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ABSTRACT
Quantification of three-dimensional integrated circuit (3DIC) benefits
over corresponding 2DIC implementation for arbitrary designs remains
a critical open problem, largely due to nonexistence of any “golden”
3DIC flow. Actual design and implementation parameters and
constraints affect 2DIC and 3DIC final metrics (power, slack, etc.)
in highly non-monotonic ways that are difficult for engineers to
comprehend and predict. We propose a novel machine learning-
based methodology to estimate 3DIC power benefit (i.e., percentage
power reduction) based on corresponding golden 2DIC implementation
parameters. The resulting 3D Power Estimation (3DPE) models
achieve small prediction errors that are bounded by construction. We
are the first to perform a novel stress test of our predictive models
across a wide range of implementation and design-space parameters.
Further, we explore model-guided implementation of designs in 3D
to achieve minimum power: that is, our models recommend a most-
promising set of implementation parameters and constraints, and
also provide a priori estimates of 3D power benefits, based on a
given design’s post-synthesis and 2D implementation parameters. We
achieve ≤10% error in power benefit prediction across various 3DIC
designs.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS—Design Aids

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
As the semiconductor industry nears the end of the CMOS

roadmap, product-level benefits from successive technology nodes
have decreased due to reliability, variability, power and thermal
constraints. Three-dimensional integrated circuits (3DICs) have
emerged as a promising solution to extend both the use of today’s
device and process technologies, as well as the historical Moore’s-Law
trajectory of value scaling. Eventual cost benefits of 3DIC have yet
to be quantified in a mature supply chain and high-volume production
context. However, a consensus value proposition for 3DIC has emerged
across both industry and academia, namely, power reduction benefits
(with implied reliability, cost, and user experience benefits) due to
shorter connections that are simply unachievable with 2D integration.

Current 3DICs are based on through-silicon vias (TSVs), but
integration density is limited by the pitch of TSVs, with mass
production focusing on memory-on-logic designs with relatively few
vertical connections [14]. Two emerging alternatives to TSV-based
3D integration are (i) sequential face-to-back (F2B) and (ii) fine-grain
face-to-face (F2F) integration technologies. They enable orders of
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magnitude higher integration density compared to that of TSV-based
technology, due to the extremely small size of inter-tier (vertical)
vias. For example, CEA-LETI [2] [3] has pursued a sequential 3D
integration using a low-temperature bonding process. Recent 3DIC
design literature [16] [8] has explored implications of fine-grain F2F
integration process. Figure 1 illustrates sequential F2B and fine-grain
F2F 3DIC integration.

Figure 1: 3D integration: gate-level (a) F2B, and (b) F2F [16].
To perform fast and accurate implementation-space exploration

(ISE), sometimes referred to as pathfinding [13], chip architects
and designers require accurate 3D power estimation tools. This
is especially critical with power-centric 3DIC value propositions.
Unfortunately, power estimation of 3D implementations is challenging
because (i) 3D benefit varies with netlist topologies, constraints
and implementation styles, and (ii) there are no “golden” 3D
implementation flows. To our knowledge, no tool today can accurately
predict the power benefit of 3D implementation based on netlist,
constraints, and whatever information might be available from 2D
implementation. The lack of such an estimation tool results in a
large number of iterations (often, not much better than “throwing
darts”) to identify the best set of implementation parameters and/or
constraints for 3D implementation. Only after making many attempts
in this manner can the designer gain an inkling of potential 3D
implementation benefits for a given block.

In this work, we overcome the above challenge by developing an
efficient 3D power estimation methodology, along with an accurate 3D
Power Estimation (3DPE) prediction tool. 3DPE predicts benefit, i.e.,
the “delta” in power (= reduction from 2D implementation) that will
be achieved by a given 3D flow. We experimentally confirm that 3DPE
can estimate 3DIC power reduction with error of ≤10% across a set of
testcases implemented in foundry 28nm FDSOI technology.

Our 3DPE model development includes a novel exploitation of
sensitivities of post-synthesis and post-place-and-route (SP&R) power
to wireload model (WLM) and capacitance scaling; this yields new
parameters that increase modeling accuracy.1 We also perform
a novel stress test of 3DPE by verifying that the model cannot
produce unreasonable values of estimated 3D power benefit. While
practitioners have struggled with a gap between theoretical limits of
3DIC benefit and observed benefits, our model stress test provides
some encouragement in the form of model parameter combinations that
suggest potential large 3DIC power benefits. Additional experimental
studies confirm the usability of 3DPE in model-guided implementation
(MGI), e.g., for a given design and set of constraints, 3DPE can identify
wireload model scaling, floorplan aspect ratio, target utilization, etc.

