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Abstract

The traditional analysis of signal delay in a trans-
mission line begins with a lossless LC representation,
which yields a wave equation governing the system re-
sponse; 2-port parameters are typically derived and
the solution is obtained in the transform domain. In
this paper, we begin with a distributed RC line model
of the interconnect and analytically solve the result-
ing di�usion equation for the voltage response. A new
closed form expression for voltage response is obtained
by incorporating appropriate boundary conditions for
interconnect delay analysis. Calculations of 50% and
90% delay times for various cases of interest (e.g.,
open-ended RC line) give substantially di�erent es-
timates from those commonly cited in the literature,
thus suggesting revised delay estimation methodolo-
gies and intuitions for the design of VLSI intercon-
nects. The discussion furthermore provides a unifying
treatment of the past three decades of RC intercon-
nect delay analyses.

1 Overview

Delay analysis of VLSI interconnections is a key el-
ement in timing veri�cation, gate-level simulation and
performance-driven layout design. The standard ap-
proach to modeling interconnect delay has been based
on a simple lossless LC model which considers only
inductances (L) and capacitances (C). For this loss-
less model, the relationship between v and i gives rise
to a second-order partial di�erential equation of the
form [9]:
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and the solution to this wave equation is of the form

v(x) = A1e
�x + A2e

��x (2)
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where � � propagation constant � |!
p
lc (l and c are

the inductance and capacitance per unit length, and
! is the wave frequency).

One easily extends this model to lossy (RLC) in-
terconnects by incorporating a series resistance. The
same equations obtained for the lossless model can
be used, with ZL = R + |!L = |![ R|! + L]; i.e.,

ZL = |!L0 where L0 = R
|! + L is the new inductance

value. Similarly, one may incorporate a conductance
G via ZC = G + |!C = |![ G

|!
+ C]; i.e., ZC = |!C0

where C0 = G
|! +C is the new capacitance. The same

solution derived for the lossless model can incorporate
the new L0 and C0 values to capture the attenuation
factor in lossy lines.

Using the solution (2) to the wave equation, and
the characteristic impedance of the line, one may treat
the interconnect line as a 2-port and obtain equations
for voltage and current at the terminal side of the 2-
port in terms of voltage and current at the source side.
This yields the 2-port matrix parameters, e.g., ABCD
parameters. To obtain the transient time-domain re-
sponse of an interconnect line, the standard approach
has been to calculate the response in the transform do-
main using 2-port parameters, and then apply inverse
transforms to obtain the response in the time domain.
We call this the LC analysis, or wave equation, ap-
proach. Since it may be complicated to apply the in-
verse transforms, various approximations are typically
made which simplify the resulting expressions for the
time-domain response.

For the well-studied case of an RC transmission
line, the traditional LC analysis is extended to an
RLC analysis after which L is set to zero. But by
contrast, if we initially model the interconnect as a
pure distributed RC line, we obtain a di�usion equa-
tion (or heat equation) from which the solution for
the transient response, depending on boundary condi-
tions, can be calculated analytically. This RC-based
delay analysis approach, and its implications, are the
subject of the present paper.

Our motivation for adopting the RC-based delay
analysis is as follows. For previous generation inter-
connects, such as for PCB, the resistance per unit
length (r) is considerably smaller than the inductive
impedance (!l), i.e., r � !l, so that the conventional
LC-based analysis seems reasonable. However, with
small feature sizes of thin-�lm and IC interconnects,
we now �nd that r � !l up to frequencies of O(1)



GHz, and even at frequencies above O(1) GHz, both
terms are of comparable magnitude [13]. Thus, in
the present regime of highly resistive interconnects, it
seems natural to begin with an RC, rather than LC,
model in obtaining the delay estimate.

While the RC-based perspective and the resulting
di�usion equation have been noted by many authors,
no closed form expression for the voltage response has
been derived using appropriate boundary conditions.
Indeed, this is a central contribution of our work. Our
analysis based on the di�usion equation yields a simple
analytical expression for the voltage response. Fur-
thermore, though the solution of the di�usion equa-
tion does not refer directly to any wave propagation
mechanism, we may yet consider re
ections at discon-
tinuities through the analogy of voltage propagation
by electromagnetic vibrations (waves) to the propaga-
tion of heat waves [5].

