
Benchmarking of Mask Fracturing Heuristics

Tuck Boon Chan1, Puneet Gupta3, Kwangsoo Han1, Abde Ali Kagalwalla3,
Andrew B. Kahng1,2 and Emile Sahouria4

1ECE and 2CSE Departments, University of California, San Diego
3EE Department, University of California, Los Angeles

4Mentor Graphics Inc.
tuck@vlsicad.ucsd.edu, puneet@ee.ucla.edu, kshan@vlsicad.ucsd.edu,

abdeali@ucla.edu, abk@ucsd.edu, emile_sahouria@mentor.com

ABSTRACT
Aggressive resolution enhancement techniques such as inverse
lithography (ILT) often lead to complex, non-rectilinear mask
shapes which make mask writing extremely slow and expensive.
To reduce shot count of complex mask shapes, mask writers allow
overlapping shots, due to which the problem of fracturing mask
shapes with minimum shot count is NP-hard. The need to cor-
rect for e-beam proximity effect makes mask fracturing even more
challenging. Although a number of fracturing heuristics have been
proposed, there has been no systematic study to analyze the quality
of their solutions. In this work, we propose a new method to gen-
erate benchmarks with known optimal solutions that can be used to
evaluate the suboptimality of mask fracturing heuristics. We also
propose a method to generate tight upper and lower bounds for ac-
tual ILT mask shapes by formulating mask fracturing as an integer
linear program and solving it using branch and price. Our results
show that a state-of-the-art prototype [version of] capability within
a commercial EDA tool for e-beam mask shot decomposition can
be suboptimal by as much as 3.7× for generated benchmarks, and
by as much as 3.6× for actual ILT shapes.

1. INTRODUCTION
Photomasks are one of the most significant contributors to semi-

conductor manufacturing cost. The use of aggressive resolution
enhancement techniques (RETs) has made mask manufacturing ex-
tremely expensive and challenging. Moreover, the number of criti-
cal masks required for a particular design has increased due to the
use of multiple patterning. As a result, controlling the cost of mask
manufacturing is urgently needed to sustain benefits derived from
Moore’s-Law scaling of patterning technologies.

Masks are fabricated using variable-shaped electron beam (VSB)
writing tools. These tools directly expose shots, i.e., axis-parallel
rectangles of any size. Mask fracturing is used to obtain a set of
shots from the mask pattern, which can then be input to a VSB
tool. Since the total shot count strongly affects mask fabrication
time, the key objective of mask fracturing tools is to minimize the
number of shots.

Traditionally, mask fracturing has been formulated as rectilinear
polygon partitioning, which is a very well-studied problem. Imai
and Asano propose an O(n1.5 log (n)) algorithm to optimally par-
tition a polygon into the smallest number of rectangles [14]. Since
such theoretical approaches are unable to handle additional man-
ufacturing constraints such as minimization of slivers, Kahng et

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2014, November 2-6, 2014, San Jose, California, USA
Copyright 2014 ACM 978-1-4799-1071-7/13 ...$15.00.

al. [18] propose an ILP based fracturing method. A faster heuristic
based on selection of rays from concave corners is also proposed
by the same authors [19]. Jiang and Zakhor propose a recursive al-
gorithm to minimize a weighted sum of shot count and slivers [15].

Due to aggressive RET techniques such as ILT, mask shapes are
now often curved and non-rectilinear [21] [6]. Fracturing these
polygons using traditional methods with acceptable fidelity can
dramatically increase the shot count [24]. To manage the shot count
of such complex patterns, Chua et al. propose model-based fractur-
ing [7]. Two key features of model-based fracturing distinguish it
from traditional mask fracturing:

1. shots are allowed to overlap, which allows greater flexibility
in determining shot locations and hence lower shot count;
and

2. e-beam proximity effects in VSB mask writers are simulated
during the mask fracturing itself to ensure that the final pat-
tern on the mask accurately matches the intended target.

In addition to overlapping shots and proximity effect correc-
tion, Galler et al. propose to adjust the dose of each shot inde-
pendently [12]. Jiang and Zakhor propose an algorithm based on
matching pursuit to solve this problem [16]. The use of L-shaped
shots for reducing shot count has been suggested by Yu et al. [23].
Elayat et al. [10] analyze the benefits and disadvantages of different
mask fracturing strategies. They conclude that, among the alterna-
tives studied, model-based mask fracturing with fixed dose is the
most viable candidate for improvement of shot count without sig-
nificant changes in mask writing tools. Hence, in this work we only
focus on the fixed-dose problem.

A consequence of allowing overlapping shots is that model-
based mask fracturing becomes similar to the rectilinear covering
problem, which is known to be NP-hard [9]. In fact, there is no
known constant-factor approximation algorithm for rectilinear cov-
ering [2]. Although several recent works on model-based mask
fracturing have demonstrated improvements in shot count over tra-
ditional partitioning-based approaches [24] [20], the gap between
existing methods and optimal solutions remains unclear.

