and y-directions, respectively;
these are shown in yellow color in Figure 6. We then partition
the current T into a new D and solve the corresponding MILP
instances to fix the violations Γ remaining from the first iteration.
We then update the MILP solutions to T . Even after the first and
second iterations, DRVs could still exist in the intersection of the
fixed boundary region (red color in Figure 6). To fix the Γ in the
uncovered intersection region, we perform a third iteration that has
new partitioning lines shifted by a quarter of z.w and z.h in x-
direction and y-direction. Note that a quarter of z.w and of z.h
should respectively be larger than or equal to b.v and b.h. This
ensures that the windows of the third iteration contain the uncovered
regions, such that the fixed boundary region of the third iteration is
not overlapped with the uncovered intersection region.

The small window size and perturbation range used in global
optimization restricts the solution space, potentially leading to
infeasible solutions for certain windows. To fix the remaining Γ,
we perform the local optimization in Lines 8-24. For each DRV,
the function MakeNewWindows() creates a new window whose
center is the DRV point. In Line 15, NonOverlapWindows()
picks a set of disjoint windows D′ to process in parallel. We then
update the solutions to the current T and check the remaining Γ
(Lines 16-17). In Lines 19-22, if the current |Γ| is the same as the
|Γ| of the previous iteration, we increase z.w by 10 sites and z.h
by one cell height. For perturbation range, we increase g.l, g.r, g.t
and g.b by 2, 2, 1 and 1 sites, respectively. When the current |Γ| is
less than the target number of DRVs δ, we save the current T as
Topt and terminate the optimization. In our experiment, we set δ as
1% of initial |Γ|.

2Window size affects the tradeoff between the number of remaining
violations |Γ| after global optimization and the runtime of global
optimization. Our studies of different window sizes (i.e., z.w ranging from
40 sites to 55 sites and z.h ranging from five cell row heights to 11 cell row
heights) find that for a sample design (jpeg) a width of 47 sites and a height
of nine cell row heights empirically achieves a good outcome (< 10% of
initial |Γ|) with relatively small runtime (< 30 minutes). We therefore use
this window size in all of our reported experiments.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

We evaluate DFPlacer using two open-source designs (aes *,
jpeg *) [16], an ARM Cortex M0 without memories (m0 *) and
a 3×ARM Cortex M0 without memories (m0x3 *). We synthesize
these testcases from RTL, and perform P&R with an abstracted
7nm dual Vt library. Our RTL-to-layout flow uses Synopsys Design
Compiler H-2013.03-SP3 [18] and Cadence Encounter Digital
Implementation System XL 13.1 [12] for logic synthesis and P&R,
respectively. All experiments are performed with 40 threads on a
2.6GHz Intel Xeon E5-2690 dual-CPU server. In principle, the
number of threads could be as large as the number of layout
windows.

TABLE II
TESTCASES USED IN THE EXPERIMENTS.

Design #Inst LVT Util. WL Area WSS WHS
(%) (%) (µm) (µm2) (ps) (ps)

m0 nd 8260 52 77 114685 7668 38 0
aes nd 12147 54 78 142294 8894 90 0

m0x3 nd 27248 56 80 392540 24463 126 0
jpeg nd 47948 51 77 694624 49629 12 0
m0 d 8238 51 77 116866 8668 93 1
aes d 12491 54 80 150632 10596 58 0

m0x3 d 26690 55 79 409579 27400 107 0
jpeg d 48317 52 77 764738 55824 13 0

Libraries and design rules. We use a prototype 7nm standard-cell
library from a leading IP provider. Since our design enablement
for the 7nm technology is missing detailed BEOL technology
information such as RC values and BEOL stack options, we scale
the library to use a 28nm BEOL stack, following the methodology
described in [3]. The site width and height are 0.136µm and 0.9µm;
these values correspond to of the 28nm BEOL information. For
design rules, we set the OW, IW1 and IW2 rules as four site widths.
To check for DDA and OW violations, we pre-characterize all pairs
of standard cells in the 7nm library. The library has 62 standard
cells and the total number of pairs is 15376 (= 62×62×2×2),
including cell flipping. For the standard cells without dummy poly
gate, 7172 pairs out of the 15376 pairs violate the DDA constraint,
and these pairs require at least one site space. Similarly, with the
4 site widths for OW, 280 out of the 15376 pairs violate the OW
constraint, and such pairs also require one site space.3