To achieve a comparison with previous works, we
study the case of an open-ended RC line with ideal
source, as well as other idealized cases which have been
treated in the literature. Delay estimates calculated
from our di�usion equation analysis are substantially
di�erent from previous delay estimates, and we be-
lieve that this discrepancy may prove signi�cant for
future e�orts in interconnect modeling and design. We
furthermore extend our delay analysis to the case of
arbitrary source and load impedances by considering
re
ections at the source and load. Finally, our analy-
sis a�ord delay calculations at arbitrary locations on
the distributed RC line.

2 Previous Delay-Time Approxima-
tions for an RC Line

2.1 Lumped Models

Approximating the interconnect resistance and ca-
pacitance by lumped values R and C gives the time-
domain response v(t) = V0(1� e�

t
RC ) where V0 is the

input voltage applied. With this model, the delay to
reach the 63% voltage threshold is 1:0RC.
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Figure 1: T and � elements used in modeling a
distributed RC line.

Many works (e.g., [23, 24]) model a distributed
RC interconnect using a simple T or � con�guration,
which gives a �rst-order \lumped-distributed" model
or a single-pole response. The transfer function (or
Laplace transform of the impulse response) for a T or
� con�guration (Figure 1) is given by

H(s) =
V2(s)

V1(s)
=

1

1 + sRC
2

This results in a lumped circuit element with time
constant T = RC

2 :

2.2 Distributed Models

2.2.1 Transient Response Using Laplace
Transform

The ABCD parameters of a distributed RC transmis-
sion line are [9]:

�
V1(s)
I1(s)

�
=

�
cosh(�h) Z0sinh(�h)
1
Z0

sinh(�h) cosh(�h)

��
V2(s)
I2(s)

�

where �h =
p
sRC =

p
j!RC . V1 and V2 corresponds

to the voltages at source and load end of the line re-
spectively.

The corresponding open-ended transfer function is

H(s) =
1

cosh
p
sRC

(3)

Wilnai [25] considers the Laplace transform of the
step response with magnitude V0 for an open-ended
distributed RC line,

V2(s) =
V0

s cosh
p
sRC

(4)

with R and C respectively denoting the lumped val-
ues of the line resistance and capacitance. Equa-
tion (4) is the basis of a number of analyses which
are derived from the 2-port model. Using cosh x =
ex+e�x

2 and making the approximation coshx � ex

2 for

Re
p
sRC � 1 (i.e., the high-frequency leading edge of

the step input), Wilnai obtains the approximate time-
domain response

v2(t) � 2V0[1� erf(

r
RC

4t
)] (5)

v2(t) � V0[1� 1:366e�
2:5359t
RC + 0:366e�

9:4641t
RC ] (6)

for the cases t� RC and t� RC, respectively. Using
Equation (6), Wilnai obtains a value of 1:02RC for the
90% delay time and a value of 0:37RC for the 50%
delay time. By writing

1

s cosh
p
sRC

=
1

s
� 2

e
p
sRC(1 + e�2

p
sRC)

(7)

and using 1
1+e�2

p
sRC

=
P1

n=0(�e�2
p
sRC)n; Mattes

[16] has recently obtained a more precise solution of
Equation (4) which yields estimates of 1:06RC for the
90% delay time, and 0:37RC for 50% delay time.

Peirson and Bertnolli [18] have also calculated the
transfer function of an open-ended distributed RC
line; by using reciprocal time domain analysis they
�nd approximate time domain expressions for the
transfer function. From these impulse responses, we
may easily derive the system responses for unit step
input using Laplace transform tables:

v2(t) � 2V0[1� erf(
q

RC
4t ) (t� RC) (8)



v2(t) � V0
4
p
RC
� [1� e�2:467

t
RC ] (t� RC) (9)

Sakurai [20] uses a similar 2-port model and obtains
the voltage response as

v2(t) = V0(1� 1:273e�2:467
t

RC + 0:424e�22:206
t

RC )
(10)

These works, particularly [25], have had great in
u-
ence on the literature. For example, Saraswat and Mo-
hammadi [21] use the results of [15, 25] to obtain their
rise time estimates. Bakoglu and Meindl [4] also cite
Wilnai's derivation, and write: \Under step-voltage
excitation, the times (T ) required for the output volt-
age of distributed and lumped RC networks to rise
from 0 to 90 percent of their �nal values are 1:0RC
and 2:3RC, respectively." ([4], p. 904). The authors
of [4] go on to state a \very good approximation for
delay":

T = 1:0RintCint + 2:3(RtrCint+ RtrCL + RintCL)

� (2:3Rtr + Rint)Cint (11)

(Rint and Cint are respectively the interconnect resis-
tance and capacitance, Rtr is the output resistance of
the driving transistor and CL is the load capacitance).
This last expression (11) has been frequently invoked
in the literature (see [1], [22] or the book [3]).