1Our models are based on the sensitivities of power to constraints and design parameters
(e.g., mix of threshold voltage types and wirelength) between 2D and 3D implementations
of the same designs, and are specific to the flow from [16]. The models must be rederived
if the tool flow or technology changes.



settings in commercial SP&R flows to obtain minimum power in the
final 3D implementation. We believe that the resulting modeling
capability can be used for both ISE and MGI across architectural and
physical implementation levels of design. We summarize our main
contributions as follows.

• To our knowledge, we are the first to develop an estimation tool
that focuses on the 3DIC value proposition of 3D power benefit.
Our 3DPE model is achieved with bounded error machine
learning techniques; it predicts delta power benefit of 3DIC with
average (resp. maximum) error of ≤0.1% (≤10%) based on
netlist, design constraints and 2D implementation metrics.

• We develop novel estimation model parameters based on the
sensitivity of synthesis and P&R outcomes to wireload model
and capacitance model scaling. This is a heretofore unexplored
approach to assessing how RTL and gate-level netlists will react
to 3D vs. 2D implementation contexts.

• We propose novel validations of our 3DPE model, including (i)
a “stress test” approach to verify that no unreasonable values of
predicted power benefit can occur, and (ii) application of 3DPE
in model-guided implementation.

• Of independent interest is a tight bound on the wirelength
benefit of 3D integration vs. 2D integration (Section 2.3),
which informs our use of WLM scaling in our modeling flow.
Also of independent interest is our observation (Section 2.2) of
qualitatively different 3DIC benefit results for the well-studied
OpenSPARC T2 design [24], after improving the enablement of
experiments starting from the 3D implementation flow of [15].

2. BACKGROUND DISCUSSION
The following subsections summarize (i) related literature; (ii) our

baseline 2D and 3D implementation flows, which replicate the flows
of [15] [16]; and (iii) a new, tight upper bound on potential wirelength
reduction in 3DIC that can inform design-space exploration.

2.1 Related Work
Previous works have addressed (i) 3DIC design and implementation

flow development, and (ii) prediction of 3DIC metrics (e.g., area,
power, wirelength). There is an interdependency between (i) and (ii)
in that a high-quality, reliable 3DIC implementation flow is needed to
obtain reliable ground truth data for modeling.

For (i), while there is no golden EDA flow for 3DIC implementation,
a number of researchers have implemented 3DICs using 2D EDA tools
and flows in conjunction with in-house 3D design tools. Franzon et al.
[17] propose a 3D design flow based on a 2D flow to implement an FFT
processor. Kim et al. [11] implement a multi-core processor based on
commercial 2D EDA tools and use in-house tools to place the vertical
interconnects (VIs). The authors verify the result through fabrication
in Tezzaron 3D technology at the 130nm node. Another 3DIC
implementation flow addresses design requirements for sequential 3D
[2] technology that permits cell-level 3D integration. Panth et al.
[15] [16] propose a design flow for sequential 3D based on commercial
EDA and in-house tools, and validate the flow on OpenSPARC T2 and
other IPs [23]. This latter flow is, we believe, the most sophisticated
and full-featured in the research literature; we have transplanted and
used this flow in our present work.

For (ii), previous works have mainly performed analytical modeling
of 3D wirelength and power. Mak and Chu [5] present a loose
theoretical upper bound on the potential wirelength improvement
possible with a 3DIC implementation of any design as compared to
its 2DIC implementation. They report that for realistic sizes of VIs, the
benefits will always be negative (-2% on average). Kim et al. [10] [12]
use Rent’s rule to predict wirelength distributions in 3DICs with two
or more dies as well as by varying the number of VIs.The authors
also derive analytical models to estimate 3D power when heights and
widths of VIs, and the number of buffers inserted into the netlist, are
varied. However, these models cannot predict the power benefit with
3D implementation when a 2D implementation already exists, since the
models do not account for IC implementation details such as floorplan
context, technology libraries, signoff corners and constraints. Toufexis
et al. [18] propose an in-built statistical prediction engine to estimate
area, performance and power, thereby enabling a fast implementation-
space exploration flow for 3DICs. The authors use an interpolation
scheme to predict power (details are not specified), with reported
maximum modeling error of ∼58%.