Benchmarking of heuristics used to solve NP-hard EDA prob-
lems such as placement [8] and gate sizing [13] enables the de-
velopment of better methods for solving these problems. The goal
of our present work is to enable the benchmarking of model-based
fracturing as a foundation for further research towards more effec-
tive heuristics. To the best of our knowledge, this is the first work
that attempts to benchmark model-based mask fracturing. The key
contributions of this work are the following:
• We propose a systematic method to generate benchmarks

with known optimal shot count. Using this method, we gen-
erate a set of benchmarks to quantify suboptimality of a state-
of-the-art prototype [version of a] capability within a com-
mercial EDA tool for e-beam mask shot decomposition.

• We propose an ILP formulation to optimally solve the model-
based mask fracturing problem. We then develop a branch

and price method that, in practice, generates strong upper
and lower bounds for benchmarking.

The rest of this paper is organized as follows. Section 2 defines
the mask fracturing problem. Section 3 introduces our method for
benchmark generation with known minimum shot count. Section 4
describes an ILP-based method to obtain tight upper and lower
bounds on the optimal shot count. Section 5 provides experimental
results and analysis. Section 6 concludes the paper.

2. MASK FRACTURING PROBLEM
The goal of mask fracturing is to find the minimum number of

rectangular shots required to construct a mask target shape. Al-
though each shot is rectangular, the e-beam proximity effect blurs
its boundary [7]. As a result, the developed mask pattern is different
from the union of rectangular shots. Note that the blurring due to
the e-beam proximity effect is significantly smaller than the spac-
ing between different shapes. Hence, each shape in the mask can
be fractured independently. Moreover, to better understand which
target shapes are more challenging, the suboptimality of mask frac-
turing heuristics should be evaluated for individual mask target
shapes rather than for the entire mask.

We define S as the set of all possible candidate shots that could
be used to reconstruct the target shape, i.e., the dictionary of candi-
date shots. S consists of all the different shot sizes that are allowed
and all the shifted copies of each shot size. E-beam proximity ef-
fect is modeled using a low pass filter, typically a Gaussian or sum
of Gaussians [22]. In this work, we model the proximity effect by
a single 2D Gaussian low-pass filter, described by Equation (1).
However, our proposed methods for benchmarking can be easily
extended to handle other proximity effect models.

K(x, y) =

{
1
F

exp
− x

2+y2

σ2 if − 3σ ≤
√
x2 + y2 ≤ 3σ

0 otherwise (1)

Here, x and y are the coordinates of a particular point on the mask,
which we refer to as a pixel (p(x, y)). K(x, y) is the kernel func-
tion of the Gaussian filter, F is a normalization factor and σ is a
parameter which characterizes the spreading of the e-beam. For
any rectangular shot s, the intensity at a pixel can be computed
by convolving the ideal rectangular function (ψ(x̂, ŷ)) [5] with the
kernel function. That is,

I(x, y, s) = K(x, y)⊗ ψ((x− xc,s)/Ws, (y − yc,s)/Hs)

ψ(x̂, ŷ) =

{
1 if |x̂| < 0.5 and |ŷ| < 0.5

0 otherwise
(2)

where I(x, y, s) represents the intensity at pixel p(x, y) due to
the shot s. Ws and Hs are the width and height of the shot. xc,s
and yc,s are the x and y coordinates of the center of the shot. In
this paper, all dimensions are in wafer scale.1

0 0

0 0

0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0

0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 1 3 3 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

Target
boundary

P1

P0

Pd

X

Y

Figure 1: Each grid in the figure is a pixel p(x, y). The thick black
line is the target boundary. In this figure, the CD tolerance is γ =
2nm and the grid size is 1nm × 1nm. p(x, y) ∈ Pd if p(x, y) is
within 2nm of the target boundary.
1Typically, mask scale is 4× wafer scale.

We model the e-beam resist using a constant-threshold model
with threshold value of Rt. Any pixel (p(x, y)) on the mask will
be exposed if and only if the total intensity at that pixel resulting
from all shots exceeds the resist threshold Rt.2

As shown in Figure 1, we divide the set of pixels on the mask into
three disjoint sets: P1, P0 and Pd. Pd is the set of pixels within a
given critical dimension (CD) tolerance, γ, of the boundary of the
target shape. We define P1 as the set of the pixels within the closed
boundary of the shape which do not belong to Pd. The pixels in
P1 must have intensity greater than or equal to Rt. Similarly, we
define P0 as the set of the pixels outside the target shape which do
not belong to Pd. The pixels in P0 must have intensity less than
Rt.

The mask fracturing problem is formally defined as follows.
Goal: Minimize the total number of mask shots N = |Smin|.
Inputs: Mask target shape, set of all candidate shots S, Rt, σ, γ.
Outputs: Set of rectangular shots, Smin.
Constraints: ∑

s∈Smin

I(x, y, s) ≥ Rt if p(x, y) ∈ P1∑
s∈Smin

I(x, y, s) < Rt if p(x, y) ∈ P0

The mask writing process may also require additional constraints
to avoid resist over-heating and minimize CD variation. In this
work, we do not consider the imposition of maximum intensity
constraints to model resist over-heating, since the over-heating is
an effect at length scales on the order of microns [11] [3].