Interestingly, the voltage response for a step input
using the 2-port model has been rederived many times
in the literature. For example, Antinone and Brown
[2] express cosh(

p
sRC) as an in�nite product series

and then consider only the �rst three terms of the
product expansion. This is not a good approximation
because the coe�cients of s and s2 are not exact, and
depend heavily on the number of terms used in the
product expansion. Mey [17] noted the crudeness of
this approximation and proposed an in�nite partial
fraction expansion, thus obtaining the same solution
as Sakurai. Ghausi and Kelly [11] are yet another
group who earlier published the identical analysis.

The common feature of all these works is that they
use the 2-port transfer matrix of the distributed RC
line to obtain their respective time-domain estimates
of the transient response. The 2-port parameters for
the distributed RC line are obtained from the solution
of the wave equation (2) for v and i (see, e.g., [9]). But
as we discuss in Section 3 below, voltage or current in
a pure distributed RC line obeys a di�usion equation.

2.2.2 A Previous Time-Domain Analysis

Finally, a solution which uses time-domain analysis is
that of Kaufman and Garrett [15], who formulate a
distributed RC model for interconnect and derive a
di�usion equation for voltage on the line. However,
to obtain the transient response to a step input, [15]
makes the simplifying assumption v(x; t) = f(x) �g(t),
namely, separability of the voltage response into sep-
arate functions of time and position; this leads to a
complicated and special-case solution

v2(t) = 1� 4

�

1X
n=0

(�1)n
2n+ 1

e�((2n+1)�=2)2t=RC (12)

Considering only the �rst few terms of the series yields

v2(t) � (1� 1:273e�2:467
t

RC + 0:424e�22:206
t

RC ) (13)

This expression is di�erent from that of Wilnai or
Peirson, but is identical1 to that given by Sakurai
(Equation 10). The book of Ghausi and Kelly [11]
gives an analysis using the same separability assump-
tion. These previous delay approximations are sum-
marized in Table 1 below.

3 The Di�usion Equation Analysis

3.1 Obtaining the Di�usion Equation
from the Distributed RC Model

c(x) dx c(x) dx

x

i(x,t) i(x+dx,t)          r(x) dx

x+dx

          r(x) dx

v(x+dx,t)v(x,t)

Figure 2: Lumped approximation for �x in a
distributed RC line.

The di�usion equation for voltage in a distributed
RC line can be derived from �rst principles as follows
(see [15]). Consider a lumped approximation for �x
of the line, as shown in Figure 2. By applying simple
nodal equations at the nodes x and x+�x, we obtain

i(x; t) = c(x)�x
@v(x; t)

@t
+ i(x+�x; t)

v(x; t) = r(x)�xi(x +�x; t) + v(x +�x; t)

where r(x) and c(x) are resistance and capacitance
per unit length. As �x ! 0, and for constant r(x)
and c(x), the above equations reduce to the di�usion
equation

rc
@v

@t
=

@2v

@x2
: (14)

The solution of Equation (14) can be obtained by
restricting it to the set of solutions of the form v( xp

t
)

using the substitution variable � = x
p

rc
2t [14]. This is

the appropriate substitution for a parabolic equation.
We obtain

v(�) = C1

Z �

0
e�

�2

2 d� +C2 (15)

One can also obtain this solution directly from the
heat kernel for the di�usion equation [7]. This should
be contrasted with the solution of [15], which must
assume the separable form for v(x; t). Of course, the
solution we obtain will be highly dependent on the
boundary conditions that apply; in particular, we are
interested in the well-studied case of the open-ended
distributed RC line.

1In the taxonomy that we present below, the result of Kauf-
man and Garrett is characterized as \approximate" because
theirmethodmust assume the special form of the di�usion equa-
tion solution. On the other hand, Sakurai's result is \exact"
with respect to the distributed RC 2-port analysis.