Tradeoff between area/wirelength and DRVs. Table II shows
the testcases used in our experiments. LVT, WSS, WHS and WL
respectively indicate the portion of LVT cells, the worst hold and
setup slacks, and wirelength. We assign Vt to cells uniformly to
create more IW1 and IW2 violations. We use two kinds of libraries:
(i) without dummy poly gates (CWOD) and (ii) with dummy poly
gates (CWD). CWD is designed with dummy poly gates inserted
to avoid interactions between cells which create DDA violations.
For the CWD library, cell width is increased by one poly pitch
compared to the CWOD library. The suffixes * d and * nd indicate
that the designs are implemented with CWD and CWOD libraries,
respectively. The same initial netlists are used for both * d and
* nd. While comparing * d and * nd designs, we observe that the
average wirelength and area overhead of designs implemented using
libraries with dummy poly gates are 7% and 14%, respectively. In
terms of DRVs, * nd testcases have 134%∼176% more DRVs as
reported in the fourth column of Table III.

3Based on our OW rule and library, all pairs of standard cells that violate
OW constraints require only one site space. However, depending on the OW
rule and library, some pairs of standard cells could require two or more site
spaces.

B. Experimental Results

Table III summarizes the number of DRVs, the worst setup
slack, worst hold slack, ∆wirelength, maximum ∆location, average
∆location, the number of moved cells and runtime. Our DFPlacer
fixes more than 99% of initial violations in runtime that is
reasonable for practical contexts. From a timing perspective, ∆WSS
(i.e., final WSS - init WSS) ranges from −19ps to 68ps, but all final
designs have no negative WSS. Similar to WSS, ∆WHS ranges
from −2ps to 0ps. The timing impact is small since most of the
cells are moved within a given small perturbation range. Some cells
can be moved more than 20 sites (i.e., 0.136 × 20 = 2.72µm)
from their initial locations due to the accumulated displacement in
the iterative local optimization. However, those cells are less likely
to be in the most critical path, which is how the WSS or WHS
would worsen. Also, the positive ∆WSS implies that there is room
to improve timing, and that we could potentially co-optimize the
timing along with DRV fixing in detailed placement legalization.
This is a direction of ongoing work.

On the other hand, DFPlacer increases wirelength up to 3%.
The accumulated displacements of cells and the limited pin access
for the standard cells in N10 could be causes of this wirelength
increase. Between * nd and * d testcases, the ∆WL% of * nd
cases is similar or slightly larger. We believe that this is because
IW violations are harder to fix compared to the OW and DDA
violations, since the constraints are more complex. The rate at which
the number of IW violations reduces is slower than that for OW and
DDA violations. Also, since the CWD library cells are larger than
the CWOD library cells, the displacement of cells in * d cases
might have more impact on the wirelength increase. Therefore, %
WL increase of * d cases is smaller in general, but not necessarily
always less than that of * nd cases.

Columns Max. ∆loc. and Avg. ∆loc. show maximum and average
cell displacement, respectively. We observe that the average cell
displacement for all designs is up to 0.70µm, which is ∼5 sites’
width. The maximum displacement is up to 8.99µm for jpeg nd.
For other designs, the maximum displacement is similar to the half-
perimeter of the perturbation range used in the global optimization
(2.888 = 0.9 · 2 + 0.136 · 8 microns).

