
Clock Clustering and IO Optimization for 3D Integration
Samyoung Bang∗, Kwangsoo Han†, Andrew B. Kahng†‡ and Vaishnav Srinivas†

†ECE and ‡CSE Departments, UC San Diego, La Jolla, CA 92093
∗Samsung Electronics Co. Ltd, Hwaseong-si, South Korea

eva.bang@samsung.com, {kwhan, abk, vaishnav}@ucsd.edu

Abstract—3D interconnect between two dies can span a wide range of
bandwidths and region areas, depending on the application, partitioning
of the dies, die size, and floorplan. We explore the concept of dividing
such an interconnect into local clusters, each with a cluster clock. We
combine such clustering with a choice of three clock synchronization
schemes (synchronous, source-synchronous, asynchronous) and study
impacts on power, area and timing of the clock tree, data path and
3DIO. We build a model for the power, area and timing as a function of
key system requirements and constraints: total bandwidth, region area,
number of clusters, clock synchronization scheme, and 3DIO frequency.
Such a model enables architects to perform pathfinding exploration
of clocking and IO power, area and bandwidth optimization for 3D
integration.

Keywords: 3D IO, 3D integration, clock distribution, synchronization

I. INTRODUCTION

3D interconnect can span a wide range of bandwidths (few GB/s
to hundreds of GB/s) and region area (few mm2 to the full die
area). The 3DIO frequency and synchronization scheme are two key
choices that play into the power and area for such an interconnect.
Clock and data power for such interconnect can often be a significant
component of total chip power. The synchronization scheme for the
3DIO clocking could be (i) synchronous (traditional clock tree), (ii)
source-synchronous (forwarded clock), or (iii) asynchronous (separate
clock trees). Based on the 3DIO frequency and synchronization
scheme, the design could lend itself to dividing the clock into local
clusters as shown in Figure 1, which are tightly skew-balanced within
themselves but have looser skew requirements between clusters. This
allows for a tighter timing budget for the clock and data paths and
also lends itself to use of low-power 3DIO for source-synchronous
and asynchronous schemes at the expense of overhead in the clock
generation and distribution for every cluster. The 3DIO frequency
that can be achieved depends on the timing budget, which in turn
depends on the synchronization scheme and clustering.

In this work, we investigate the optimal choice of 3DIO frequency,
synchronization scheme and clustering for 3D interconnect power,
area and bandwidth optimization. The optimal 3DIO frequency
depends on the cost function of power and area. While wider and
slower buses generally consume less power due to lower clock tree
power and lower 3DIO power, they do take up more area, especially
due to limitations in the micro-bump pitch and 3DIO electrostatic
discharge (ESD) requirements.

The default clocking methodology for 3D is likely still based on
to be a synchronous clocking scheme. Previous research has sought
to improve CTS outcomes and 3D clock tree structures for such a
clocking scheme [18], [17], [2], [7], [10]. These studies on 3D clock
trees focus on optimization of the synchronous clock tree to minimize
skew, power and area, but do not consider alternative synchronization
schemes. In this paper, we study different synchronization and clus-
tering schemes, seeking to identify and model the optimal choice of
3DIO frequency (number of 3DIOs), clock synchronization scheme,
and clustering for a given cost function of power, area and bandwidth.

To find these optimal choices, we build several analytical models
to estimate the power, area and timing of the clock tree, data path
and 3DIO. The models that we develop encompass on-die clock tree
and data path models, and the 3DIO models from [4], adapted for the
three synchronization schemes. We combine analytical models [12],
[13], [23] and metamodeling techniques [3] to fit models against data
from a Design of Experiments (DOE).

Our contributions in this paper are as follows.
• We propose a new view of the design space for 3DIO frequency,

clock synchronization scheme and clustering based on band-
width and region area of the interconnect.

• We develop accurate power and area model for the 3D inter-
connect based on bandwidth, region area, number of clusters,
cluster clock frequency, and clock synchronization scheme.

• We demonstrate how the space of design requirements and
constraints is partitioned according to the choice of optimal
synchronization scheme.

In the following, Section II describes the concept of clustered
clocking, elaborates on the differences between the clocking schemes,
and provides hypotheses on the design space partitioning based
on these options. In Section III, we propose a methodology to
build power and area models for the design space based on DOE
results, using metamodeling techniques [3]. This modeling can then
enable a flow that chooses the optimal choice of 3DIO frequency,
synchronization scheme and clustering as described in Section II. The
P&R and timing flow used to implement our design of experiments
(DOE) is described in Section IV. Section V describes our DOE
and the results, including the fitted models versus the DOE data. We
summarize the paper in Section VI.

II. 3DIO CLUSTERING AND CLOCKING

One way to localize the clock tree of the 3D interconnect is to
divide it into clusters. Such a clustered interconnect has a cluster
clock, with skew constraints that could be tighter than those of the
global clock. Figure 1 shows the design divided into four clusters.
The global clock is distributed to the clusters, and once in the cluster,
a cluster clock tree distributes the clock within the cluster. The skew
constraints for the 3D interconnect are limited to the cluster clock
tree; hence, use of the cluster clock tree allows for smaller skew.
Further, the 3DIO array is now divided per cluster as well, which
means that the data paths, going from the uniformly distributed sinks
to the 3DIO at the center of the cluster, are much shorter. On the other
hand, clustering the design has multiple overheads: synchronizing
data between clusters; the clock 3DIO per cluster to the top die; and
the blockages caused by the 3DIO array being distributed per cluster.

Fig. 1. Clustering the clock domains.

The cluster clock between the two dies must be synchronized.
There are three basic methods used to synchronize the interconnect.