2.2 2D, Shrunk2D and 3D Flows
As mentioned above, the 3DIC implementation flows of [15] [16] are

currently published in the research literature. To develop our 3D power
estimation model, we use the Shrunk2D (S2D) and 3D flows from
[16] as proxies for golden 3DIC implementation. Through extensive
interactions with the flow developer [19], we have transplanted
the entire flow enablement (including EDA tool versions and PDK
versions) and successfully replicated published results. We have
subsequently made several automation-centered flow enhancements:
automated floorplan adjustment to handle multiple block aspect ratios
(ARs); AR- and perimeter-aware pitch selection and placement for
pins; instantiation of memories specifically generated from foundry
28nm FDSOI technology enablement, with relative placements that
scale with block AR; and unified flow and configuration files to enable
automation across multiple small and large testcases. Furthermore, we
automate parameter sweeps: clock period, capacitance scaling factor,
Vt types, transparent use of F2F/F2B configuration, aspect ratio, target
utilizations, and design rule constraints (maximum cap load, maximum
transition time, etc.)

Of independent interest are the qualitative differences that we
observe between our 3DIC benefit results (see Section 4, below) and
those reported in [16]. For instance, [16] reports 16.08% power
reduction (from 2DIC to 3DIC) for the OpenSPARC T2 (OST2)
[24] design using a non-foundry 32/28nm PDK and memories scaled
down from a 130nm technology. However, our experiments with
28nm FDSOI foundry design enablement show 3DIC power reductions
ranging from -4.1% to 12.7% across a wide range of testcases and
implementations; power reductions for OST2 in particular range from
-0.6% to 2.8%. We surmise that the discrepancies stem from such
factors as (i) differences between the open-source SAED PDK [21]
and real 28nm technologies; (ii) scaling of memory models that does
not properly comprehend scaling of memory peripheral circuits or
geometric considerations such as pin-out locations and memory aspect
ratios;2 and (iii) higher 2DIC QOR from a stronger baseline 2D flow.

2.3 Upper Bound on 3D Wirelength Benefit
As noted above, an upper bound on 3D wirelength (WL) benefit has

been shown by [5]. We now derive a new, tight upper bound for 3D
WL benefit, assuming a regular lattice of placement sites. Consider an
optimal 3D placement that is embedded in a 3D grid graph, as shown in
the left part of Figure 2. (The two tiers of the 3D placement respectively
have Z-coordinate equal to 0 and 1.) We obtain a 2D embedding of the
3D placement (in other words, a 2D placement) as shown in the right
part of Figure 2. Specifically, we make the following changes such
that each edge of the 3D-placed netlist becomes ≤2× longer in 2D
(assuming that gate-pitch and gate-width remain the same across 2D
and 3D).

• Without loss of generality, the 2D embedding of the 3D grid
graph doubles each hop in the X-direction. Therefore, a vertex
located at coordinate (i, j, z) in the 3D graph of Figure 2 is
mapped to (2(i−1)+1+ z, j) in the 2D embedding.

• In Figure 2, the length of n1 is 1 · δy = 1, whereas the length of
n1′ is 2 ·δz +1 ·δy = 3. As a result, we have an upper bound on
3D WL benefit of (3− 1)/3× 100 = 66.7%. Note that weight
is assumed to be zero in the Z-direction because heights are
assumed to be very small in 3DIC VIs as compared to pin-to-
pin wirelength in a 2DIC. A detailed picture of this mapping is
shown in Figure 3. Since unit wire on the X-Y plane can be
connected to at most two VIs, 66.7% is a tight upper bound on
the wirelength reduction.

It is difficult to speculate on power implications of our 3D WL
benefit upper bound. E.g., even if vertical interconnections and gate
input pins have zero capacitance, our result shows that net switching
power can reduce by at most 66.7% when moving from 2D to
3D. However, implications for other power components (leakage and
internal power) are much less obvious.

2The previous work shrinks the memory from 130nm technology. The shrinking does not
consider pin location constraints in advanced nodes. For example, non-uniform distribution
of pins and rectilinear footprints are seen in memories in advanced nodes.
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Figure 2: 2D embedding of a 3D graph (wirelength dilation in the
X-direction is ≤2×).
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Figure 3: Further details of the three-hop net in Figure 2. In the best
3D mapping, weights of AB and CD = 0 (VIs between dies), and weight
of BC = 1. In the 2D top-view, weights of AB, BC, and CD = 1. Tight
upper bound of 3D wirelength benefit= (3−1)/3×100% = 66.7%.

Table 1: Testcases and their post-synthesis results.
Testcase Testcase Number of Min Clock % #Buffers/ % #FFs/

Type Name Instances Period (ns) #cells #cells
GPU THEIA 212K 1.6 20 8
CPU OST2 (1-core) 347K 1.6 16 22

Modem Viterbi 98K 1.0 26 27
Multimedia DCT 12K 1.0 33 6
Peripheral AES 10K 0.9 22 5

Engine (PE) (crypto)

3. MODELING OF 3DIC POWER BENEFIT
The open-source designs used in our experiments are described in

Section 3.1. We describe our approaches to identify parameters with
greatest influence on 3D power benefit in Section 3.2. In Section 3.3,
we describe our machine learning-based methodology to develop
3DPE models.