When we compare the results of designs with CWOD and CWD,
we see a tradeoff between area and the number of DRVs (and
runtime). We observe that the area overhead of using cells with
dummy poly gate is 14% on average (up to 19%). However, the
number of DRVs decreases by 61% on average (up to 64%). This
affects the runtime of detailed placement legalization.

Figure 7 shows the remaining number of DRVs (%) versus
runtime (sec). Each dot stands for an iteration of the optimization
and the third iteration points are marked with diamond-shaped
markers. During the global optimization, which includes first,
second and third iterations, the remaining violations drop quickly;
∼90% of DRVs are fixed in most of the designs during the global
optimization. The runtime of the global optimization phase still
increases with the problem size. However, with added computing
resources to run windows of cells in parallel, the runtime can be
further reduced. After the third iteration, when entering into local
optimizations, the rate of decrease of the number of DRVs becomes
much lower, implying that DFPlacer spends considerable time to
fix the last few DRVs. This is because these last DRVs cannot
be solved with small window sizes and perturbation ranges in the
global optimization; thus, DFPlacer tries to resolve them in the local
optimization by increasing window sizes and perturbation ranges.
The poor scaling of MILP solution versus instance size leads to the
observed run times.

Figures 8(a) and 8(b) respectively show layout snapshots from the

TABLE III
RESULTS WITH #VIOLATIONS, WORST SETUP SLACK, WORST HOLD SLACK, ∆WIRELENGTH, MAXIMUM ∆CELL LOCATION, AVERAGE ∆CELL LOCATION, #CHANGED

CELLS AND RUNTIME.

Design IW #Vio. DDA/OW #Vio. WSS (ps) WHS (ps)
∆WL (%) Max. ∆loc. Avg. ∆loc. #Changed cells (%) CPU total (sec)

Init Final Init Final Init Final Init Final (µm) (µm) Global Total
m0 nd 926 11 1611 14 38 83 0 0 2.79 2.89 0.56 4489 (54%) 768 2820
aes nd 1771 16 1900 18 90 71 0 -1 3.42 2.89 0.52 5939 (49%) 787 2992

m0x3 nd 3514 17 4230 48 126 113 0 0 2.90 3.02 0.51 12752 (47%) 957 6897
jpeg nd 4056 29 12024 135 12 22 0 0 2.30 8.99 0.70 24169 (50%) 1788 11983
m0 d 988 10 0 0 93 85 1 0 3.04 2.89 0.57 2996 (36%) 161 434
aes d 1566 11 0 0 58 80 0 0 3.10 2.89 0.54 3852 (31%) 425 1207

m0x3 d 2810 27 0 0 107 105 0 -2 2.14 2.89 0.58 9340 (35%) 517 1336
jpeg d 6296 43 0 0 13 81 0 0 -0.57 3.02 0.49 12244 (27%) 954 1401

UCSD VLSI CAD Laboratory 8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000

Re
m
ai
ni
ng

 v
io
la
tio

ns
 (%

)

Runtime (sec)

m0_nd
aes_nd
m0x3_nd
jpeg_nd
m0_d
aes_d
m0x3_d
jpeg_d

Fig. 7. Remaining violations vs. runtime. Each dot indicates an iteration;
after the third iteration, local optimization is performed. The diamond-shaped
markers represent third-iteration points.

Fig. 8. (a) Layout with DRVs before optimization. (b) Layout without
DRVs after optimization.

pre- and post-detailed placement legalization phases. In Figure 8(a),
we highlight the cells that violate OW (green color), DDA (light
green color), IW1 (yellow color) and IW2 (brown color) rules.
Figure 8(b) shows the displacement of corresponding cells in post-
detailed placement legalization. We observe that our DFPlacer fixes
the DDA violation by flipping one of the violating cells; the IW1,
IW2 and OW violations are all resolved by moving the violating
cells or their neighbor cells within and/or across rows.

