
Multi-Product Floorplan and Uncore Design Framework
for Chip Multiprocessors

Marco Escalante1, Andrew B. Kahng2, Michael Kishinevsky1,
Umit Ogras3 and Kambiz Samadi4

1Intel Corp., Hillsboro, OR, 2ECE and CSE Departments, University of California at San Diego
3School of ECEE, Arizona State University, 4Qualcomm Research, San Diego, CA

ABSTRACT
Chip multiprocessors (CMPs) for server and high-performance com-
puting markets are offered in multiple classes to satisfy various
power, performance and cost requirements. As the number of pro-
cessor cores on a single die grows, resources outside the “core”,
such as the distributed last-level cache, on-chip memory controllers
and network-on-chip (NoC) interconnecting these resources, which
constitute the “uncore”, play an increasingly important role. While
it is crucial to optimize the floorplan and uncore of each product
class to achieve the best power-performance tradeoff, independent
optimization may greatly increase the design effort, and undermine
the savings ultimately achieved with a given total amount of op-
timization effort. This paper presents a novel multi-product opti-
mization framework for next generation CMPs. Unlike traditional
chip optimization techniques, we optimize the floorplan of multiple
product classes at once, and ensure that the smaller floorplans can
be obtained from larger ones by optimally removing, i.e., chopping,
the unused parts.

1. INTRODUCTION
Due to the diversity of market demand, modern CMPs are offered

in multiple versions also known as SKUs (stock-keeping units). For
example, the Intel Xeon Server processor code-named Haswell had
27 different SKUs, with number of cores ranging from 4 to 18,
announced or launched in the third quarter of 2014 [12]. Typical
product classes include a low-cost, low-power model which targets
mobile or low-end markets, a high-performance model which tar-
gets high-end markets, and multiple medium-cost SKUs to fill the
spectrum in between. Different product classes share the same re-
sources, e.g., CPU cores, memory controllers, common cache struc-
tures, NoC topology and NoC routers, as the building blocks. How-
ever, they differ in the number of cores, amount of on-chip mem-
ory, I/O bandwidth and NoC dimensions. These differences lead to
changes in the chip floorplan and result in extra design effort, which
increases both cost and time-to-market.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLIP ’15 San Francisco, CA USA
Copyright 2015 ACM 0-12345-67-8/90/01 ...$15.00.

Figure 1: Example CMP floorplans for three different prod-
ucts. Chopped parts are shown with dotted lines for illustration
purposes.

During the design of large CMPs, different resources, e.g., cores,
memory controllers, memory channels, I/O, and NoC, are laid out
in rows and columns in a grid, as shown in Figure 1. Each tile
in the grid contains either one of the aforementioned resources, or
it is empty, i.e., not occupied by any functional resource. In this
work, we focus on the uncore and chip-level floorplanning problem
of CMPs, i.e., the floorplan of each individual resource is done a
priori by allocating space for the NoC links. The goal is to simul-
taneously optimize the chip-level floorplan across multiple CMP
products subject to area and power constraints. We propose a novel
uncore and floorplan co-optimization framework for the product
classes of a given CMP to minimize the design effort. The resulting
floorplans satisfy choppability constraints, i.e., a smaller configura-
tion can be obtained from a larger configuration by simply chopping
and shifting the floorplan, as illustrated in Figure 1. In this exam-
ple, there are three product classes. Product P1 is composed of four
cores and two memory controllers. Product P2 is obtained from
P1 by first removing the memory controller and core resources in
column 2, and then chopping out the empty tiles. Similarly, P3 is
obtained from P2 by removing the resources in the bottom row, and
then chopping the entire row.

Current practice is to focus on the product class with the largest
market share, and optimize it during the early design process. The
floorplans of both bigger and smaller product classes are derived
from the optimized design. After the architecture and features freeze
and front-end design is finished, the full-chip layout of the largest
configuration is designed first. Then, the layout of each smaller
configuration is obtained by chopping the biggest floorplan.