3. GENERATION OF BENCHMARKS
WITH KNOWN OPTIMUM

The goal of our benchmark generation method is to construct
target shapes for which the minimum shot count is known. Our
benchmark generation method is based on the key observation that
there is a set of boundary segments3 each of which requires at least
two shots in any fracturing solution. Here we use Bn to denote
the set of all boundary segments such that each boundary segment
bn ∈ Bn requires at least n shots. For example, the union of green
and red lines in Figure 5 is a boundary segment b2.

In our benchmark generation method, we first use exactly two
shots to generate a target shape which contains a boundary segment
b2. By the definition of b2, we need at least two shots to produce the
boundary segment. Since we use exactly two shots to generate the
target shape, our solution is optimal and the minimum shot count
is two. To extend the target shape, we then add a new shot adjacent
to one of the existing shots. We select the location of the new shot
such that there is a new b2 in the extended target shape. Note that
we only increase the total shot count by one (and reuse an existing
shot) to produce the new b2 which requires two shots. Because the
extended target shape cannot be produced by stretching or shifting
the shots in the previous solutions (i.e., at least one more shot is
required), the solution corresponding to the extended target shape
remains optimal with respect to shot count.

In the remainder of this section, we describe the details of our
benchmark generation method and prove that a generated target
shape has known minimum shot count.

3.1 Boundary Segment
To determine the set of boundary segments which require at least

two shots, we analyze the relationship between straight/concave
boundary segments and the image produced by a shot. We do not
analyze the case of convex boundary segments because it is not
used in our benchmark generation.

2The exposed pixels will form the mask shape.
3A boundary segment is a contiguous part of the boundary of a
target shape.

Straight boundary segment. Since a mask shot must be isothetic,
a single mask shot cannot produce a long straight boundary at an
angle (θ) which is not a multiple of 90◦.4 Figure 2 shows a straight
boundary segment bseg (black solid line) at an angle θ. The dashed
lines parallel to bseg are the inner and outer boundaries. The inner
(resp. outer) boundary is obtained by shrinking (resp. expanding)
the target boundary towards the inside (resp. outside) of the target
shape by the value of γ. To produce the straight boundary using a
single shot, we must place a corner of the shot close to bseg . The
longest straight boundary covered by the single shot is the length
(Lθlin(W,H)) between the crossing points (blue cross marks in
Figure 2) of the inner target boundary and the image boundary.5
To maximize the coverage of a single shot, we must shift the shot
and therefore the image boundary to touch the outer boundary as
shown in Figure 2. The shot must not be shifted beyond the outer
boundary because I(x, y, s) must be less than Rt for all pixels in
P0.

2ɤ

bseg

L θ(W H)

P1P0

θ

Llin
θ(W,H)Outer

boundary
P1

θ

Image
boundaryInner

boundarybou da y

Figure 2: Definition of the length Lθlin(W,H) of a straight-line
target boundary covered by a single shot.

Concave boundary segment. Figure 3(a) shows a concave bound-
ary bseg and its inner (bseg_in) and outer (bseg_out) boundaries. For
a concave target boundary, the maximum boundary length covered
by a single shot is defined by the straight line between the points of
intersection between bseg_in and the shot image boundary (i.e., the
blue cross marks in Figures 3(a) and 3(b)). From the straight line
between the points of intersection, we define a “virtual” straight
line (bvir) and its inner (bvir_in) and outer (bvir_out) boundaries.
Note that because of the concavity of bseg , any point along bvir_in
is always closer than bseg_in to the point that touches the target
boundary (i.e., pc in Figure 3(a)). Thus, bvir_out is always in P0,
outside the boundary of the shot image. This means that the shot
and its corresponding image can be shifted until the shot image
boundary touches bvir_out as shown in Figure 3(b). As a result, the
length of the virtual straight line, which is the same as Lθlin(W,H)
at the same θ, is always larger than the length Lθcon(W,H) of the
concave target boundary.
Maximum length covered by a shot. As mentioned above, the
rounded corner of a single shot image determines the maximum
length covered by the shot. As the shot size increases, the corner
rounding due to the e-beam proximity effect saturates. As a result,
the Lθlin(W,H) does not change further with respect to the shot
size. For example, Figure 4 shows that for shot sizes larger than
14nm× 14nm, the corresponding Lθlin(W,H) remains the same,
and is the maximum Lθlin(W,H) value over all shots. Therefore,
we can calculate the Lθmax by increasing W and H iteratively, and
stopping when Lθmax does not increase.

Lθmax = max
s∈S
{Lθ(Ws, Hs)} (3)

Since Lθcon(W,H) < Lθlin(W,H) for any shot s, the
maximum value of Lθlin(W,H) is an upper bound on
maxs∈S{Lθcon(Ws, Hs)}.
4ILT masks can have non-orthogonal target shapes, especially if
methods such as level set are used for ILT [21].
5W and H correspond to the width Ws and height Hs of the shot
s under consideration.