3.1 Floorplan and Implementation of Testcases
We use a wide range of IPs as our testcases that include building

blocks for a modern mobile SoC. The building blocks could be
classified into CPU, GPU, modem, multimedia, and peripheral engines.
For each class among , we use IPs from OpenCores [23] in which
the number of instances in these testcases range from 10K to 347K.3
Table 1 summarizes the synthesis results for these testcases. The
percentage of buffers from all the cells ranges from 15% to 33% and
the percentage of flip-flops ranges from 5% to 27%.

As CPUs and GPUs are two key components in mobile SoCs, we
use CPU- and GPU-like designs with various memory sizes, shapes, we
implement the OpenSPARC T2 (OST2) core [24] and THEIA GPU [23]
testcases in foundry 28nm FDSOI technology. We overcome the lack of
customized memory sizes and number of read/write ports by choosing
memories with closest word sizes and word numbers, from foundry
28nm memory libraries that cover the required word sizes and word
numbers. To emulate the effects of lower capacitance and wirelength
in 3D, we use engineered WLMs along with other design parameters to
assess the sensitivity of 3DPE models to WLMs and these parameters.

To assess the sensitivity of 3DPE models to floorplan aspect ratios
(AR), we implement testcases with AR ranging from 0.8 to 1.2.
Given a fixed die area, our memory placement methodology is able to
automatically place memory blocks with any floorplan AR in this range
as described in Algorithm 1. Initially, we generate a floorplan with AR
= 1.0 and cluster memories into four groups.4 We then place these
groups at four corners of the die area (Line 1). When the AR changes,
we calculate the coordinates of the four corners of the modified die
area, and adjust the placement of each memory group accordingly
(Lines 6-10). When there are overlaps between groups due to AR being
too large (or too small), we re-cluster the memories so as to remove the
overlaps (Lines 11-13).

3The P&R runtime of each 2D or 3D run is 16 hours for OST2, five hours for THEIA and
Viterbi, and two hours for AES and DCT when using two threads on a Xeon E5-2640 server
with 128GB memory.
4The memory clusters ClusterBL, ClusterBR, ClusterT L and ClusterT R are respectively
{memories in IFU, FGU}, {memories in MMU}, {non-array part of memories in LSU},
and {array part of memories in LSU, memories in EXU0, EXU1 and TLU} for OST2; and
are respectively {memories in CORE0}, {memories in CORE3}, {memories in CORE1},
and {memories in CORE2} for THEIA.

The clustering honors certain basic constraints, e.g., memories are
placed face-to-face with respect to each other and each pair has routing
channels in between them. We insert at least 5µm routing channels
in between memories, and apply placement halos to these channels
to avoid routing congestion. In 3D, we use the flow in [16] to place
memories based on the corresponding 2D floorplan. Figures 5(a) and
(b) respectively show the floorplans of OST2 and THEIA in both 2D
and 3D.

Algorithm 1 Floorplan scaling with memories
Procedure genFloorPlan
Inputs : AR_list, areasram, areapostsyn, util
Outputs : Coordinates of memories for different placement AR

1: Place memories with AR = 1.0, such that four memory clusters (ClusterBL, ClusterBR,
ClusterT L, ClusterT R) are at four corners (BL, BR, TL, TR) of the die

2: area = (areapostsyn/util +areasram)
3: xorig =

√
area

4: yorig =
√

area
5: for each AR ∈ AR_list do
6: x =

√
area×AR

7: y =
√

area/AR)
8: Move ClusterBR by (x− xorig, 0)
9: Move ClusterT L by (0, y− yorig)
10: Move ClusterT R by (x− xorig, y− yorig)
11: if There are overlapped memories then
12: Re-cluster memories to remove overlaps
13: end if
14: end for

3.2 Parameter Identification
We use the S2D flow [16] to sweep parameter values shown in Table

2 and generate the training and testing datasets. The difference in
power between S2D and 3D is shown to be <5% in [16]. We confirm
that this observation is still true after our modifications described in
Section 2.2. Figure 6, which shows eight implementations of the
Viterbi decoder across four categories I–IV in Table 3, confirms that
we can use S2D as a proxy for 3D implementations in our studies.
We execute our design of experiments (DoE) for each testcase using
the parameter values shown in Table 2. We run both 2D and S2D
implementations using these parameter values for each testcase and
extract outcomes of various metrics such as the number of buffers,
power, wirelength, cell area, etc. to generate training data points.