In this paper, we propose an efficient integer-linear programming
(ILP) approach to solve the multi-product CMP floorplanning prob-
lem. Unlike traditional chip floorplanning approaches [1, 2, 3, 4, 5],
our approach simultaneously optimizes the floorplans of multiple
CMP products such that the floorplans of smaller products can be
easily derived from those of the larger products via chopping oper-

ations. The major contributions of our work are as follows.

• We define the choppability property for a given CMP prod-
uct such that the floorplan of smaller CMP products can be
obtained by chopping operations.

• We propose an efficient ILP-based approach to simultane-
ously optimize the floorplan of multiple CMP products sub-
ject to design area and power constraints.

• We extend our baseline problem formulation to enable effi-
cient design space exploration of CMPs under given power
and area budgets.

• We support heterogeneous resources by considering different
width and height values for cores, memory controllers, and
memory channels.

• We provide several realistic examples with varying number
of resources, and show that our approach efficiently provides
choppable floorplans across all products.

The remainder of this paper is organized as follows. Section 2 re-
views the related work. Section 3 and Section 4 respectively present
preliminaries and the proposed multi-product floorplan optimiza-
tion approach. Section 5 provides three extensions to our original
approach to enable efficient design space exploration. Finally, Sec-
tion 6 presents our experimental results and Section 7 concludes the
paper.

2. RELATED WORK
Physically-aware NoC link allocation for CMPs is addressed in

[7], while physical planning of large CMPs for architectural explo-
ration is discussed in [8]. Likewise, the authors of [9] analyze the
impact of memory controller placement on the performance. How-
ever, all of these studies consider only one product class. We refer
the reader to recent surveys [10, 11] for more detailed reviews of
the NoC literature. To our knowledge, the only prior work that con-
siders floorplan optimization of multiple products is [6], which pro-
poses a simulated annealing based approach that packs the building
blocks used in each product class. The authors of [6] also extend
their cost function to include a weight for each product to represent
its importance relative to other products. However, this approach
does not consider choppability of the floorplans, which enables a
great increase in productivity due to design reuse. Similarly, power
budget and performance constraints of individual product classes
are not considered by prior work. Unlike prior work, our frame-
work enables multi-product CMP floorplan optimization consider-
ing both the full-chip layout and power consumption constraints.

3. PRELIMINARIES AND NOTATION
Let P1, P2, · · · , PS denote S product classes targeting different

market segments, and let K be the number of different resource
types (CPU, cache bank, controllers, etc.) used in the CMP. We
use k = 1 to represent the core, k = 2 for the memory con-
troller, and k = 3 for memory channels, which are the most com-
mon resources. We support an arbitrary number of resource types
1 ≤ k ≤ K, where the encoding for the remaining resources can
be arbitrary. To facilitate the definition of choppability, we intro-
duce k = 0 to represent the empty type, i.e., the lack of a functional
resource, as shown in Figure 1. Each product Pi, 1 ≤ i ≤ S, can
be represented by the K-tuple < ni0, ni1 · · · , niK >, where nik

shows the number of type k resources used in product Pi. Then,
the product classes can be represented as follows:

P1 = < n10, n11, · · · , n1K >

P2 = < n20, n21, · · · , n2K >

...
PS = < nS0, nS1, · · · , nSK > (1)

Definition 1. For any 1 ≤ i, j ≤ S, product class Pi encompasses
class Pj (Pi � Pj) if and only if nik ≥ njk ∀ 1 ≤ k ≤ K.

That is, if Pi � Pj , Pi has all the resources found in Pj and pos-
sibly additional ones. Without loss of generality, we index prod-
uct classes such that P1 � P2 � · · · � PS . In a CMP product
i with Ri rows and Ci columns (i.e., Ri × Ci tiles), the binary
variable ui

rck denotes whether the tile (r,c) contains a resource of
type k (ui

rck = 1) or not (ui
rck = 0), where 0 ≤ r ≤ Ri − 1,

0 ≤ c ≤ Ci − 1, 0 ≤ k ≤ K. As an example, we show a matrix
representation of product PS .