Method Accuracy/ Time-Domain
Regime Voltage Response

Simple Approximate V0(1 � e�
t

RC )
Lumped Model

Wilnai's Small t 2V0(1� erf(
q

RC
4t ))

2-port Model
Large t V0(1 � 1:366e�2:5359

t
RC + 0:366e�9:4641

t
RC )

Mattes's Exact

2-port Model 2V0
P1

n=1 (�1)n�1
�
1� erf(2n�12

q
RC
t )
�

Peirson's Small t 2V0(1� erf(
q

RC
4t ))

2-port Model� Large t V01:273
p
RC(1� e�2:467

t
RC )

Sakurai's Exact but
2-port Model approximated V0(1� 1:273e�2:467

t
RC + 0:424e�22:206

t
RC )

to three terms
Kaufman's Heuristic derivation
Di�usion but approximated V0(1� 1:273e�2:467

t
RC + 0:424e�22:206

t
RC )

Equation Model to three terms
Antinone/Brown's Approximate

2-port model V0(1 � 1:172e�2:467
t

RC + 0:195e�22:206
t
RC � 0:023e�61:685

t
RC )

Our Di�usion Exact V0(1 � erf(
q

RC
4t ))

Equation Model

Table 1: Voltage response of an open-ended distributed RC line under a step input excitation of
magnitude V0. (�) Response calculated from the transfer function in [PB69].

3.2 Boundary Conditions

For the distributed RC line, we derive the two
boundary conditions necessary to solve Equation (15)
as follows.

Boundary Condition 1: At t = 0, the line is quiet
and v(x; t) = 0 for all x, i.e.,

C1

r
�

2
+ C2 = 0:

Therefore,

C2 = �C1

r
�

2
(16)

Note that this boundary condition applies to every
new wave that is born due to re
ection.

Boundary Condition 2: The second boundary
condition is obtained from the structure of the in-
put applied at the front end of the transmission line
(x = 0) and in terms of the rise-time value, trise. No-
tice that the voltage at x = 0 depends on the source
impedance, ZS , and the characteristic impedance of
the line, Z0, since this structure acts as a voltage di-
vider. Therefore the voltage at the beginning of the
line, i.e at x = 0, in the transform domain is given by

V1(s) = (
Zin

Zin + ZS
)
V0

s
(17)

where Zin is the input impedance looking into the in-
terconnect line.

At a given rise-time (t = trise), the voltage
V1(0; trise) at the front end of the transmission line can
be obtained from the time domain representation of
Equation (17). Let �riseV0 be this voltage at the rise-
time, i.e., V1(0; trise) = �riseV0, where 0 < �rise � 1.

Substituting into Equation (15) and evaluating at
x = �, with � tending to 0, we obtain

�riseV0 = C1

Z �
p

rc
2trise

0

e(�
�2

2
)d� + C2 (18)

3.3 Solution of the Di�usion Equation

We use (16) and (18) to solve for C1 and C2 :

�riseV0 = C1

Z �
p

rc
2trise

0

e(�
x2

2
)dx�C1

r
�

2

yields

C1 = �riseV0 � 1

[
R �p rc

2trise

0 e�
x2

2 dx�p�
2 ]

from which

V (�) = ��riseV0[1� erf(
�p
2
)] (19)



where � = 1
[1�erf( �

2

p
rc

trise
)]
:

To achieve the case of an ideal step input, the
boundary condition at x = 0 should be evaluated
for trise tending to zero and �rise tending to 1, i.e.,
we let trise = " with " ! 0. Then, the error func-
tion argument in the expression for � will tend to
zero, since � and " both tend to zero with the nu-
merator of higher degree than the denominator, i.e.,
lim�!0;"!0

�
2

p
rc
" = 0: Therefore, � = 1 and the di�u-

sion equation solution reduces to

V (�) = V0[1� erf(
�p
2
)]: (20)

Observe that the same result is obtained when the
input corresponds to an ideal source, i.e., ZS = 0,
V1(s) =

V0
s , with voltage at x = 0 constant for all t

and equal to V0. In this case, V (0; t) = V0u(t) and
using this condition in Equation (15) yields

V0 = C1

Z �=x
p

rc
2t
=0

0

e�
x2

2 dx+C2

from which C2 = V0 and

V (�) = V0[1� erf(
�p
2
)]: (21)

This result is the same as Equation (20), as we expect.

The same Equation (20) can also be obtained by
using the Boundary Condition 2 and another bound-
ary condition which captures the open end of the line
[14]. We believe that the voltage on the line will better
obey Equation (20) near the source than near the load;
ongoing experimental e�orts are aimed at validating
this belief. A comment is in order: the two boundary
conditions we use are discontinuous (at x = 0, t = 0),
but this discontinuity smooths immediately and the
solution is still valid.