P&R 
(2D and S2D) 

P&R 
(2D and S2D) 

Logic Synthesis  

P&R 
(2D and S2D) 

Design Parameter & 
QOR Collection 

Netlist with default WLM 

P&R 
(2D and S2D) 

Netlist with 
engineered 
WLM 

Learning-based 
Modeling 

Training data 

• Engineered WLM 
• Timing Library / SDC 

•Scaled Cap Tables 

Figure 4: Our overall synthesis and implementation flow is based
on the S2D flow of [16]. We generate multiple “engineered” WLMs
by scaling capacitance. Our learning-based models can identify 3D
benefits by comprehending the change in WL with the change in
capacitance between 2D and 3D implementations.

2D 

die0 

die1 

(a) 

2D 

die0 

die1 

(b) 
Figure 5: Floorplans of (a) OST2 core and (b) THEIA (GPU) with AR
= 1.0. The red-shadowed memories are partitioned to die0.
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Table 2 shows the key parameters that influence 3D implementation
and can provide guidance in estimating the percentage delta power
from a corresponding 2D implementation. Figure 7 illustrates
the impact on 2D and 3D power for three of these parameters –
utilization (UTIL), AR and max fanout (maxFO) (expressed in the
figure in terms of pF). Certain parameters such as maxCap do
not have significant impact on 3D power, so we do not use these
parameters in our modeling. To limit the number of dimensions in our
models, we identify the top-10 parameters based on how significantly
these parameters affect percentage delta power. We summarize
the percentage change in power with the minimum and maximum
parameter values in Table 4. We explore sensitivities of power to
capacitance scaling in our DoE by (i) running a 2D implementation
with 0.7× capacitance scaling for all interconnects, and (ii) varying
post-synthesis netlists by changing capacitance using wireload models.
We correlate the change in metrics with and without capacitance
scaling from both 2D P&R and logic synthesis as part of our model
derivations.

The modeling problem of predicting percentage delta power in 3D
by only observing metrics from a 2D implementation is nontrivial.
Figure 7 as well as our experimental results indicate that 3DIC power is
nonunimodal as well as nonmonotonic with different parameters. For
example, a large change (i.e., ∼10×) in the number of buffers in 2D
between scaled and non-scaled capacitances can lead to a relatively
small (i.e., <10%) change in 3D power. Based on our experimental
results, the parameters that affect delta power in 3D include WLM
scaling, clock period, mix of Vt types, AR, UTIL, maxTran, maxFO,
maxCKskew, maxCKlat and maxCKtran.

Table 2: Key parameters used by 3DPE models.
Design metric Symbol Description

Vt types Vt Mix of threshold voltage libraries =
{RVT, RVT & LVT}

Aspect Ratio AR {1.0, 1.2, 1.5}
Utilization (%) UTIL {50%, 60%}
Max transition maxTran {50%, 70%} of max tran in library
Max capacitance maxCap {50%, 100%} of max cap in library
Max fanout maxFO {5, 10}
Max clock skew maxCKskew {0ps, 50ps}
Max clock latency maxCKlat {500ps, 2500ps}
Max clock transition maxCKtran {20%, 30%} of clock period
Corners CORNER PVT = {TT, 0.92V , 25oC}

Analysis = {setup}
WLM scaling WLMSC Capacitance scaling = {1.0, 0.7, 0.33}

Table 3: Implementations used in S2D vs. 3D comparisons.
Category Clock Period Util AR Max Cap Max Tran Max FO

I 1.0ns 65% {1.8, 1.0} 450pF 260ps 10
II 1.5ns 65% 1.0 450pF {260, 112}ps 10
III {1.5, 1.0}ns 65% 1.0 450pF 112ps 10
IV 1.0ns {65%, 55%} 1.0 450pF 260ps 10
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Figure 7: Illustration of implementation parameter impact on 2D (blue
lines) and 3D power (red lines).

3.3 Machine Learning Methodology
We develop a model to predict percentage delta power between 2D

and 3D implementations of a testcase. From the post-synthesis and
post-P&R results of the testcase, we obtain the following parameters.

Table 4: The percentage difference in power with the extreme points.
UTIL AR maxCap maxTran maxFO

2D 2.2% 4.4% 3.0% 0.4% 4.0%
S2D 1.5% 3.4% 0.0% 0.6% 2.3%

(i) Post-synthesis – number of standard cells, number of buffers and
inverters, area of standard cells, internal and leakage power of buffers5

and non-buffer cells, and net switching power with capacitance in
wireload models set to multiple values, and (ii) Post-P&R – number
of standard cells, number of buffers and inverters, area of standard
cells, internal and leakage power of buffers and non-buffer cells, net
switching power with capacitance factor set to 1.0× and 0.7×, and
wirelength.