(i) Synchronous. In the synchronous method, the cluster parts in
both dies share a common cluster clock tree that is balanced to end
points in both dies. The clock tree on each die will vary according
to the process variation of that die, so inter-die skew is large for
the inter-die tree. But, at lower frequencies, this scheme provides a
simple approach that is consistent with low-power implementation.
(ii) Source-synchronous. In the source-synchronous method, a clock
is forwarded from the bottom die to the top die (or vice-versa). This
forwarded clock is then built into a tree for the sinks on the top
die. Such a scheme does not require skew balancing across two dies,
but requires balance delays (Tb) within each die on the data path
to match the clock insertion delay and enable source-synchronous
data capture. There are power and area overheads associated with
such balancing, but the improvement in the timing budget means
that higher speeds can be achieved over the 3DIO. Both synchronous
and source-synchronous data paths can enable a double data rate
(DDR, both edges of the clock) design without any overhead in clock
generation. We assume such a DDR design since it provides a way
to minimize the number of 3DIOs.
(iii) Asynchronous. The asynchronous scheme has a FIFO that helps
clock domain crossing between the two dies. Since the latency impact
can be large, this is often combined with a high-speed serial IO that
enables lower latency. As a consequence of the serial IO, we also
obtain a much smaller IO footprint (smaller number of 3DIOs) at
the expense of power and latency. We assume a 1:8 serialization
for the asynchronous scheme. Although further serialization may be
possible, the latency impact for much larger serialization ratios could
be considerable, given the need to deserialize as well as the much
slower cluster clock needed for a given 3DIO maximum frequency.

We observe that the source-synchronous clocking scheme allows
for higher 3DIO frequencies than the synchronous clocking scheme,
as it matches the delays in each die and does not expose the 3DIO
timing to inter-die variations in the clock tree. But, such matching
delays come with an area and power cost. Asynchronous clocking
schemes provide a unique way of improving power for higher 3DIO
frequencies. As they serialize the bus before off-chip transmission,
such clocking schemes allow the cluster clock to operate at a lower
speed while achieving a higher 3DIO bandwidth. This enables cluster
clock tree power reduction at higher 3DIO speeds, offsetting the
increased 3DIO power incurred by a narrower and faster bus. Further-
more, the narrower bus itself allows for 3DIO area reduction. When
asynchronous clocking is combined with clustering, the 3DIO timing
budget enables higher 3DIO frequencies, allowing for interesting
tradeoffs between power and area. Exposing how these choices affect
power and area based on the bandwidth and region area can enable
system architects to make better 3DIO and clocking choices.

The three synchronization schemes are outlined in Figure 2.
The figure shows the DDR (double data rate) implementation for
the synchronous and source-synchronous schemes, which effectively
doubles the 3DIO frequency and implies a half-cycle timing path
for setup (as opposed to a full-cycle timing path as in a traditional
single data rate design). The data path is shown in red, while the clock
path in blue. For the asynchronous case, the clock and data path is
common, shown in purple. The bottom die clock tree is shown in
yellow, while the top die clock tree is shown in light blue. As can
be seen, the synchronous case exposes an inter-die skew between the
yellow and light-blue clock trees, while the source-synchronous case
does not. Further description of Figure 2 can be found in Section III.

For a given 3DIO topology (defined by the synchronization scheme
and number of clusters) there is a maximum frequency that can be
achieved by the 3DIO. This maximum frequency is determined by
two factors: (i) the 3DIO timing budget for retiming across the dies,
and (ii) the on-die timing budget for retiming from the launch sinks
to the 3DIO (or vice-versa from the 3DIO to the capture sinks).

In general, we expect the maximum 3DIO frequency to
be the highest for asynchronous/highly-clustered and lowest for
synchronous/lightly-clustered topologies. This is because on-die and

Fig. 2. Clock synchronization schemes.

3DIO timing budgets worsen as we progress from the former end
of the design space to the latter end. The 3DIO timing budget is
best for asynchronous schemes due to embedded clocks not having
tight skew requirements, and much better jitter tolerance. The on-
die timing budget is also better for asynchronous schemes due to
lower cluster clock frequency (a consequence of serial 3DIO), and
properties of the local sinks (together, highly-clustered).

In the following sections, we build our model and review the results
in the context of three problem statements:

1) For a given BW and region area, find a clock synchronization
scheme, number of clusters and clock frequency that minimizes
power, given an area constraint.

2) For a given BW and region area, find a clock synchronization
scheme, number of clusters and clock frequency that minimizes
area, given a power constraint.

3) For a given region area, find a clock synchronization scheme,
number of clusters and clock frequency that maximizes BW
for a given power and area constraint.

III. POWER, AREA AND TIMING MODEL

In this section, we describe our model which accurately estimates
total power, area and timing (worst negative slack (WNS)) for a
given tree topology (synchronization scheme and clusters), bandwidth
and region area. Figure 3 shows the 3DIO/CTS directed graph of
our modeling approach. The primary inputs (indicated by circles)
are bandwidth, region area, cluster clock frequency, synchronization
scheme and number of clusters. Based on these inputs, we calculate
the number of sinks/FFs (= 2 ·BW/ f), 3DIO frequency (fIO = 2 · f
for synchronous and source-synchronous schemes; fIO = 8 · f for
asynchronous scheme), number of 3DIOs (= BW/ fIO), and maximum
skew and transition requirements (= k/ f).