US
RSCS1 =

2664
uS

001 · · · uS
0(CS−1)1

...
. . .

...
uS

(RS−1)01 · · · uS
(RS−1)(CS−1)1

3775 , (2)

...

US
RSCSK =

2664
uS

00K · · · uS
0(CS−1)K

...
. . .

...
uS

(RS−1)0K · · · uS
(RS−1)(CS−1)K

3775
The example in Figure 1 shows three different products P1, P2, P3,

with three resources: Empty (k = 0), core (k = 1), and memory
controller (k = 2). Using our notation, the encoding for P2 in this
example is:

P2 : u2
001 = 1, u2

011 = 1, u2
111 = 1, u2

102 = 1

u2
020 = 1, u2

120 = 1, the rest of the variables are 0

Simultaneous optimization across multiple products requires de-
riving the floorplans of smaller products from the larger ones to
minimize the implementation effort. Removing resources arbitrar-
ily does not result in an optimal design for smaller products even
when the larger design is optimal. Our goal is to remove the re-
sources in such a way that the final layouts of the larger products
can be chopped to obtain those of the smaller products. Chopping
operations simply remove an entire row or column. In other words,
all the resources in the chopped row or column are converted to
empty tiles. In the following, we formally define the chopping op-
eration, as well as the choppability property for a given product.
Removing only a subset of the tiles in a row or column would result
in whitespace.

Definition 2. The row chopping operation in product i for row r∗,
0 ≤ r∗ < Ri, is defined as

∀c set ui
r∗ck = 0 for k > 0, and ui

r∗c0 = 1

That is, the resource type in every tile of the chopped row is marked
as empty (k = 0). Likewise, the column chopping operation for
column c∗, 0 ≤ c∗ < Ci, is

∀r set ui
rc∗k = 0 for k > 0, and ui

rc∗0 = 1

Definition 3. If there is a sequence of chopping operations that
transforms Pi to Pj , then we say that Pi can be chopped to Pj , and
denote this by Pi ; Pj .

4. MULTI-PRODUCT FLOORPLAN
OPTIMIZATION

4.1 Basic Problem Formulation
Let the chip height and width of product class Pi be Hi and Wi,

respectively. We define the aspect ratio as AR = Hi
Wi

, and constrain
it as 1/Rmax ≤ AR ≤ Rmax. Next, we introduce the objective
function and constraints used in our optimization formulation.

Objective function. In our formulation, we minimize the sum of
half-perimeter of all products, instead of total area, to keep the ob-
jective function linear.

Minimize
X

i

(Hi + Wi) (3)

The half perimeter can be obtained as Hi + Wi = Wi(AR +
1). We note that a rectangle of given perimeter has minimum area
when its aspect ratio is maximum, i.e., AR = Rmax. The min-
imum area is Amin = W 2

i Rmax, while the corresponding half
perimeter is Wi(Rmax + 1). On the other hand, the maximum
area with the same perimeter is obtained when both sides are equal
to Wi(Rmax + 1)/2. Hence, Amax = W 2

i (Rmax + 1)2/4 and
the ratio between the maximum and minimum area for a given half
perimeter is (Rmax+1)2 : 4Rmax. For example, if Rmax = 2, the
worst-case ratio is 9 : 8, which means minimizing half-perimeter
can end up with 12.5% more area than the minimum. To reduce
deviation from area minimization, we can impose an upper bound
on aspect ratio.

Constraints on the number of resources. Each tile can be oc-
cupied by only one type of resource, and each product Pi has a
specified number of instances of the kth resource type (N i

k). These
constraints are specified as:

∀i, r, c
X

k

ui
rck = 1 (4)

∀i, ∀k > 0
X

r

X
c

ui
rck = N i

k (5)

Monotonicity constraints. Suppose Pi ; Pj (Pi can be chopped
to Pj). If a tile in product Pi is occupied, then the corresponding
tile in Pj can either be occupied by the same resource or be empty.