The total power in 2D (resp. S2D) implementations is the sum
of internal, leakage and net switching power values [22]. For
each testcase, we calculate the total power in mW . The S2D
implementations are used as a proxy for 3D implementation in
our modeling. Table 5 shows the “ground truth” data for deltas
in wirelength, number of buffers, and power for S2D versus 2D
implementation according to our DoE and testcases (Sections 3.2 and
3.1). Table 2 shows examples of the range of values of our metrics.
We create a total of three datasets for modeling – training, validation
and testing. Out of all the data points we generate using 2D and S2D
P&R flows, we use ∼40% for training, ∼20% for validation, and the
remaining ∼40% for testing and reporting errors.

We use Artificial Neural Networks (ANN) as our modeling
technique, via the in-built Matlab vR2013a toolbox. We use nonlinear
modeling because the percentage delta power is non-monotone
with respect to the parameters. The complex interactions between
parameters are determined automatically by the ANN technique using
hidden layers and weights. The hyperparameters [6] we tune are the
number of epochs and the number of neurons per hidden layer. We
use two hidden layers – one for input and one for output. We vary
the number of epochs from 1000 to 5000 in steps of 500 and the
number of neurons per hidden layer from one to twice the number
of modeling parameters K. We increase accuracy of our models by
choosing appropriate hyperparameters such that the range of errors is
within a bound. To achieve bounded errors, we search for the number
of epochs and the number of neurons that satisfy the following two
criteria: (i) the ratio of mean square errors (MSEs) in the training and
the validation sets is ≤5, and (ii) add a large multiplicative penalty
to suppress outliers (we use 1000×) whenever the range of errors is
greater than the bound (we use ∼10% as our error bound and call these
data points as outliers). We also perform five-fold cross-validation
when training the model. Applying these criteria enables us to develop
models that are not overfitted and can generalize to parameter values
that are not present in the training dataset. Figure 8 illustrates our
modeling flow, which is executed five times due to five-fold cross-
validation.6

2D-IC metrics 
post-P&R 

Post-synthesis 
metrics using WLM 

Start with #epochs = 1000; 
#neurons = 1 

Training and Validation 
phase 

Actual %∆ 
Power 

Error 
range < 

B% 

Increase #epochs by 500, 
#neurons by 1; penalty on 

outliers by 1000 

Save model and exit 

Figure 8: Illustration of our modeling flow.

Table 5: Experimental results of delta outcomes between 2D and S2D.
2D - S2D (2D - S2D) / 2D × 100%

Min Max Mean Min Max Mean
∆WL (m) 0.03 5.65 1.37 1.95% 35.99% 29.71%

∆(#buf + #inv) 0.01K 25K 3.6K 0.40% 10.41% 5.05%
∆Total power (mW ) -1.40 9.10 2.29 -1.39% 12.72% 3.71%

5In the following, we collectively refer to buffers and inverters as “buffers”.
6The runtime to train our models is four hours on an Intel Xeon E5-2640 2.5 GHz server,
using eight threads. This is a one-time cost.



4. MODEL OUTCOMES
We now present our experimental studies. We discuss accuracy

results of our 3DPE tool in Section 4.1, robustness and scalability of
the 3DPE models in Section 4.2, and model-guided implementation
results in Section 4.3.

4.1 Bounded-Error Models
We create three separate models to predict percentage delta (3D or

S2D, relative to 2D) for each power component – internal, switching
and leakage. We use the predicted values from these models to predict
total power in 3DPE. To predict percentage delta internal power, we use
seven parameters: (i) internal power from 2D; (ii) ratio of the number
of buffers to the total cell count; (iii) delta internal power in 2D with
and without capacitance scaling of 0.7× in the technology capacitance
tables; (iv) delta internal power in the post-synthesis netlist with and
without capacitance scaling by using wireload models (WLMs); (v)
the ratio of utilization to cell area; (vi) ratio of memory area to total
cell area; and (vii) AR. To predict percentage delta switching power,
we use six parameters: (i) switching power from 2D; (ii) the ratio of
total wirelength (WL) in 2D to utilization; (iii) delta WL; (iv) delta
switching power in 2D with and without capacitance scaling of 0.7×
in the technology capacitance tables; (v) delta switching power in the
post-synthesis netlist with and without capacitance scaling by using
wireload models (WLMs); and (vi) AR. To predict percentage delta
leakage power, we use three parameters: (i) leakage power from 2D;
(ii) the ratio of low-Vt cell area to total cell area; and (iii) the ratio of
memory area to total cell area.