The analytical expressions given below are often hard to fit across
large ranges of many input parameters. We employ metamodeling
techniques to improve fitting across the large ranges and number of

input variables. We choose to use an ANN (Artificial Neural Network)
model for our fit [3]. Feeding just the primary inputs in Figure 3 does
not, in our experience, yield very good results; however, with the help
of the directed graph, a systematic approach to propagate the inputs
through the graph aids the ANN model in finding fits for power, area
and WNS within +/-15% across our design of experiments (DOE).
In the following subsections, we describe the details of our model.
Section V then gives fitting results. Note that to estimate the final
outcomes (i.e., power, area, and WNS), we need buffer and wirelength
models for clock and data path as our foundations.

A. Clock and Data Wirelength

The work of Snyder et al. [21] and Steele and Snyder [22] show
that the expected total tree length of a Euclidean Steiner minimal
tree over n points uniformly distributed within a bounded region Areg
is proportional to

√
Areg ·N for sufficiently large N. The constant

of proportionality, denoted by k, is dependent on the functional of
the pointset. Further, we empirically observe that the constant is not
a single value, but is itself a function of region area Areg, number
of clusters Nc, and maximum transition time constraint T max

tran (k =
f (Areg,T max

tran ,Nc)).
Clock wirelength significantly changes according to the clock tree

structure (tall and narrow tree vs. short and wide tree). To analyze
the structure of the clock tree generated by commercial tools, we
extract the average fanout and driven wirelength of clock buffers at
each depth (l) of clock trees synthesized with different region areas
and/or number of FFs (N f f). The depth of clock source is zero and
the maximum depth is L, which is the number of buffer stages on
the longest path from the clock source to any sink FF.

From the extracted data, we observe that the average fanout
changes depending on the region area and the number of FFs, but the
average wirelength of driven nets at depths up to L is bounded. This
implies that the tool increases Nl

g, which is the number of buffers at
depth l−1, and the maximum depth of clock tree L, as Areg increases,
and as N f f and T max

tran decrease. Therefore, it is very important to
accurately estimate both L and Nl

g at each clock depth. We estimate
the clock wirelength using the following method. First, we determine
the Nl

e, which is the number of cells driven by a buffer at depth l−1,
and calculate Nl

g (i.e., Nl+1
g /Nl

e). Then, using the equation
√

Areg ·N
from [22], we obtain Equation (1):

wl = Nl
g ·

√
Areg · Nl

e/Nl
g (1)

Extending Equation (1) to total clock wirelength, we obtain

Wclk =
L

∑
i=0

wl =
√

Areg · (
√

N f f +
L−1

∑
i=0

√
Ni

e ·Ni
g)

=
√

Areg ·N f f · (1+
L

∑
i=1

√
Ni

g) = k ·
√

Areg ·N f f

(2)

where k is a coefficient factor. However, Equation (2) does not
account for the global clock tree that distributes the clock to the
clusters. We extend Equation (2) as

Wclk = kc ·
√

Areg ·N f f + kg ·
√

Areg ·Nc (3)

where kc and kg are fitted coefficients for cluster and global clock
trees. Note that both kc and kg are sensitive to Areg, T max

tran , N f f and
Nc.

Data path wirelength is proportional to the number of data wires
and the cluster dimension.

Wdata = k0 ·N f f ·
√

Areg/Nc (4)

For a large number of clusters, when the number of sinks per
cluster is small, the data wirelength deviates from the above based on
the placement tool runscript, since the sinks are not evenly distributed

in the cluster. We do not consider such cases since they incur large
power and area overheads due to over-clustering.

B. Clock and Data Buffer Area
Tellez and Sarrafzadeh [23] give a method to insert the minimum

number of buffers under a given transition time (T max
tran) constraint.

They formulate a nonlinear constrained buffer insertion problem that
minimizes the number of stages in a given rooted clock tree, such that
for each stage, the stage rise time does not exceed T max

tran . They then
linearize this problem by using the concept of maximum capacitance
(Cmax). Maximum wirelength Wmax is computed such that the rise
time at the end of the wire is T max

tran . Using the relationship Cmax =
C0 ·Wmax +Cg, where C0 is the capacitance per unit length and Cg
is the gate input capacitance, they conjecture that any buffer stage i
with stage capacitance Ci ≤Cmax will have T i

tran ≤ T max
tran . Based on

this approach, we estimate the number of clock buffers (Ncbu f) as

Ncbu f =
Wclk ·C0 +N f f ·C

f f
g

Cmax−Cbu f
g

(5)

where Cbu f
g and C f f

g are the input gate capacitance of a buffer and a
flip-flop, respectively.

Cmax is related to T max
tran as follows, which is a consequence of the

slew degradation discussed in [24]:

T max
tran =

√
(T0)2 +(k1 ·Cmax ·Rmax)2

Cmax = k2 ·
√

(T max
tran)2− (T0)2

(6)

where T0 is the transition time at the input to the line and Rmax
is the maximum resistance of Wmax. The total buffer area (Aclk) is
proportional to Ncbu f , so we have

Aclk = k3 ·
Wclk ·C0 +N f f ·C

f f
g√

(T max
tran)2− (T0)2

(7)

We again extend this expression to a clustered design, and add the
clock buffers for the global tree and cluster tree:

Aclk = k1 ·
N f f ·C

f f
g +Wclus ·C0√

(T max
tran)2− (T0)2

+ k2 ·
Nc ·Cbu f

g +Wglob ·C0√
(T max

tran)2− (T0)2
(8)

where k1 and k2 are fitted coefficients. C f f
g and Cbu f

g are the flip-flop
and buffer input gate capacitances, respectively, and C0 is the wire
capacitance per unit length.