V. CONCLUSIONS

In this work, we have proposed a scalable detailed placement
legalization flow for complex FEOL constraints arising at the
N10 foundry node. These include drain-drain abutment, minimum
implant width, and minimum OD jogging rules. Given initial
(timing-driven) placements, our DFPlacer fixes 99% of DRVs

with 3% increase in wirelength and minimal impact on timing. We
feel that our use case of fixing all but a few tens of violations,
with a highly parallelizable two-iteration strategy, is a good practical
tradeoff between runtime complexity and DRV fixing. Further, the
level of DRV fixing achieved by DFPlacer is encouraging, given
that our default experimental configuration makes no attempt at
“correctness by construction”. Using OpenMP, we confirm that our
flow is scalable via a distributed optimization strategy. Additionally,
we study an area-DRV tradeoff between two types of standard-cell
library strategies, namely, with and without dummy poly gates.

Our future work includes (i) timing and wirelength-driven
placement legalization, which we believe can be enabled by more
compact optimization formulations along with a more restricted
perturbation range for each cell; (ii) a “smart ECO” method for
the few DRVs that remain after global placement legalization;
and (iii) further investigation of the scalability of our partitioning-
based distributed optimization approach. Finally, we believe that our
present placement-centered work may converge with such recent
routing-centered works as [3], leading eventually to an “optimal
detailed P&R” that can shield physical design teams from impacts
of increasing ground rule complexity at N10 and beyond.

REFERENCES

[1] P. Gupta, A. B. Kahng and C.-H. Park, “Detailed Placement for
Improved Depth of Focus and CD Control”, Proc. ASPDAC, 2005,
pp. 343-348.

[2] P. Gupta, A. B. Kahng and C.-H. Park, “Manufacturing-Aware Design
Methodology for Assist Feature Correctness”, Proc. SPIE, 2005, pp.
131-140.

[3] K. Han, A. B. Kahng and H. Lee, “Evaluation of BEOL Design Rule
Impacts Using an Optimal ILP-Based Detailed Router”, Proc. DAC,
2015.

[4] A. B. Kahng and H. Lee, “Minimum Implant Area-Aware Gate Sizing
and Placement”, Proc. GLSVLSI, 2014, pp. 57-62.

[5] A. B. Kahng, I. L. Markov and S. Reda, “On Legalization of Row-
Based Placements”, Proc. GLSVLSI, 2004, pp. 214-219.

[6] Y. Du and M. D. F. Wong, “Optimization of Standard Cell Based
Detailed Placement for 16nm FinFET Process”, Proc. DATE, 2014,
pp. 1-6.

[7] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard
Cell Placement”, Proc. ICCAD, 2000, pp. 165-170.

[8] S. Li and C.-K. Koh, “Mixed Integer Programming Models for Detailed
Placement”, Proc. ISPD, 2012, pp. 87-94.

[9] S. Li and C.-K. Koh, “MIP-based Detailed Placer for Mixed-size
Circuits”, Proc. ISPD, 2014, pp. 11-18.

[10] P. Ramachandaran, A. R. Agnihotri, S. Ono, P. Damodaran, K. Srihari
and P. H. Madden, “Optimal Placement by Branch-and-Price”, Proc.
ASPDAC, 2005, pp. 337-342.

[11] R. Aitken, personal communication, March 2015.
[12] Cadence SOC Encounter User Guide, http://www.cadence.com
[13] IBM ILOG CPLEX. www.ilog.com/products/cplex/
[14] LEF DEF reference 5.7. http://www.si2.org/openeda.si2.org/projects/

lefdef
[15] Si2 OpenAccess. http://www.si2.org/?page=69
[16] OpenCores: Open Source IP-Cores, http://www.opencores.org
[17] OpenMP Architecture Review Board, “OpenMP Application Program

Interface, Version 3.1”.
[18] Synopsys Design Compiler User Guide, http://www.synopsys.com