2ɤ

Lcon(W,H)



2ɤ



2ɤ

bseg_out

Shifted
image
boundary

P0
P1

Image
boundary

P0

P1

P1
P1

(a) (b)

bseg
bseg_in

bvir_out
bvir
bvir_in

pc

bvir_out
bvir
bvir_in

Figure 3: (a) Definition of the length Lθcon(W,H) of a concave
target boundary covered by a single shot. (b) Comparison of the
lengths covered by a single shot for concave vs. straight-line target
boundaries.

35

30

25
Llin

θ(Ws,Hs) = Lθmax

20

15ei
gh

t (
nm

)

15

10

H
e

5

00
0 5 10 15 20 25 30 35

Width (nm)

Figure 4: Lθlin(Ws, Hs) for different shot sizes with {σ = 6.25nm,
γ = 1nm, θ = 45o} (wafer scale). This figure is obtained by enu-
merating all possible shot sizes.

Lt

P1

P0
Lt

P1

P0
startpoint

endpoint

Figure 5: Lt is the Euclidean distance between the startpoint and
the endpoint on the target boundary, provided that the target bound-
ary from the startpoint to the endpoint is concave or a straight line.

LEMMA 3.1. For a mask fracturing problem with finite γ and
σ, if a target boundary segment is a straight line or concave shape
with length Lt (defined in Figure 5) larger than Lθmax, more than
one mask shot is required to pattern the target boundary segment.

PROOF As mentioned above, the corner of the image produced
by a shot does not change beyond a certain shot size, and there ex-
ists an Lθmax for straight boundary which is also the upper bound
for concave target boundary. By definition, Lθmax is the maxi-
mum length on the target boundary which can be covered by a
single shot. Therefore, when a target boundary segment has length
Lt > Lθmax, we require more than one shot to produce the bound-
ary segment. Note that to check whether a boundary segment has
length > Lθmax, it suffices to calculate the Lt for all combinations
of startpoint and endpoint along the boundary.

3.2 Construction of a Target Shape
We now describe a systematic method to construct a target shape

with known minimum shot count. We first construct a bseg using
two shots by placing the second shot to the top right of the first
shot as shown in Figure 6. We define the top left boundary (e.g.,
the union of green and red lines in Figure 6) as the main bound-
ary (bmain).6 By placing the second shot far enough from the first
shot, we create a critical boundary segment bcri ∈ B2, which is
part of the bmain. The bcri is a straight line or a concave segment

6bmain is at the top left boundary because we place the next shot
to the top right of previous shots.

with length Lθ larger than Lθmax (Lemma 3.1). Note that although
there can be many boundary segments ∈ B2, only those overlap-
ping with bmain are considered as the critical boundary segments.
For example, the yellow boundary segment in Figure 6, while an
element of B2, is not considered to be a bcri because it does not
overlap with bmain.

Figure 6: Example of benchmark generation with three shots.
bmain is the union of green and red lines and contains two bcri.

LEMMA 3.2. Given a boundary segment bn of a target with n−
1 critical boundary segments, and its corresponding shots, we can
add a shot to obtain bn+1 with an optimal (n+ 1)-shot solution if
the addition satisfies the following conditions:

(i) Adding a shot does not affect the critical boundary segments
of bn.

(ii) bmain of the new target shape is continuous.

(iii) There is a b2 in the bmain of the new target shape which can-
not be made by extending the shots which produce bn without
altering the critical boundary segments of bn.

PROOF Since there are n − 1 critical boundary segments in bn
and the newly added shot does not affect the critical boundary seg-
ments in bn, the new target shape still requires n shots for the n−1
critical boundary segments. To create a b2 in the new boundary
which cannot be made by extending shots which produce bn, we
need exactly one more shot. Thus, the new target shape has a
boundary segment bn+1.

Based on Lemma 3.2, we then add a shot at the top right of
the existing target shape. This ensures that we have a continuous
bmain. Moreover, the top-left coordinate of the newly added shot
is selected such that there is a b2 in the new bmain. Since the new
b2 is always at the top of the target shape, it cannot be made by
extending previous shots unless the existing critical boundary seg-
ments are altered. Also, placing the shot at the top right does not
affect the existing critical boundary segments. By adding n − 2
shots to the target shape generated by two shots, we can obtain a
target shape ∈ Bn based on Lemma 3.2.

An important property of our method is that the critical boundary
segments are defined only by the top-left coordinates of the shots.
Therefore, we may freely place the bottom-right coordinates of the
shots to create different target shapes as long as they do not affect
the critical boundary segments.

3.3 Merging Target Shapes
LEMMA 3.3. Given two target shapes with critical boundary

segments ba ∈ Bna and bb ∈ Bnb , which have, respectively, na −
1 and nb − 1 critical boundary segments, we can merge ba and
bb by stretching a shot to create bc ∈ Bna+nb−1 if the following
conditions are satisfied:

(i) The stretched shot must not alter the critical boundary seg-
ments in ba or bb.

(ii) The stretched shot must merge a shot from ba with a shot from
bb.