The data buffer area is calculated as follows. Equation (7) can be
used to calculate the number of buffers per data wire. Since some
of the data wires could be quite small, we need to use a ceiling
function to find an integral number of buffers per data wire as shown
in Equation (9). Also, we need a minimum number of data buffers,
nhold , to ensure that hold time is not violated:

ndbu f (wi
data) = MAX(

⌈
k3 ·

wi
data ·C0 +C f f

g√
(T max

tran)2− (T0)2

⌉
,nhold)

(9)

where wi
data is the wirelength of ith data path. For each cluster, the

data wires begin at the sinks that are distributed uniformly across
the cluster and end at the 3DIO array at the center of the cluster, as
shown in Figure 4.

Figure 4 shows how for a square of side d, and a pitch p of the
placed sinks, there are concentric octagons with the same Manhattan
wirelengths from the 3DIO. If we index each octagon i (starting from
the center), then the number of sinks per octagon increases as 4 · i
until i = d

2p , beyond which the number of sinks per octagon decreases
as 4 · (d

p − i). We thus obtain the total number of data buffers in
Equation (10), and consequently the data buffer area (Adata). Note

Fig. 3. 3DIO/CTS directed graph.

that we ignore the area of the 3DIO array and the other cases in
which the placement of sinks does not exactly follow the octagon
shape, since this equation is only to guide our metamodel for better
estimation.

For the synchronous clocking case, the inter-die variation is large,
which leads to a large number of hold buffers added in the design,
and to a larger nhold value for the 3DIO timing path.

Adata ∝ Ndbu f =

d
2p

∑
i=1

4i ·ndbu f (i · p)+

d
p−1

∑
i= d

2p +1

4(
d
p
− i) ·ndbu f (i · p)

p =

√
Areg

N f f
, d =

√
Areg

Nc
(10)

C. 3DIO Area and Power
The 3DIO power and area models are based on CACTI-IO [4].

The IO area equation is shown below in Equation (11). The fitting
constants used are for a foundry 65nm technology to align with the
CTS results.

AIO = NIO ·
(

A0 +
k4

min(Ron,2 ·RT T 1)

)
+

NIO ·
(

1
Ron

)
· k5 · (fIO)+ k6 · (fIO)2 + k7 · (fIO)3)

(11)

The IO power is a sum of the dynamic switching power, ter-
mination power and bias power as described in [4]. The load
capacitance and termination frequency based threshold values have
been nominally set based on a 3D interconnect. We use 750 MHz
as the threshold for a pseudo-differential receiver consuming 100uA
per IO, and 1500 MHz as the threshold for a termination consuming
1mA per IO. We also assume a static power overhead of 2.5mA for
the PLL required in the asynchronous serial design per cluster. There
are a number of energy-efficient serial IO designs that have been

Fig. 4. Data wirelength distribution.

developed in the literature [25], [26], [27], [28], [29], [30], which
could be applied to 3D interconnect as well, but we do not include all
these schemes. Instead, we use a simple model for the asynchronous
IO. The user using our flow can easily replace the 3DIO models with
models from the library choices available and repeat the design space
search that we illustrate below. Extending our model to include serial
link design optimization [31], [32] may be interesting if the nature
of these tradeoffs is to be studied in the context of the 3D clock
clustering and 3DIO frequency. We plan to investigate this in the
future.

D. Total Power and Area

The total area is calculated as a sum of clock and data wirelength,
buffer area, and 3DIO area, as shown in Equation (12). We treat

wire area and buffer area with equal weight for the purpose of our
design space study, which might lead to large area values relative
to the region area of the design, since multiple metal layers exist.
One may wish to weight these unequally, e.g., if buffer area is a
bigger concern than wire area, or vice-versa. The total power for
the wire and buffers is proportional to their area (capacitance) and
frequency, but also includes leakage and any static power which is
independent of frequency but proportional to the number of buffers
(see Equation (13)).

Atotal = k8 ·Wclk + k9 ·Wdata +Aclk +Adata +AIO (12)

Ptotal = (k10 ·Wclk + k11 ·Wdata + k12 ·Aclk+
k13 ·Adata) ·Fclk + k14 · (Aclk +Adata)+PIO

(13)

E. WNS and Fmax for On-die and 3DIO

WNS is calculated for two paths, the first being the on-die path
from launch in the cluster to capture in the 3DIO, and the second
being the 3DIO die to die path.

For the on-die worst-case negative slack, all three synchronization
schemes follow a synchronous full-cycle reg-to-reg timing, with the
setup (WNSsetup) and hold (WNShold) slacks described as follows:

WNSsetup = Tper −Tdata−Thold f ix−Tskew−Tjit setup−Tsetup

WNShold = Thold f ix−Tskew−Tjit hold −Thold
(14)

where Tper is the clock period, Tdata is the delay of the data as shown
in Figure 2(a), Thold f ix is the inserted delay to fix hold time, Tskew
is the skew in the clock tree, Tjit setup is the clock jitter, Tjit hold is
the 0-cycle uncertainty, Tsetup and Thold are the setup and hold times
of the FF.

The worst negative slacks for the IO (WNSIO setup, WNSIO hold)
for the three synchronization schemes are as follows.

Source-synchronous:

WNSIO setup = Tper/2−Thold f ix−Tskew−Tjit setup−Tsetup

WNSIO hold = Thold f ix−Tskew−Tjit hold −Thold
(15)

Synchronous:

WNSIO setup = Tper/2−Tdata−Thold f ix−
Tskew inter die−Tjit setup−Tsetup

WNSIO hold = Thold f ix−Tskew inter die−Tjit hold −Thold

(16)

Asynchronous:

WNSIO setup = Tper/8−Tjit setup−Tsetup

WNSIO hold = Thold f ix−Tjit hold −Thold

Tjit hold ' 0
(17)

For all three schemes, the skew and jitter are described as below,
where Tclk is the clock insertion delay of the cluster clock. The fitted
coefficients k15 to k19 are different for each clocking scheme.