∀i, r, c ui
rck ≥ uj

rck for k > 0 (6)

However, if a tile in product Pi is empty, the corresponding tile in
Pj must also be empty.

∀i, r, c ui
rc0 ⇒ uj

rc0, i.e., ui
rc0 ≤ uj

rc0 (7)

Placement constraints. Certain resources, such as memory chan-
nels and I/O controllers, may need to be placed at the boundary of
the chip. Let the set of these resources be Sboundary .

∀i, k ∈ Sboundary, ui
rck = 0, for

0 < r < Ri − 1, 0 < c < Ci − 1 (8)

Height and width computations. Chip height Hi and width Wi

are functions of the resources used in each product. Let usedi
r and

usedi
c denote whether row r and column c are used in Pi. Row

r in product Pi is chopped only if all the tiles within that row are
empty, i.e., when usedi

r = 0. Similarly, column c in product Pi is
chopped if usedi

c = 0. We can express usedi
r and usedi

c as:

∀i, r usedi
r =

(
1 if

P
0≤c≤Ci−1

P
1≤k≤K ui

rck ≥ 1

0 otherwise
(9)

∀i, c usedi
c =

(
1 if

P
0≤r≤Ri−1

P
1≤k≤K ui

rck ≥ 1

0 otherwise
(10)

If any one of the tiles in a given row (column) is occupied by a
resource, we mark that row (column) as used. Hence, we can obtain
Hi and width Wi by counting the number of used rows and columns
multiplied by tile height h and width w, respectively:

∀i Hi = h×
X

0≤r≤Ri−1

usedi
r (11)

∀i Wi = w ×
X

0≤c≤Ci−1

usedi
c (12)

In this formulation, the tile height and width are assumed to be the
same for all resources. This assumption will be relaxed in Section 5.

4.2 Handling Resources Occupying
Contiguous Tiles

In a given CMP product, the boundary tiles are allocated for
memory channels (MCh) and I/O devices, as illustrated in Figure 2.
Memory channels, which often occupy more than one contiguous
tile, are called memory channel groups. Since MCh groups are con-
nected to the memory controllers, their placement affects the place-
ment of memory controllers.

MCh MCh

MCh

MCh MCh

MCh

MCh

I/O

I/O

I/O

I/O

MCh MCh MCh MCh I/O

I/O I/O

MCh

I/O I/O

MCh

MCh

I/O

MCh

MCh

MCh

MCh MCh MCh MCh MCh

(a) (b)

Figure 2: Two possible memory channel and I/O placements at
the boundary of the design.

For a given product class, let G be the number of memory chan-
nel groups and g ∈ {1, 2, . . . , G} denote each group. The size of
the gth memory channel group, wg is the number of contiguous
tiles that it occupies. For example, there are two memory channel
groups with sizes 1 and 2 in Figure 3. The direction along which
the memory channel extends is given by d ∈ {↑,→}. Note that
the other directions (i.e., ↓,←) are symmetric to the directions in
d. The binary variable vrcdg is used to mark the starting tile of
memory channel g, where vi

rcdg = 1 denotes that tile (r, c) is the
starting tile of memory channel g in the direction d in product Pi.

To ensure that different memory channel groups do not overlap
with each other, we enumerate all the pairwise combinations of dif-

ferent memory channel groups and add the following constraints:

∀i, r′, c′, d′, g′, r
′′
, c

′′
, d

′′
, g

′′
(g′ 6= g

′′
)

vi
r′c′d′g′ + vi

r
′′

c
′′

d
′′

g
′′ ≤ 1 (13)

∀i, g
X

r

X
c

X
d

vi
rcdg = 1 (14)

Constraint (13) ensures that the starting tile of each memory chan-
nel group is different, while Constraint (14) guarantees that the
specified number of memory channels are placed in each product.
In addition to these constraints, we also need to ensure that the start-
ing tile of a memory channel group does not overlap with another
memory channel. To illustrate this, we consider the memory chan-
nels shown in Figure 3, where there are two memory channel groups
of sizes one and two (i.e., w1 = 1 and w2 = 2). For the sake of
clarity and space considerations, we only give the constraints cor-
responding to g2 as shown in Figure 3:

vi
20→2 + vi

20→1 ≤ 1 (15)
vi
20→2 + vi

20↑1 ≤ 1

vi
20→2 + vi

21→1 ≤ 1 (16)