(iii) The non-stretched shots in ba must be far apart from or mis-
aligned from the non-stretched shots in bb so that any two
non-stretched shots cannot be merged to reduce the number
of shots.

PROOF Since stretching the shot does not alter the critical
boundary segments in ba and bb, we need at least na shots for target
shape ba and nb shots for the target shapes bb. Since the merged
bc contains both ba and bb, which share one shot, bc requires
na + nb − 1 shots. Therefore, bc belongs to Bna+nb−1.

The first condition in Lemma 3.3 imposes a tight constraint on
merging the target shapes generated by the method described in
Section 3.2. This is because we can only stretch a shot by mov-
ing the lower right corner of the shot in either the rightward and/or
downward direction, such that the critical boundary segments are
not affected. However, stretching a shot of a target shape to the
right and/or down directions will affect the critical boundary seg-
ments on the other target shape. This problem can be solved by
rotating the target shapes before merging them.

LEMMA 3.4. A bn rotated by 90◦ is still an element of Bn.
PROOF After applying Gaussian blur, the intensity of a shot is

symmetric about the x- and y-axes. Therefore, rotating a target
shape by a multiple of 90o does not affect the number of shots. As
a result, if any boundary segment b is inBn, the boundary segment
b′ = b rotated by 90o (or any multiple of 90◦) is also in Bn.

Figure 7 shows an example in which we use Lemmas 3.3 and 3.4
to merge a target shape and its rotated copy into a larger and more
complex target shape.

Using the incremental target boundary extension (Lemma 3.2)
and merging/rotation of optimal target shapes, we can generate a
variety of different benchmarks with arbitrary values of optimal
shot count.

ba B3 bb B3

P0

bcri

bcriStretching

P1 P1

Rotate 90o

bc B5

P1 P0

Merged shot

bcri

bcri

Figure 7: Example of rotating a target shape for merging.

4. ILP-BASED BENCHMARKING
The benchmark generation method proposed in Section 3 cannot

generate all possible shapes. To evaluate the suboptimality of frac-
turing heuristics on any given mask shape, we apply an optimal ILP
formulation. The straightforward ILP formulation requires a large
number of binary variables, even for small target shapes. As a re-
sult, even commercial ILP solvers can run out of memory on high-
performance computers. To circumvent this, we propose two strate-
gies, described later in this section: (1) pruning the set of candidate
shots, and (2) solving the ILP using branch and price. With these
two strategies, we can obtain strong upper and lower bounds on
the optimal solution within feasible runtimes. Note that although
the proposed ILP can be used to inspire effective mask fracturing
heuristics, the goal of this work is benchmarking. Hence, runtime
is important only to the extent of making the method tractable.

4.1 Optimal ILP Formulation
We define a binary selection variable zs for each candidate shot

s ∈ S, where zs = 1 if shot s is used and zs = 0 otherwise. Then,
based on the problem description in Section 2, we may formulate
an optimal ILP to solve the fracturing problem as

Minimize
∑
s

zs

subject to
∑
s

{zs · I(x, y, s)} ≥ Rt, p(x, y) ∈ P1∑
s

{zs · I(x, y, s)} < Rt, p(x, y) ∈ P0

(4)

Clearly |S| can be very large even for small target shapes. For a
target shape with a bounding box of TX ×TY , if the minimum and
maximum allowed shot sizes are m and M respectively, and the
shot granularity is ∆T , then the size of the set of candidate shots
would be

((M−m)
∆T

)2·(TX−M+m
2

)·(TY−M+m
2

). Even for a small
post-ILT contact shape as shown in Figure 8(a) (m = 13, M =
55, TX = TY = 60, ∆T = 1), the number of candidate shots is
1.19M .

Attempting to solve such a large ILP, even with commercial sol-
vers, is very challenging due to long runtime and large memory
usage. In fact, the CPLEX v12.5 solver [26] runs out of memory
when we attempt to solve the instance of Figure 8(a) on an Intel
Xeon L5420 server with 128GB RAM.

4.2 Pruning Candidate Shot Dictionary
Reducing |S| can significantly help in making the above ILP

tractable for benchmarking. Here we highlight two simple rules
that can be used to reduce |S|:

1. For any candidate shot s, if there exists a pixel p(x, y) ∈ P0

such that I(x, y, s) ≥ Rt, then s can be removed from the
set S. This pruning criterion obviously does not affect opti-
mality because any candidate shot that satisfies this condition
cannot be a part of a feasible solution of the ILP. Depending
on the specific target shape, this pruning strategy can signifi-
cantly reduce |S|.

2. If a candidate shot s is inside the target shape and none of its
four edges are close to the target boundary, then we remove
s from set S. If s is a part of the optimal solution, then we
can replace s with a larger shot that covers s and has at least
one boundary close to the edge of the target shape, without
affecting the optimality of the solution.

An interesting side-effect of pruning candidate shots is that the
LP relaxation of the ILP becomes a stronger lower bound for the
optimal shot count. After applying these pruning rules to the con-
tact shape of Figure 8(a) we can reduce |S| to 591K for a Gaussian
proximity effect model (σ = 1nm). Using CPLEX v12.5 solver,
the final optimal shot count is just four (shown in Figure 8(b)).