Tskew = k15 ·Tclk

Tjit setup = k16 ·Tclk + k17 ·Tper

Tclk = k18 ·Areg/Nclus + k19 ·
Wclk ·C0 +N f f ·C

f f
g√

(T max
tran)2− (T0)2

(18)

The skew for the inter-die synchronous case is much larger due
to inter-die process variation (much larger k15). Tdata also follows
the same form as the Tclk shown above. As described in Section II,
the source-synchronous case is not exposed to inter-die variation, and
also does not have any data-delay eating into the setup slack due to
the balance delay Tb shown in Figure 2(b).

Fmax is calculated from the smallest Tper that still results in a
positive WNS. Fmax provides a better way to search for a valid design
point and is also less prone to large % errors, unlike a WNS figure of
merit when WNS is close to 0. For the asynchronous 3DIO, since the
IO timing budget is mainly dominated by jitter and outside the scope
of the timing flow described in Section IV, we assume 8000 Mbps
as the maximum data rate. This means that the cluster frequency is
limited to 1 GHz (due to 1:8 serialization) for the asynchronous case.

IV. P&R AND TIMING FLOW

In this section, we describe different 3D P&R flows according
to the different choice of clock synchronization schemes. We use a
65nm TSMC library with our P&R flows which are realized using
Synopsys IC Compiler I-2013.12-SP1. Before describing the details
of our flows, we clarify the following assumptions in our design:

• There are three kinds of launch-capture paths: (i) the on-die
paths from the launch to the capture FFs on bottom die (H0);
(ii) the paths going through the 3DIOs that are from the FFs
on the bottom die to the FFs on the top die (Hc); and (iii) the
on-die paths from launch to capture FFs on the top die (H1).
The H0 and H1 paths do not go back and forth between bottom
and top die.

• 3DIOs are placed in the center of each cluster in a square array
with 30 µm pitch.1

• Launch (capture) FFs of H0 (H1) on the bottom (top) die are
uniformly distributed within a given cluster region. Pitch be-
tween any two neighboring uniformly distributed FFs is

√
Areg
N f f

.
Capture (launch) FFs of H0 (H1) on the bottom (top) die are
placed immediately next to the 3DIOs. We assume that the rest
of the logic, which is not included in the database, does not
block such a placement assumption.

• Hc are unidirectional paths from bottom die to top die and
only have IO circuits which are (i) double data rate (DDR) for
the synchronous and source-synchronous schemes; and (ii) 1:8
serializer, 8:1 deserializer for the asynchronous scheme. These
circuits are placed right next to the 3DIOs.

• In timing analysis, we use a 7.5% clock uncertainty that includes
clock jitter and OCV margin.

• For timing constraints, we use 5%, 75% and 20% of the clock
period as max transition time, max clock insertion delay and
max clock skew, respectively.

A. Synchronous
In the synchronous scheme, the clusters in both dies share a com-

mon cluster clock tree that is balanced to endpoints in both dies. Since
the commercial tool cannot synthesize the clock tree concurrently
considering both dies, we use the flow shown in Figure 5. First, we
generate a gate-level netlist and timing constraints file (i.e., SDC file)
for a given BW , Areg, Nc and f . We then place FFs, DDR circuits
and 3DIOs based on our assumptions described above. To balance the
clock tree on both dies, we synthesize the cluster clock tree on the
top die, and then extract the maximum clock insertion delay Tclk1
of the clock tree as shown in Figure 2(a). Next, we annotate the
delay to the clock 3DIO on the bottom die so that the commercial
tool can consider the delay during the cluster clock tree synthesis
of the bottom die. After CTS and routing on the bottom die, we
propagate the Tdata delays for the routing on the top die. Note that
if the commercial tool performs the routing without consideration of
Tdata, the tool will insert many redundant hold buffers to compensate
the clock insertion delay Tclk1 in addition to the jitter Tjit hold and
FF hold time Thold .

For timing analysis, we extract the netlist and parasitics (SPEF) of
both the bottom and top dies, and merge the netlists and SPEFs as one

1We have sampled the sensitivity of the P&R results to aspect ratio of the
region area, non-square cluster shape, 3DIO pitch and technology. We see that
the trends in our data are not significantly affected by these assumptions. This
being said, we have not included these parameters in a full-factorial DOE.

Fig. 5. Flow for synchronous clocking scheme.

netlist and SPEF file. We then use Synopsys PrimeTime to analyze
setup and hold WNS. In timing analysis, we use best corner (BC) and
worst corner (WC) for inter-die variation, and assign the same corner
for paths that are on the same die. There are four combinations (i.e.,
BC-BC, BC-WC, WC-BC, WC-WC) and we report the worst setup and
hold WNS out of the four combinations. We note that this is different
from conventional timing analysis, which would analyze setup (hold)
timing by assigning the worst (best) corner to the launch path and the
best (worst) corner to the capture path, in consideration of intra-die
variation. Here, we assign the same corner to the paths on the same
die no matter whether the paths are launch or capture paths.