Assuming the location and size of g2 in Figure 3, the first and sec-
ond constraints ensure that the starting points of g1 cannot be tile
(2, 0) irrespective of its direction. Constraint (16) introduces one
more constraint that prohibit g1 from starting at tile (2, 1), since
(2, 1) is already occupied by g2.

g2

g1

g2

Figure 3: An example of a design with two memory channel
groups.

Adjacency constraints. Since the placements of memory chan-
nels affect the placements of memory controllers, we have to add
necessary constraints to guarantee that a memory controller tile is
adjacent to a memory channel group. Consider the configuration
shown in Figure 2(a), where the memory channels can be placed at
the leftmost column, top row and bottom row. Memory controllers
need to be adjacent to one of these three sides. For example, con-
sider the top row, r = Ri − 1, 0 ≤ c ≤ Ci − 1. If there is a
memory controller in (Ri − 2, c), i.e., one row below the top row,
then there has to be a memory channel MCh in (Ri − 1, c). This
constraint can be written as:

∀i, 0 ≤ c ≤ Ci − 1,
X

g

vi
(Ri−1)c→g ≥ ui

(Ri−2)c2 (17)

Similarly, the corresponding constraints for the first column and

bottom row can be written as:

Leftmost column: ∀i, 0 ≤ r ≤ Ri − 1,
X

g

vi
r0↑g ≥ ui

r12 (18)

Bottom row: ∀i, 0 ≤ c ≤ Ci − 1,
X

g

vi
0c→g ≥ ui

1c2 (19)

Constraints (17), (18) and (19) ensure that whenever there is a mem-
ory controller, there will also be a memory channel adjacent to it.
To implement a logical OR operation between the two given config-
urations, we need nonlinear constraints which degrades the perfor-
mance of our proposed approach. Hence, we construct two separate
constraints files corresponding to Figure 2(a) and 2(b) configura-
tions, and solve these two problems separately.

Additional placement constraint. Since the memory channels and
I/O devices are placed at the boundary of the design, core and mem-
ory controller blocks can only be placed in the inner tiles (see the
white tiles in Figures 2(a) and 2(b)). We add the following con-
straints to avoid the placement of cores and memory controllers on
the chip boundary:

∀i, r ∈ {0, Ri − 1}, c ∈ {0, Ci − 1}
ui

rck = 0 for k /∈ Sboundary (20)

where Sboundary is the set of resource types that can be in the
boundary.

In the next section, we propose additional constraints to enable
effective floorplan design space exploration across multiple prod-
ucts.

5. POWER-PERFORMANCE-DRIVEN
DESIGN SPACE EXPLORATION

Thus far, we have co-optimized floorplans of multiple CMP prod-
ucts to minimize the sum of the half-perimeters of all product classes.
To achieve efficient uncore design space exploration under power
and performance constraints, we now add the following extensions
to the proposed framework.

• We allow the number of cores and memory controllers for
each product to vary in a given range.

• We add constraints on maximum number of memory con-
trollers in a given row or column.

• We consider different width and height values for different
resource types.

5.1 Extension 1: Power Exploration
The complete design specification is often not available early in

the design cycle. In particular, the “landing zone” of target thermal
design power (TDP) and memory bandwidth is known, but precise
targets evolve through time. In addition, the number and defini-
tion of product classes also change during the design cycle. Hence,
there is a need for a fast design space exploration capability that can
generate the uncore floorplan for multiple products quickly as the
design parameters evolve. Therefore, our first extension is to allow
the number of cores and memory channels to vary in a given range
for each product. To achieve this, we define the TDP for product
Pi, denoted as P i