Note that the reduction in |S| due to these pruning rules depends
strongly on the specific target shape and the e-beam proximity ef-
fect model. For many target shapes, the number of variables even
after pruning could be more than 106, making it difficult to solve
the problem efficiently with commercial ILP solvers.

4.3 Branch and Price Method
Branch and price (B&P) is a well-known method for solving

large ILPs [4]. The key feature that distinguishes B&P from typi-
cal ILP solvers is that the LP relaxation at each node of the branch
and bound tree is solved using column generation. To solve the LP
relaxation, which contains too many variables to handle efficiently,
a reduced master problem (RMP) containing only a small subset of
the variables is solved first. To confirm the optimality of this RMP,
a separate pricing subproblem is solved to find any new variables
that must be inserted back into the RMP. If no variable is found

(a) (b)

Figure 8: (a) ILT mask target shape and (b) optimal mask fracturing
solution obtained from ILP.

by the pricing subproblem, then the LP relaxation is optimal and
branching can be done to obtain the integral solution to the original
ILP.

The selective insertion of variables based on the pricing subprob-
lem in B&P means that most variables are never inserted into the
LP relaxation. As a result, the LP relaxation solver does not con-
sume too much memory. This is the main reason why we choose to
apply this technique to solve the ILP described in Equation (4). The
runtime of B&P is known to be limited by the pricing subproblem
for most problems [4]. Hence, we propose a novel pricing mech-
anism comprising a fast, approximate pricer and a slower, optimal
pricer.

The goal of the pricing subproblem is to identify additional vari-
ables that should be inserted into the RMP. For the mask fractur-
ing problem, let λ∗p be the optimal value of the dual variable cor-
responding to the CD constraint (Equation 4) at pixel p(x, y) ∈
P1 ∪ P0, obtained after an iteration of the RMP. The pricing sub-
problem (derived from the dual of the RMP) reduces to finding a
new candidate shot s such that

∑
p I(x, y, s) · λ∗p ≤ −1. This

candidate shot must also satisfy the pruning rules discussed above.
Moreover, additional constraints imposed by the branching rules of
the branch and bound tree must be met. The reduced cost of any
candidate shot s is given by Rs = 1 +

∑
p{I(x, y, s) · λ∗p}. For

the sake of brevity, we shall refer to any candidate shot that has
Rs ≤ 0 and satisfies all the pruning and branching constraints as
an insertable candidate shot (ICS).

To ensure that the LP relaxation is solved optimally, the pricing
subproblem must guarantee that no ICS exists. If there are several
ICSs, the pricing subproblem only needs to find a subset of all the
ICSs in an iteration. The maximum number of candidate shots that
are inserted in each pricing iteration can be tuned to improve the
convergence of B&P. In this work, we limit the maximum number
of variables that can be inserted in each iteration to NC = 500.

One simple strategy to solve the pricing problem is to iterate
over all possible sizes and locations of candidate shots and insert
any shot that has a negative Rs and satisfies pruning and branch-
ing rules. To improve the efficiency of this naive pricing strategy,
we carefully analyze the dual variables of the RMP. Based on the
well-known Karush-Kuhn-Tucker (KKT) conditions, we note the
following key features of the dual variables:

1. Due to complementary slackness, λ∗P 6= 0 if and only if∑
s{zs · I(x, y, s)} = Rt. Since this is likely to occur only

close to the boundary of the target shape, λ∗p is nonzero only
for a small number of pixels that lie very close to the target
boundary. We shall refer to the set of pixels with nonzero
dual values as dual points.

2. To ensure dual feasibility, λ∗p ≥ 0 for p(x, y) ∈ P0 and
λ∗p ≤ 0 for p(x, y) ∈ P1. This implies that all negative dual
points (Pneg) are located inside the target shape.

That negative dual points are sparse and are located close to the tar-
get shape boundary is illustrated in Figure 9 for a particular pricing
iteration of a target shape. Based on this insight, we propose two
pricing strategies to effectively find ICSs, as we now describe.

4.3.1 Fast Pricer
The basic idea behind the fast pricer is to look for ICSs in the

vicinity of p(x, y) ∈ Pneg because if any candidate shot s has
negative reduced cost, then s must be located such that it covers or
is close to at least one negative dual point. The steps involved in
finding ICSs are summarized in Algorithm 1.