B. Source-Synchronous
The key feature of the source-synchronous scheme is to forward

the clock to the clock 3DIOs which match the delays from the
clock source to data 3DIOs on the bottom die. Figure 2(b) shows
an example launch-to-capture path from bottom die to top die. Since
the launch delays (i.e., Tdata + Tb) up to data 3DIOs including balance
delays, and the delays (i.e., Tclk0 + Tclk1) up to clock pins of capture
FFs, are well balanced, the inter-die variation is negligible. Note that
we take into account 3DIO interconnect variation and interconnect
loading mismatch by adding 5% margin to the balance delay (i.e.,
Tb = 1.05×Tclk1). However, special IO circuitry is required to insert
the balance delay (Tb); the additional IO circuits increase total power
and area compared to the synchronous scheme.

Figure 6 shows our flow for the source-synchronous scheme. The
first two steps (i.e., generation of the gate-level netlist, and custom
placement) are the same as for the synchronous scheme. After custom
placement on the bottom and top die, we synthesize the clock tree
and route on the bottom die, and separately synthesize the clock tree
only for the top die. We then extract Tb (i.e., Tclk1) for each capture
FF and annotate the delays to the corresponding data 3DIOs. These
annotated delays guide the commercial tool to insert proper Thold f ix
only considering Tjit hold and Thold .

Fig. 6. Flow for source-synchronous clocking scheme.

Timing analysis is performed in the same way as for the syn-
chronous scheme.

C. Asynchronous
In the asynchronous scheme, the cluster clock is not propagated

from bottom to top die, and separate PLLs for the IO circuits exist.
There is no inter-die variation or clock skew. Therefore, we can run
the traditional 2D flow on both dies separately. The only difference in
the gate-level netlist is that the asynchronous scheme uses serializer
and deserializer, instead of DDR module.

V. RESULTS

We now describe the DOE used to generate modeling data, the
model-fitting results, and the design space visualization.

A. DOE

We construct a DOE where we vary the bandwidth (10-200 GB/s),
region area (25-100 mm2), 3DIO clock frequency (ranges based
on the clocking scheme: synchronous (100-2000 Mbps), source-
synchronous (1500-4000 Mbps) and asynchronous (3500-8000 Mbps)
and number of clusters (1-25). We have collected data for over 256
design implementations for each of the three clock synchronization
schemes. We have chosen these ranges based on typical 3D bandwidth
requirement ranges [5] and typical speeds based on synchronization
schemes [6].

We execute our DOE for the synchronous, source-synchronous and
asynchronous schemes by running the P&R and timing flow described
in Section IV. Since our P&R flow makes the various assumptions
described in Section IV, we limit our DOE study to these design
assumptions. We then fit and validate our clock tree and data path
models based on the data from the DOE by logging all intermediate
nodes of the directed graph in Figure 3.

B. Model Fitting

We use ANN models to fit the analytical models, as described in
Section III. We make multiple runs with different training, validation
and test data sets for improved generality and robustness of the
resulting models.

The models for the internal nodes of the directed graph (clock
wirelength, data wirelength, clock buffer area, data buffer area) fit
within +/-20% error. Shown in Figures 7 and 8 are the distributions
of % model error for total on-die area and power across the three
synchronization schemes for all cases in the DOE.

The % errors of area models are 0.52/-17.8/19.76 (mean/min/max)
for the synchronous scheme, -0.189/-11.28/8.56 for the source-
synchronous scheme, and -0.08/-9.83/7.32 for the asynchronous
scheme. Also, the % errors of power models are 0.099/-13.4/13.39 for
the synchronous scheme, 0.018/-10.4/9.75 for the source-synchronous
scheme, and -0.008/ -16.65/13.22 for the asynchronous scheme. In
general, the models fit within +/-15% accuracy across a large range of
bandwidth, region area, 3DIO clock frequency and number of clusters
for all three synchronization schemes.

Fig. 7. Area model error %.

Fig. 8. Power model error %.

The Fmax error % is shown in Figure 9. The mean/min/max %
errors of Fmax models are -0.1/-14.78/13.91 for the synchronous

scheme, 0.1/-10.02/10.15 for the source-synchronous scheme, and -
0.1877/-9.47/ 12.3 for the asynchronous scheme. We use the Fmax
model to evaluate which design points meet timing, and hence are
valid entries in the design space for power and area optimization.
As indicated in Section IV, the timing for the on-die case is
quite similar for the three synchronization schemes, but the 3DIO
synchronization is very different: the synchronous scheme has the
lowest Fmax, followed by the source-synchronous scheme and then the
asynchronous scheme, which achieves the highest 3DIO frequency.

Fig. 9. Fmax model error %.

As noted above, use 3DIO power and area analytical models from
CACTI-IO [4]; and CACTI-IO model fitting results are given in [4].
We combine the CACTI-IO models for the 3DIO power and area with
the ANN models. Given these models for power, area and timing, we
may visualize the design space, as we discuss next.

C. Design Space
For an optimal power solution given an upper bound on area, we

want to pick the lowest 3DIO frequency that meets the area constraint
(as frequency goes lower the 3DIO area, sink area, and wire area all
go up). This is because lower-frequency and wider buses are lower
power for both the 3DIO and the clock tree. Once we have the lowest
3DIO frequency that meets this area constraint, we pick the 3DIO
topologies that work at this frequency and search for the one with
the lowest power. As the area constraint becomes tighter, the lowest
3DIO frequency that meets this area constraint becomes higher and
requires us to move toward asynchronous/highly-clustered solutions.
The caveat to this is that once the 3DIO frequency becomes high
enough to require termination, the power efficiency of the 3DIO
begins to improve as we scale frequency higher. This makes for an
interesting tradeoff as we get to the asynchronous synchronization
scheme. Further, the asynchronous synchronization scheme affords
the unique advantage of having a slower cluster clock frequency for
an equivalent 3DIO frequency due to the 1:8 serialization, so the CTS
power can be quite low at relatively high 3DIO frequencies.