TDP . If we denote the thermal design power of
resource k as pk, the TDP constraint can be expressed as:

∀i
KX

k=1

pk

X
r

X
c

ui
rck ≤ P i

TDP (21)

This means that the number of resources in each product class is
not fixed. Hence, the optimization tool is free to select the number
of resources under the TDP constraint given in Equation 21, instead
of using the constraint given by Equation 5. In addition to ensur-
ing that each product class meets its TDP constraint, we can take
advantage of Equation (21) to push the performance limit. For ex-
ample, assume that pcore = 2W , pMC = 1W , and P 1

TDP = 8W .
Figures 4(a) and (b) show two possible configurations for P1. We
prefer the configuration in Figure 4(b) since it utilizes the power
budget more efficiently by utilizing an extra core without exceed-
ing the power budget. Therefore, we modify our original objective
such that it minimizes the sum of half-perimeter and the number of
empty tiles across all products:

Minimize:
X

i

(Hi + Wi +
X

r

X
c

ui
rc0) (22)

Empty MC

Core Core

(a)

Core MC

Core Core

(b)

Figure 4: Two possible configurations for a given product.

5.2 Extension 2: Performance Enhancement
Memory controllers receive all the cache miss traffic directed by

the last level cache to the memory. Hence, they become hotspots
when there are many cache misses. Therefore, placing many mem-
ory controllers on a given row (column) causes congestion on the
corresponding row (column), and results in performance degrada-
tion. To alleviate this problem, we add constraints on the maximum
number of memory controllers that can be placed on a given row or
column.

∀i, r
X

c

ui
rc2 ≤ Max number of MC’s per row (23)

∀i, c
X

r

ui
rc2 ≤ Max number of MC’s per column (24)

where ui
rc2 = 1 implies that there is a memory controller in row r,

column c of product class i.

5.3 Extension 3: Heterogeneous Resource
Support

Finally, we consider different width and height for core, mem-
ory controller, and memory channel tiles to support heterogeneous
resources. More specifically, we add Constraints (25) and (26) to
achieve the maximum height (width) in given row (column). Then,
we modify our area computation to capture the difference in core

and memory controller dimensions using Constraints (27) and (28):

∀i, r, 0 ≤ c < Ci, hi
r ≥ ui

rc1 × hcore (25)
∀i, r, 0 ≤ c < Ci, hi

r ≥ ui
rc2 × hMC

∀i, c, 0 ≤ r < Ri, wi
r ≥ ui

rc1 × wcore (26)
∀i, c, 0 ≤ r < Ri, wi

c ≥ ui
rc2 × wMC

∀i, r, c, Hi =
X

r

hi
r (27)

∀i, r, c, Wi =
X

c

wi
c (28)

where hcore, wcore, hMC , and wMC denote core height and width,
and memory controller height and width, respectively. hr and wc

also denote height of row r and width of column c, respectively.
Note that our minimization objective ensures that the smallest pos-
sible values for hi

r and wi
c are obtained. In the following section,

we describe our experimental setup, and discuss our results.

6. EXPERIMENTAL RESULTS AND
ANALYSIS

We now describe the infrastructure developed for the proposed
multi-product CMP floorplan optimization framework, and discuss
our experimental results.

6.1 Experimental Setup
We developed a Perl script (∼2000 lines of code) to read in a

floorplan description file, and generate the corresponding ILP con-
straints. We feed the ILP formulation to CPLEX [13] to obtain
the uncore floorplan description for each product class. Finally,
we generate a visual representation for each product class. The
input floorplan description file includes the following information:
(1) the grid size, (2) minimum (resp. maximum) number of cores
and memory controller tiles for each product, (3) maximum number
of memory controller tiles in a given row or column of a product,
(4) core and memory controller dimensions, and (5) building block
power values, and power budget for each product class. Grid size is
set to be greater than the total number of tiles in the largest product
class. Our script generates an ASCII file which contains the corre-
sponding ILP constraints for the given floorplan description file. To
show the chopping operations that have taken place from Pi to Pj ,
we generate visual representations of all the intermediate products
between Pi and Pj .