Algorithm 1 Fast Pricer Heuristic
Input: Target shape T , and list of pixels with negative dual values Pneg .
Output: Set of candidate shots SD that must be inserted into the RMP.
1: for all p(x, y) ∈ Pneg do
2: Draw vertical/horizontal line from (x, y) to find ylow , yhigh, xlow and

xhigh (illustrated in Figure 9).
3: Find all candidate shots in vicinity of (x, y) that satisfy Equation (5) below.
4: Insert (up to NC

|Pneg|
) candidate shots that satisfy reduced cost, pruning and

branching constraints to SD .
5: end for

xlow − α ≤ xbl ≤ x+ β , x− β ≤ xtr ≤ xhigh + α

ylow − α ≤ ybl ≤ y + β , y − β ≤ ytr ≤ yhigh + α
(5)

where xbl (bottom left x-coordinate), ybl (bottom left y-
coordinate), xtr (top right x-coordinate) and ytr (top right y-
coordinate) correspond to the coordinates of a candidate shot un-
der consideration. α and β are distance margins that depend on the
e-beam proximity effect model and resist threshold. α is the max-
imum distance outside the target boundary where a candidate shot
corner can lie without exposing any pixel outside the boundary. β
is the maximum distance outside the shot at which the intensity is
nonzero.7

The intuition behind constraining xbl, ybl, xtr and ytr as shown
in Equation (5) is that such candidate shots will have nonzero in-
tensity at the negative dual point under consideration and are likely
to obey the first pruning rule (not exposing any pixel in P1).

Figure 9: Illustration of negative dual points (pink dots) for part of
a target shape. Coordinates xlow, xhigh, ylow and yhigh (points of
intersection of blue dashed lines with target shape boundary) for
a particular negative dual point (point of intersection of the two
dashed lines) are also shown.

4.3.2 Optimal Pricer
Although the pricing heuristic we described above is effective in

identifying most ICSs which can be inserted into the RMP, it does
not guarantee that if no ICS is found, then there does not exist any
ICS. Hence, if the heuristic fails to find any ICS, we call the opti-
mal pricer that iterates over all the different shot sizes and locations
and inserts the first NC candidate shots which satisfy all the prun-
ing rules, branching constraints and have negative reduced cost.
The runtime of this strategy is dominated by the computation of
intensity (which is required to compute the reduced cost and check
the pruning rules) for such a large number of candidate shots. To
improve this runtime, we compute the intensity of only those can-
didate shots that satisfy the following two filtering criteria:

• The smallest distance between the candidate shot and the en-
tire set of negative dual points must be less than β, otherwise
the reduced cost will be positive.

7For the Gaussian proximity effect model we use α = σ and β =
2σ.

• The distance between each of the four corner points of the
candidate shot and the target shape must be less than α, oth-
erwise the shot will violate the first pruning rule.

4.4 Initialization and Overall Summary
In addition to solving the pricing subproblem efficiently, B&P

can benefit significantly from a good initial feasible solution. Al-
though B&P is capable of discovering feasible solutions using
Farkas pricing [1], it can take many iterations of pricing to do so. In
this work, we use the results of a prototype [version of] capability
within a commercial EDA tool for e-beam mask shot decomposi-
tion as the initial solution for B&P.

B&P is known to suffer from a “tailing off” effect, where the
upper and lower bounds improve very slowly once they are close to
the optimum [4]. Since our objective is to evaluate suboptimality,
we choose to run B&P with a fixed time limit and report the best
upper and lower bounds on the optimal shot count. The overall
method we use to solve LP relaxations within B&P is summarized
in Figure 10.

Figure 10: Flowchart of steps involved in solving LP relaxation for
any node in B&P.

5. EXPERIMENTAL RESULTS
Our benchmark generation method and our B&P based subopti-

mality evaluation method have both been implemented in C++. We
use the OpenAccess API to parse layouts [29], Boost Polygon Li-
brary to perform polygon operations [25] and Eigen Library to per-
form matrix operations [27]. To implement B&P, we use the SCIP
framework [1], along with CPLEX v12.5 as the LP solver [26].

In this work, we use a Gaussian e-beam proximity effect model
with σ = 6.25nm. This is consistent with recent work on mask
fracturing [16] [17]. We set the CD tolerance γ = 2nm, and
the minimum and maximum dimensions of a shot are 13nm and
1000nm, respectively. Using this setup, we have evaluated the
suboptimality of a prototype [version of] capability within a com-
mercial EDA tool for e-beam mask shot decomposition (denoted
as PROTO-EDA in what follows) for three types of mask target
shapes:

1. Arbitrary generated benchmarks (AGB): We generate
five shapes with known optimal shot count using the method
described in Section 3.2. These benchmarks are shown in
Figure 11(a).

2. Realistic generated benchmarks (RGB): Since generated
benchmarks can often be unrealistic compared to actual ILT
mask shapes, we also generate five mask shapes that look
similar to actual ILT shapes with known optimal shot count,
again using the method described in Section 3.2. We man-
ually select shot locations so that the generated benchmarks
are similar to actual ILT mask shapes. These benchmarks are
illustrated in Figure 11(b).

3. Actual ILT mask shapes: We apply ILT to benchmark pre-
RET layouts from the 2013 ICCAD contest [28], using a
commercial EDA tool. From the ILT solutions, we select
ten representative mask shapes for evaluation. These bench-
marks are illustrated in Figure 12.

For each of the 20 target shapes, we run B&P on an eight-core
machine with a time limit of 24 hours. In any branch and bound
based search method for integer programs, the upper bound corre-
sponds to the best integral solution that has been discovered so far.
The lower bound corresponds to the LP relaxation at a particular
level of the branch and bound tree. We report the upper and lower
bounds reached by B&P within the set time limit.