The design space is depicted in Figure 10. We use axes of
max power constraint versus max area constraint, and show iso-
bandwidth lines. We observe that the iso-bandwidth contour lines
hit a vertical and horizontal wall. That is, for a given bandwidth,
there is a minimum power and minimum area achievable across
all synchronization schemes, number of clusters and cluster clock
frequency.

Figures 11, 12 and 13 show how these three variables change
as we move along the iso-bandwidth lines. Figure 11 shows the
synchronization scheme, Figure 12 shows the number of clusters and
Figure 13 shows the cluster clock frequency. The black dotted lines
in Figures 10, 12 and 13 are the overlay of the three synchronization
schemes shown in Figure 11.

We observe that the asynchronous scheme is area-efficient while
the synchronous scheme is power-efficient. The source-synchronous
scheme provides a valuable tradeoff between power and area along
the knee of the iso-bandwidth curve. The interesting tradeoffs be-
tween the schemes occur along these knee points as we change the
power/area constraint tradeoffs. The synchronous scheme achieves
lower power at lower frequencies since there is no overhead asso-
ciated with balancing delays (of the source-synchronous scheme) or
with serialization (of the asynchronous scheme). The asynchronous

Max Power Constraint (mW)

M
ax

 A
re

a
C

on
st

ra
in

t (
um

2)

Max Achievable Bandwidth (GB/s)

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

x 106

0

50

100

150

200

250

300

350

400

450

Fig. 10. Maximum achievable bandwidth for given power and area con-
straints.

Optimal Clocking Scheme For Max Bandwidth

Max Power Constraint (mW)

M
ax

 A
re

a
C

on
st

ra
in

t (
um

2)

0 200 400 600 800 1000

1

2

3

4

5

6

7

x 10
6

Synchronous

Source−Synchronous

Asynchronous

Fig. 11. Guidance for synchronization scheme for given power and area
constraints.

Optimal Number Of Clusters For Max Bandwidth

Max Power Constraint (mW)

M
ax

 A
re

a
C

on
st

ra
in

t (
um

2)

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

x 106

0

5

10

15

20

25

Fig. 12. Optimal number of clusters for given power and area constraints.

Max Power Constraint (mW)

M
ax

 A
re

a
C

on
st

ra
in

t (
um

2)
Optimal Cluster Clock Frequency for Max Bandwidth

200 400 600 800 1000

1

2

3

4

5

6

7

x 106

0

200

400

600

800

1000

1200

1400

Fig. 13. Cluster clock frequency based on power and area constraints.

scheme achieves a lower area as it can operate at a higher frequency
and needs fewer 3DIO.

We also observe that the optimal cluster clock frequency and
number of clusters – for a given area constraint – both increase as we
increase bandwidth (or the power constraint). However, the trend for
number of clusters is not monotonic when we change synchronization
schemes, and is also sensitive to the edge of the search hypercube
(e.g., the largest bandwidth in the search window is 450 GB/s, so
when this is reached, the bandwidth lines larger than 450 GB/s are
limited to 450 GB/s, and the number of clusters stops following the
trend as shown in the right top of Figure 12).

VI. SUMMARY

We have presented a power, area and timing model for 3DIO and
CTS that includes clustering and three different clock synchroniza-
tion schemes (synchronous, source-synchronous, asynchronous). The
model combines analytical closed-form expressions with metamodel-
based fitting to achieve within 10% error for power, area and timing
across a large range of bandwidths, region areas, numbers of clusters
and 3DIO frequencies. Such a model enables us to visualize the
design space and support architectural optimization with respect to
choice of synchronization scheme, number of clusters and 3DIO
frequency for given power and area constraints, as well as bandwidth
targets. We believe that our modeling methodology will enable
architects to study and optimize such a design space.

Our results show an interesting structure of the design space for
the synchronization scheme, number of clusters and 3DIO frequency,
wherein the area and power constraints on the design clearly affect the
optimal design choices. Generally, the synchronous scheme is more
power-efficient but has poor area efficiency, while the asynchronous
scheme is more area-efficient and reduces the number of IO but has
poor power efficiency. The source-synchronous scheme provides a
good design point along the knee of the power-area tradeoff for a
given bandwidth. Further optimization of the asynchronous serial IO
could extend the asynchronous design space by lowering the power.
Our ongoing work extends our study to include such schemes, as
well as 2.5D (interposer-based) designs.

REFERENCES

[1] T.-Y. Kim and T. Kim, “Bounded Skew Clock Routing for 3D Stacked IC
Designs: Enabling Trade-offs Between Power and Clock Skew”, Proc.
International Green Computing Conference, 2010, pp. 525-532.

[2] X. Zhao, J. Minz and S. K. Lim, “Low-Power and Reliable Clock
Network Design for Through-Silicon Via (TSV) Based 3D ICs”, IEEE
Trans. on CPMT 1(2) (2011), pp. 247-259.

[3] A. B. Kahng, B. Lin and S. Nath, “Explicit Modeling of Control and
Data for Improved NoC Router Estimation”, Proc. DAC, 2012, pp. 392-
397.

[4] N. P. Jouppi, A. B. Kahng, N. Muralimanohar and V. Srinivas, “CACTI-
IO: CACTI With Off-Chip Power-Area-Timing Models,” Proc. ICCAD,
2012, pp. 294-301.

[5] JEDEC Wide IO Specification JESD229.
[6] W. Dally and J. Poulton, Digital Systems Engineering, Cambridge

University Press, 1998.
[7] M. M. Navidi and G.-S. Byun, “Comparative Analysis of Clock Distri-

bution Networks for TSV-based 3D IC Designs”, Proc. ISQED, 2014,
pp. 184-188.