3.4 Threshold Delay Calculations Using
Di�usion Equation Model

We now proceed with delay calculations for a case
that has been of interest throughout the literature,
namely, the open-ended distributed RC line with an
ideal source. Recall that with an ideal step input,
� = 1 in (19), the solution reduces to that given in
(20). The equation for the voltage response for an
ideal source is obtained in Equation (21). Using error
function tables, we easily calculate the time for a sig-
nal applied at the input of an interconnect to reach a
given threshold voltage at distance x (on the line) from
the input terminal. For example, our di�usion equa-
tion solution implies 2:18RxCx for 63% delay time.

One can see that the delay times for the di�usion
equation model are substantially di�erent from those
commonly employed in the literature, i.e., the Elmore
delay (for a single RC line) of tx(63%) = RxCx

2 . This
di�erence would certainly a�ect standard delay esti-
mates: for example, minimum clock skew routing re-
sults which use lumped models will be a�ected when

modi�ed to consider the new delay values obtained
above. We emphasize that our result does not im-
ply that the previous LC-based approach is wrong.
Rather, our work simply shows that solving the di�u-
sion equation for RC interconnects yields a very dif-
ferent perspective on delay calculations. A careful ex-
perimental investigation is needed to determine the
respective regimes for which these models are valid.
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Figure 3: Unit step response for lumped RC
model and various distributed RC models. Note
that Wilnai's and Kaufman's models are not
identical: Kaufman's (� Sakurai's) model gives
a non-monotone response. Also note that the re-
sponse in Peirson et al.'s model is dependent on
the RC constant; we have plotted the response
for RC = 1.

4 Extensions of the Di�usion Equation
Analysis

We close our development by extending the basic
result of Equation (20) in two ways: (i) introducing
an analysis of re
ections, and (ii) incorporating non-
zero time of 
ight into the analysis.

4.1 Analysis of Re
ections

Recall that the total voltage on the line is given by
the summation of the incident wave and all re
ected
wave components. The re
ections are due to disconti-
nuities, e.g., at the source (S) and load (L). In other
words,

~VTot(�) = VI (�) +
1X
i=1

~VRi
(�) (22)

where VI (�) � voltage corresponding to the incident

wave and ~VRi
(�) � voltage corresponding to the ith

re
ected wave. Neglecting the time of 
ight, at any
time the expressions for any individual ~VRi

(�) will be
of the same form as the incident voltage expression
VI(�), but with di�erent initial voltage. The solution
for VI(�) is given by (19) in general, and by (20) for



an ideal step input. We use these expressions to cal-
culate the total voltage on the line for general source
and load impedances. Note that since ZS and ZL are
in general complex, we must treat VTot(�) and VRi

(�)

as phasors ~VTot(�) and ~VRi
(�) which are functions of

time (t), distance (x) and frequency (!). If ~VTot(�)
is a phasor, the delay calculations should compare the
magnitude of total voltage (i.e., absolute value of the

phasor, j~VTot(�)j) with the threshold value of inter-
est. Luckily, the assumptions in typical cases of inter-
est, while in some ways unrealistic, make the analysis
tractable and a�ord lower bounds for the delay esti-
mates.

In the general case, the re
ection coe�cients are
�S = ZS�Z0

ZS+Z0

and �L = ZL�Z0

ZL+Z0

. The �rst re
ection at
the load yields

~VR1
(�) = �LVI(�);

the second re
ection at the source yields

~VR2
(�) = �S�LVI(�);

and in general the ith re
ection gives ~VRi
(�) =

�
i
2

L�
i
2

SVI(�) for i even, with the case of i odd being
analogous. Using

~VTot(�) = VI(�) +
1X
i=1

~VRi
(�)

= VI(�)[1 + �L + �S�L + : : :+ �
i
2

L�
i
2

S + : : :]

and separating odd and even terms of the summation,
we obtain the general solution

~VTot(�) = ��rise(
1 + �L

1� �L�S
)V0[1� erf (

�p
2
)]

The form of this expression, i.e., as a sum of error
function terms, is quite intuitive.

We may again consider examples of source and load
impedances which have received particular attention
throughout the literature.2

Case 1: Finite-length, open-ended RC transmission
line with ideal source.