Figure 9 shows our prediction for percentage delta power across our
testcases. The solid black line in the middle indicates the line when
there is perfect correlation between actual percentage delta power and
predicted percentage delta power. The upper and the lower solid lines
define the band between maximum and minimum errors. Across our
testcases we achieve an error range of ∼9.0%. Figure 10 shows a
histogram of error distribution. Only a few outliers are responsible for
the maximum and minimum errors. The average error from our total
power model is ∼-0.1%.7

4.80% -4.71% 

Figure 9: Predicted % delta power vs. actual % delta power between
2D and S2D.
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Figure 10: Model error distribution of % delta power.

4.2 Testing of Model Implications
As the time to generate each data point using 2D and S2D flows can

be very large (e.g., up to 16 hours for one data point of OST2), it is
practically impossible to train models with a large range of parameter
values. Our models should be scalable and generalizable due to use
of cross-validation [6] in our methodology. However, we go a step
further with a novel “stress test” of our 3DPE models. (That is, we
explicitly test whether the models are capable of returning an unlikely
7The average (resp. maximum) of absolute errors in our internal, switching and leakage
power models are respectively -0.42% (resp. 10.9%), -0.07% (resp. 5.6%) and -0.61%
(resp. 2.9%). The testing time is ∼one second per every 500 data points.

or unreasonable prediction. E.g., if it is possible for our models to
predict 90% power benefit from 3DIC, this would cast doubt on the
models.)8 We perform stress testing on our total power model using the
following methodology. We vary the following 10 parameters in our
models: (i) internal, switching and leakage power values in 2D (K = 1,
K = 2, and K = 3); (ii) total WL in 2D (K = 4); (iii) utilization (K = 5);
(iv) number of cells (K = 6); (v) total cell area (K = 7); (vi) number
of buffers (K = 8); (vii) ratio of memory area to cell area (K = 9); and
(viii) maximum transition (K = 10). Table 6 shows the distribution of
these parameters extracted from our training dataset. We execute the
following steps.

• For each parameter i, where i = 1,2, ...,10, we obtain the mean
(µi) and standard deviation (σi) from the training dataset.

• We construct a test dataset by assuming that each parameter
follows a Gaussian distribution with mean and standard deviation
respectively indexed into values from the sets µ′i and σ′i, where
µ′i = {µi,2µi, ...,10µi}, and σ′i = {σi,2σi, ...,10σi}.

• We index each of these values from sets µ′i and σ′i as s =
{1,2, ..., |µ′i|}, and generate a value for each parameter xi =
µ′i(s)+ j×σ′i(s), with j varying from -3 to +3 in steps of 0.2.

We generate a total of 434 test data points for the 10 tuples of
parameters. Figure 11(a) shows a histogram of percentage predicted
delta power. The minimum value is 0.08% (the corresponding bin
is 2.17%) and the maximum value is ∼125% (the corresponding bin
is 123.3%). The weighted mean of the predicted percentage delta
power values is 9.5%. For 14 test data points, our models predict over
100% percentage delta power. These data points have the following
attributes which are not practically realizable: (i) the ratio of cell area
to the number of cells is larger than the area of the largest cell in the
technology library,9 that is, the number of cells, utilization and the cell
area are mismatched; (ii) the ratio of wirelength to the number of cells
is less than 50µm, that is, the wirelength and the number of cells are
mismatched; and (iii) the maximum transition and/or the maximum
fanouts are more than 10× the maximum value in the technology
libraries, that is, constraints are mismatched. Figure 11(b) shows
a histogram of percentage delta power benefits for data points that
are realizable for practical netlists and do not violate constraints with
respect to the technology libraries. The maximum possible percentage
delta power for these data points is ∼39%, which indicates that our
model predictions are close to the values of 3DIC power improvements
reported in [10].

Table 6: Distributions of parameters for stress testing.
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
(mW ) (mW ) (mW ) (m) (%) (×103) (mm2) (×103) (ps)

µ 71.45 34.97 0.33 4.49 0.56 134.51 0.18 186.48 0.16 200
σ 67.90 30.89 0.45 5.88 0.13 141.77 0.20 286.65 0.22 56
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Figure 11: Percentage predicted delta power distributions (a) when
practically unrealizable data points are included, and (b) when only
practically realizable data points are included.

4.3 Model-Guided Implementation
An “ultimate” goal of our 3DPE modeling work is to enable fast

and accurate design- and implementation-space exploration without
actually having to implement a testcase either in 2D or S2D. Toward
this end, we explore whether our models can provide guidance to
designers as to which classes of testcases are amenable to what kinds
of 3D benefits. We conduct two experiments to demonstrate how 3DPE
can provide guidance to designers.10

8Our sanity-check approach can be a useful addition to the metamodeling works that have
become very popular in the recent IC CAD literature.
9In our 28nm FDSOI libraries, the size of the largest cell is 4.4µm2. The inter-buffer
distance is ∼120–150µm [1]. The max transition is 375ps and the max fanout is 20.