[8] X. Dong and Y. Xie, “System-Level Cost Analysis and Design Explo-
ration for Three-Dimensional Integrated Circuits (3D ICs)”, Proc. ASP-
DAC, 2009, pp. 234-241.

[9] X. Li, W. Liu, H. Du, Y. Wang, Y. Ma and H. Yang, “Whitespace-Aware
TSV Arrangement in 3D Clock Tree Synthesis”, Proc. ISVLSI, 2013, pp.
115-120.

[10] M. Mondal, A. J. Ricketts, S. Kirolos, T. Ragheb, G. Link, N. Vijaykr-
ishnan and Y. Massoud, “Thermally Robust Clocking Schemes for 3D
Integrated Circuits”, Proc. DATE, 2007, pp. 1-6.

[11] M. Saint-Laurent and M. Swaminathan, “Impact of Power-Supply Noise
on Timing in High-Frequency Microprocessors” IEEE Trans. on Ad-
vanced Packaging 27(1) (2004), pp. 135-144.

[12] C. Chu and D. F. Wong, “Closed Form Solution to Simultaneous Buffer
Insertion/Sizing and Wire Sizing” ACM Trans. on Design Automation of
Electronic Systems 6(3) (2001), pp. 343-371.

[13] R. Li, D. Zhou, J. Liu and X. Zeng, “Power-Optimal Simultaneous Buffer
Insertion/Sizing and Wire Sizing”, Proc. ICCAD, 2003, pp. 581-586.

[14] X. Liu, Y. Peng and M. C. Papaefthymiou, “Practical Repeater Insertion
For Low Power: What Repeater Library Do We Need?”, Proc. DAC,
2004, pp. 30-35.

[15] X. Wu, W. Zhao, M. Nakamoto, C. Nimmagadda, D. Lisk, S. Gu, R.
Radojcic, M. Nowak and Y. Xie, “Electrical Characterization for Intertier
Connections and Timing Analysis for 3-D ICs” IEEE Trans. on VLSI
Systems 20(1) (2012), pp. 186-191.

[16] J. Jang, O. Franza and W. Burleson, “Compact Expressions for Period
Jitter of Global Binary Clock Trees”, Proc. IEEE In EPEP, 2008, pp.
47-50.

[17] D. Kim, J. Kim, J. Choi, J. S. Park, J. Kim, H. Lee, J. Lee and K. Park,
“Distributed Multi TSV 3D Clock Distribution Network in TSV-Based
3D IC”, Proc. EPEPS, 2011, pp. 87-90.

[18] W. L, H. Du, Y. Wang, Y. Ma, Y. Xie, J. Quan and H. Yang, “TSV-Aware
Topology Generation for 3D Clock Tree Synthesis”, Proc. ISQED, 2013,
pp. 300-307.

[19] Y. Tsai, Y. Xie, N. Vijaykrishnan and M. J. Irwin, “Three-Dimensional
Cache Design Exploration Using 3DCacti”, Proc. ICCD, 2005, pp. 519-
524.

[20] Y. Xie, G. H. Loh, B. Black and K. Bernstein, “Design Space Exploration
for 3D Architectures” ACM J. on Emerging Technologies in Computing
Systems 2(2) (2006), pp. 65-103.

[21] T. L. Snyder and J. M. Steele, “A priori bounds on the euclidean traveling
salesman,” SIAM J. Computing 24(3) 1995, pp. 665-671.

[22] J. M. Steele and T. L. Snyder, “Worst-case growth rates of some classical
problems of combinatorial optimization,” SIAM J. Computing 18(2)
(1989), pp. 278-287.

[23] G. E. Tellez and M. Sarrafzadeh, “Minimal Buffer Insertion in Clock
Trees with Skew and Slew Rate Constraints,” IEEE TCAD 16(4) (1997),
pp. 333-342.

[24] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “Closed-Form
Expressions for Extending Step Delay and Slew Metrics to Ramp Inputs
for RC Trees,” IEEE TCAD 23(4) (2004), pp. 509-516.

[25] H. Lee et al., “A 16 Gb/s/Link, 64 GB/s Bidirectional Asymmetric
Memory Interface,” IEEE JSSC 44(4) (2009), pp. 1235-1247.

[26] J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally and
M. Horowitz, “A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS,” IEEE
JSSC 42(12) (2007), pp. 2745-2757.

[27] F. O’Mahony et al., “A 47x10Gb/s 1.4mW/(Gb/s) Parallel Interface in
45nm CMOS,” Proc. ISSCC, 2010, pp. 156-158.

[28] R. Palmer, J. Poulton, A. Fuller, J. Chen and J. Zerbe, “Design Consid-
erations for Low-Power High-Performance Mobile Logic and Memory
Interfaces,” Proc. ASSCC, 2008, pp. 205-208.

[29] J. Ellis, “Overcoming Obstacles for Closing Timing for DDR3-1600 and
Beyond,” Denali MemCon, 2010.

[30] A. Vaidyanath, “Challenges and Solutions for GHz DDR3 Memory
Interface Design,” Denali MemCon, 2010.

[31] V. Stojanovic and M. Horowitz, “Modeling and Analysis of High-Speed
Links,” Proc. CICC, 2003, pp. 589-594.

[32] R. Sredojevic and V. Stojanovic, “Optimization-Based Framework for
Simultaneous Circuit-and-System Design-Space Exploration: A High-
Speed Link Example,” Proc. ICCAD, 2008, pp. 314-321.