6.2 Representative Example
To validate the proposed approach, we investigate the example

problem shown in Figure 5, which has two product classes: (1) P1

with 14 cores and 2 MCs, and (2) P2 with 6 cores and 2 MCs.
In this example, hcore and hMC are 3 and 1 units, and wcore and
wMC are both 4 units. For P1, we have to make sure to place the
MCs on the boundary. However, placing both of them in the first or
last column will not help minimize the area for P2, since the mem-
ory controller width is the same as that of core. In addition, placing
the memory controllers in different rows is not advantageous, since
we would not benefit from the smaller height of the memory con-
troller to minimize area when chopping rows. On the contrary, we
may achieve a configuration with a smaller row after corresponding
chopping operations, if we place both of the memory controllers in
either the top or the bottom row, as shown in Figure 5(a).

Figures 5(b), (c), and (d) show possible configurations for P2.
Note that there are other symmetric solutions which are identical

MC MC

C C C C

C C

C C C C

C C C C

MC MC

E C C C

E E

E E E E

E C C C

MC MC

E C C E

E E

E C C E

E C C E

MC MC

C C C C

C C

E E E E

E E E E

(a) (b)

(d)(c)

Figure 5: An example testcase with two products.

to the configurations shown in the figures. Given core and mem-
ory controller width and height values, the configuration in Figure
5(c) achieves the smallest half-perimeter (respectively area) among
all three configurations. The proposed method has appropriately
picked the solution shown in Figure 5(c). In addition to the op-
timal solution, our approach enables the designers to obtain and
inspect all the possible solutions from the pool of solutions derived
by CPLEX such that they can be compared. We have also verified
our approach against real industry products and observed that our
proposed solutions match those developed by the designers, but are
obtained in a much shorter amount of time. This productivity gain
is significant, since multi-product floorplan optimization is repeated
many times due to changes in the core architecture and NoC design.

6.3 Significance Assessment
We performed additional experiments using three testcases with

varying number of cores, memory controllers, and memory chan-
nels, as summarized in Table 1. In our testcases, core and MC tiles
have both 3 units of width, while the core and MC heights are 2
units and 1 unit, respectively. The width (height) of a column (row)
is determined by the width (height) of the largest building block in
that column (row). As mentioned before, memory controllers can
reduce chip height if all them are placed in the same row.

The floorplan of each product is simultaneously obtained after
solving the associated ILP problem. In our problem formulation,
the grid size is independent from total number of tiles in the largest
product. For instance, if the largest product has 20 tiles, the grid
size does not have to be 4 × 5 or 5 × 4, but can be any size that
contains the largest product.1 This allows us to efficiently explore
different solutions with heterogeneous resources.

Table 1: Our experimental testcases.

Num. of Cores Num. of MCs Num. of MChs

Product 1 2 3 4 1 2 3 4 1 2 3 4

Te
st

ca
se 1 24 16 10 6 6 4 2 2 6 4 2 2

2 36 27 18 - 8 6 4 - 8 6 4 -

3 48 32 24 16 8 6 4 2 8 6 4 2

1Selecting a very large grid size will increase the runtime due to
additional constraints for the extra tiles.

Figure 6: Testcase 2 with three different products and varying
number of cores, memory controller, and memory channels.

For illustration purposes, we show the three product classes of
testcase 2 in Figure 6. Tiles denoted with C, MC, MCh, and E
represent cores, memory controllers, memory channels, and empty
tiles, respectively. Figure 6 shows the final floorplan of all three
product classes of testcase 2. Product class P2 is derived from P1

by three consecutive chopping operations. First, the 5th and 7th

columns are chopped, as illustrated in Figure 6 using the dotted
lines. The resulting floorplan would have one extra memory con-
troller than the specification summarized in Table 1. Hence, the
memory controller in the middle of the second column and the cor-
responding memory channel are chopped. Finally, we note that the
remaining columns are shifted to obtain the floorplan of P2 depicted
in Figure 6. Similarly, the third column, second row, and an addi-
tional core in P2 are chopped away to obtain the product class P3,
as illustrated in Figure 6.