With ZL = 1 (i.e., �L = 1), an ideal source
(ZS = 0, �S = �1 and �rise = 1) implies that all
of the input voltage appears at x = 0. Recalling that
~VTot(�) = VI(�) +

P1
i=1

~VRi
(�); we see that with re-


ection coe�cients equal to +1 or �1, all re
ections
will cancel. Thus, the summation term in the equa-
tion disappears and we obtain the same result as in
Equation (21):

~VTot(�) = VI(�) = V0[1� erf (
�p
2
)]

2Note that �L and �S will always have an implicit frequency
dependence, and therefore j~VTot(�)j will also depend on the
frequency.

Case 2: Finite-length, open-ended RC transmission
line with perfectly matched source.

With ZL =1 (i.e., �L = 1) and source impedance
ZS = Z0 (i.e., �S = 0), there is only the single (initial)
re
ection at the load. Thus,

~VTot(�) = VI (�) + ~VR1
(�)

= 2[��riseV0(1� erf (
�p
2
))]

In practice, the open-ended approximation of an in-
terconnect is often used since the input impedance of
MOS devices is typically high compared to the char-
acteristic impedance of the line.

4.2 Non-Zero Time of Flight

Last, we note that the derivation of Equation (22)
neglected the time of 
ight, Tfl , and used identical ex-
pressions for incident and re
ected waves. For a max-
imum on-chip interconnect of length approximately
1cm, the time of 
ight will be around 0:1ns [6]. How-
ever, the length of a typical single interconnect seg-
ment will be much smaller (on the order of 0:01cm)
and Tfl will be on the order of picoseconds. Since de-
lays for typical operating frequencies of O(1) GHz are
of the order of 0:1ns [8], one may reasonably neglect
Tfl in delay calculations, as has usually the case in the
literature. Nevertheless, Tfl becomes signi�cant with
shorter rise or delay times, or with longer intercon-
nects (e.g., for large die or MCM substrates). Here,
we show that our analysis can extend to non-zero Tfl.
The key observation is that taking Tfl into account
will only increase our delay estimates, and these esti-
mates are already larger than those in the literature.

To account for a non-zero time of 
ight, we simply
record an additional displacement of Tfl for each suc-
cessive re
ection. The total voltage on the line after
the ith re
ection is

~VTot(x; t) = VI(x

r
rc

2t
) +

1X
i=1

~VRi
(x

r
rc

2(t� iTfl)
)

For example, if we consider non-zero Tfl in Case 2
of the previous subsection, the 90% delay time for a
line of length h is obtained as follows.

VI (h

r
rc

2t
) + ~VR1

(h

r
rc

2(t� Tfl)
) = 0:9V0

which implies

erf (
h

2

r
rc

th
) + erf (

h

2

r
rc

th � Tfl
) � 1:1

As expected, non-zero Tfl will increase the 90% de-
lay time. The Case 2 analysis provides an upper
bound on the voltage response, so the actual delay
time is lower-bounded by this equation. One could
solve the equation through an iterative process, start-
ing from a value that is computed assuming Tfl = 0.
For other cases, e.g., Case 1 above, Tfl > 0 does not
a�ect the previous analysis since there are no re
ec-
tions.



5 Summary
A survey of three decades of interconnect delay

analyses reveals that the analysis of signal delay in
a transmission line is traditionally performed starting
with a lossless LC representation and a wave equa-
tion for the system response; the solution is obtained
in the transform domain via 2-port parameters. In
this paper, we begin with a distributed RC line model
of the interconnect, which yields a di�usion equation
for the voltage response. We have given a new ana-
lytic solution of this equation incorporating appropri-
ate boundary conditions, and have obtained estimates
for 50% and 90% delay times at arbitrary locations on
the interconnect line that di�er substantially from the
delay estimates currently employed in the literature.
Beyond its many implications for revised delay estima-
tion methodologies (e.g., for performance-driven rout-
ing tree construction, minimum-skew clock distribu-
tion, or bu�er placement), our time-domain solution
also yields new intuitions regarding design objectives
for VLSI interconnects. Our approach also handles
the case of non-zero Tfl .

Our result does not imply that the previous LC-
based approach is wrong, but rather shows that solv-
ing the di�usion equation for RC interconnects can
provide a totally new perspective on delay calcula-
tions. Thus, we are also pursuing the central challenge
of experimentally validating both our new model and
previous delay models in various technology regimes.
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