10Note that although we use one testcase to demonstrate MGI-I and MGI-II, the conclusions
drawn are not limited to a specific testcase.



Table 7: Predicted vs. Actual 3D power with high utilization.
Clock Period AR UTIL Predicted % Actual %

(ns) (%) Delta Power (mW ) Delta Power (mW )
1.60 1.2 40 2.07 1.82
1.60 1.0 42 1.97 2.14
1.80 1.2 45 2.15 2.46
1.80 1.0 48 2.18 2.88

• MGI-I – To predict the WLM scaling at synthesis that can lead
to the smallest post-P&R power in 3D for a testcase.

• MGI-II – To use a low-utilization (small tool runtime) trial 2D
implementation to predict the % delta power of a high-utilization
(large tool runtime) S2D implementation.

Experiment MGI-I. The goal of this experiment is to create a
“properly 3D-aware” netlist by scaling WLM capacitances that can
deliver the smallest power in 3D. We create eight WLMs with
capacitances {1.0, 0.85, 0.70, 0.60, 0.50, 0.45, 0.40, 0.33, 0.3}pF .
We do not use scaling factor <0.3pF , based on the theoretical limit
of WL reduction presented in Section 2.3. We use the AES testcase,
set clock periods to {0.8, 0.9, 1.0}ns, run synthesis and S2D flow
with netlists synthesized with the scaled WLMs, and then obtain 27
data training data points. As part of our model training described in
Section 4.1, we comprehend WLM capacitance as a parameter. We
now create a test dataset in which WLM capacitances are varied in steps
of 0.05pF and choose the WLM Wbest,model that achieves the largest
delta power from our models. We run synthesis and S2D flow with
WLM Wbest,model and quantify the cost of misprediction with the WLM
Wbest,actual that delivers the minimum 3D power after implementation
using the S2D flow. Figure 12 shows how 3D power changes (albeit not
too significantly) with WLM capacitance for the AES testcase. S2D
always uses 1.0pF , but the minimum power is achieved with WLM
capacitance of 0.45pF , and the model predicts 0.75pF . The difference
in S2D vs. our models is ∼1mW or ∼5%. We see that WLM scaling
can achieve smaller 3D power, and that 3DPE models can guide the
implementation to achieve within ∼1.62% of the minimum power.
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Figure 12: Percentage delta power benefits between actual, model and
S2D implementations.

Experiment MGI-II. The goal of this experiment is to predict 3DIC
power benefits (relative to 2DIC implementation) when the standard
cell utilization is higher than the utilizations used in training the
models. High utilizations in large designs such as THEIA incur large
runtimes of around eight hours per data point. On the other hand,
low-utilization runs can be fast but have smaller 3D benefit. Table 7
shows 3DPE modeling accuracy for different combinations of aspect
ratios, clock periods and utilizations. The actual % delta power
ranges from 1.82% to 2.88%. We implement the testcase with these
parameters to quantify the modeling error. 3DPE can very accurately
guide high-utilization design-space exploration because it is trained
with small testcases (e.g., AES and DCT) at high utilization and is able
to generalize to larger testcases.

5. CONCLUSIONS AND FUTURE WORK
It is difficult to quantify the benefits of 3DIC over a corresponding

2DIC implementation for arbitrary designs because no golden 3DIC
flow currently exists. Yet, estimating 3DIC benefits, particularly for
the power reduction value proposition, is a critical open issue. We

develop a new prediction tool, 3DPE, to predict percentage delta
power benefits of 3DIC relative to 2DIC implementation. 3DPE
consists of internal, switching, leakage and total power models and
these models are very accurate as the error range is bounded to be
≤10%. Such a tool is useful for designers because it filters out design
blocks that can achieve large power benefits in 3D and performs fast
design-space exploration to determine various 3DIC implementation
parameters. We propose a novel modeling technique that includes
WLM scaling, influential parameter identification and bounded errors.
We present novel applications/validations that include “stress test” and
“model-guided implementation” (MGI). We demonstrate how 3DPE
can be used in MGI to predict power benefits of blocks that have
high utilization and long runtimes, in a fast and accurate manner.
Our ongoing works include: (i) assessing 3DIC benefits of sub-blocks
within large designs; (ii) extending 3DPE from block-level to SoC-
level; and (iii) developing a “true 3D” flow that iterates between 2D and
3D placements and uses 3DPE to guide the choice of implementation-
space parameter values.
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