Table 2 shows the number of binary variables, number of con-
straints, and the CPU runtime to solve the corresponding ILP prob-
lem. We observe that our approach has good scalability with respect
to the number of resource types used in a given design. All of our
testcases represent future-generation CMPs; runtimes for smaller
testcases are on the order of a few seconds to a few minutes. In
addition, our method can be easily run on multiple computing re-
sources if multiple product configurations need to be explored.

Table 2: Complexity and runtime of our approach.

Testcase #binary variables #constraints CPU runtime (sec)
1 595 3014 687
2 896 6204 4744
3 1089 7218 14936

7. CONCLUSIONS
In this paper, we have proposed a simultaneous floorplan opti-

mization framework for CMPs across multiple products. We de-
fine the concept of a choppable floorplan which enables us to eas-
ily derive the floorplan of smaller products from those of larger
ones through simple chopping operations. Our approach supports
(1) multiple resource types (i.e., core, memory controller, mem-
ory channel, etc.), (2) design space exploration of achievable floor-
plans under given power and performance budgets, and (3) hetero-
geneous resources (i.e., different height and width values for each
resource type. We observe that our approach efficiently finds chop-
pable floorplans across multiple products to reduce re-design costs
and shortens time-to-market.

References
[1] S. N. Adya and I. Markov, “Fixed-Outline Floorplanning: En-

abling Hierarchical Design,” IEEE Trans. VLSI, 11(6) 2003,
pp. 1120–1135.

[2] K. Sankaranarayanan, S. Velusamy, M., L. Charles and K.
Skadron, “A Case for Thermal-Aware Floorplanning at the
Microarchitectural Level,” Journal of ILP, (8) 2005, pp. 1–16.

[3] A. M. Smith, G. A. Constantinides and P. Cheung, “Integrated
Floorplanning, Module-Selection, and Architecture Genera-
tion for Reconfigurable Devices,” IEEE Trans. VLSI, 16(6)
2008, pp. 733–744.

[4] S. Sutanthavibul, E. Shragowitz and J. B. Rosen, “An Analyt-
ical Approach to Floorplan Design and Optimization,” IEEE
Trans. CAD, 10(6) 1991, pp. 761–769.

[5] D. F. Wong and C.-L. Liu, “A New Algorithm for Floorplan
Design,” Proc. DAC, 1986, pp. 101–107.

[6] Q. Ma and M. D. F. Wong, “Configurable Multi-Product
Floorplanning,” Proc. ASPDAC, 2010, pp. 549–554.

[7] N. Nikitin, S. Chatterjee, J. Cortadella, M. Kishinevsky and
U. Y. Ogras, “Physical-Aware Link Allocation and Route As-
signment for Chip Multiprocessing,” Proc. NOCS, 2011, pp.
125–134.

[8] J. de San Pedro, N. Nikitin, J. Cortadella and J. Petit, “Physi-
cal Planning for the Architectural Exploration of Large-scale
Chip Multiprocessors,” Proc. NOCS, 2013, pp. 1–2.

[9] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson and M. H.
Lipasti, “Achieving Predictable Performance Through Better
Memory Controller Placement in Many-Core CMPs,” ACM
SIGARCH Computer Architecture News, 37(3) 2009, pp. 451–
461.

[10] R. Marculescu and P. Bogdan, “The Chip Is the Network:
Toward a Science of Network-on-Chip Design,” Foundations
and Trends in Electronic Design Automation, 2(4) 2009, pp.
371–461.

[11] U. Y. Ogras and R. Marculescu, Modeling, Analysis and Op-
timization of Network-on-Chip Communication Architectures,
Springer Science & Business Media, 2013.

[12] Intel ARK, “Haswell Products”, http://ark.intel.
com/products/codename/42174/Haswell\#@
Server.

[13] ILOG CPLEX, http://www.ilog.com/products/
cplex/.