Table 1: Comparison of shot count for generated benchmarks with
known optimal solution.

Clip ID
Shot Count

Optimal PROTO-EDA Branch and Price
Lower bound Upper bound

AGB

1 3 6 2 3
2 16 38 10 34
3 17 50 1 48
4 7 21 5 7
5 3 7 2 3

RGB

1 5 10 3 5
2 7 26 4 10
3 5 12 3 5
4 9 20 6 20
5 6 15 4 8

We compare the shot count of our generated benchmarks with
known optimal solutions to PROTO-EDA in Table 1. For the ten
target shapes that we analyze, the suboptimality ranges from 2×
(clip AGB-1) to 3.7× (clip RGB-2). It is interesting to note that
the suboptimality for the RGB clips is generally higher than for the
AGB clips. The AGB-5 testcase shows that the suboptimality can
be as large as 2.3× even for a simple target shape. For comparison,
we also report the lower and upper bounds obtained from B&P for
our generated benchmarks in Table 1. The results show that for test-
cases AGB-{1,4,5} and RGB-{1,3}, the B&P method can find the
optimal solution. However, B&P may not find any better solution
within the set time limit (testcase RGB-4).

Note that the generated benchmarks are more wavy (i.e., have
high-frequency components in the boundary shape) compared to
actual ILT shapes. This could make the suboptimality estimation
more pessimistic. However, highlighting scenarios where mask
fracturing heuristics perform poorly is important for developing
better heuristics.
Table 2: Comparison of shot count for ILT mask shapes obtained
from ICCAD-2013 contest layouts for which the optimal shot count
is unknown.

Clip ID
Shot Count

PROTO-EDA Branch and Price
Lower bound Upper bound

1 9 3 4
2 21 5 21
3 11 2 3
4 25 7 25
5 17 4 7
6 7 2 3
7 9 3 4
8 20 5 8
9 10 5 10

10 15 4 6

We show the results of our ILP-based suboptimality analysis
method for actual ILT mask shapes in Table 2. For all ten bench-
mark shapes, our method is able to report a lower bound based on
LP relaxation.8 Although this seems trivial, typical LP methods
(simplex and barrier methods) run out of memory while trying to
8The fractional LP relaxation value is rounded up to the next inte-
ger to obtain the lower bound.

solve the LP relaxation of the ILP in Equation (4) for these bench-
mark shapes. Hence, our B&P based method appears to be en-
abling to the computation of this lower bound. The gap between
the PROTO-EDA tool’s shot count and these lower bounds ranges
from 2× (clip 9) to 5.5× (clip 3).

Since the gap between the optimal solution of an ILP and the LP
relaxation can be very large, suboptimality analysis based on the
lower bound may be too pessimistic. For seven of the ten ILT mask
shapes, our method reports an upper bound which is lower than
the shot count reported by PROTO-EDA tool. This implies that
better mask fracturing solutions were discovered during the branch
and bound search. If we make the optimistic assumption that these
solutions are in fact optimal, the suboptimality of the PROTO-EDA
tool ranges from 2.2× to 3.6×. These results confirm that there
is significant room for improving the quality of mask fracturing
solutions.

6. CONCLUSIONS
The use of aggressive RET techniques such as ILT, the need

for e-beam proximity effect correction, and the use of overlap-
ping shots have transformed mask fracturing into a very challeng-
ing computational problem. Although several heuristics have been
proposed in the last few years, there has been no systematic study
to analyze the quality of solutions. In this work, we propose two
methods to evaluate the suboptimality of mask fracturing heuris-
tics. First, we introduce a systematic method to generate a set of
benchmarks with known, provably optimal solutions. Second, to
evaluate the suboptimality of fracturing heuristics on actual ILT
mask shapes for which the optimal solution is unknown, we for-
mulate the mask fracturing problem as an integer linear problem
and develop a practical branch and price method to generate tight
upper and lower bounds on the optimal shot count.

Our experimental results show that a state-of-the-art prototype
[version of] capability within a commercial EDA tool for e-beam
mask shot decomposition has up to 3.7× more shots compared to
the optimal solution for generated benchmarks, and has up to 3.6×
more shots for ILT mask shapes with unknown optimal solution.
These results suggest that there remains considerable opportunity
to improve mask fracturing heuristics.

In the future, we plan to improve our benchmark genera-
tion methodology (e.g., to create benchmarks that remain chal-
lenging even to “adversarial” heuristics that know the bench-
mark generation strategy), incorporate additional mask manufac-
turing constraints (e.g., maximum intensity limits) as well as de-
velop an automated benchmark generation method that matches
realistic target shapes. We also plan to develop better heuris-
tics based on insights from boundary analysis and ILP solu-
tions. The latest versions of our source code and benchmark
suite are available publicly (http://impact.ee.ucla.edu/
maskFracturingBenchmarks). We hope that this will stim-
ulate further research toward development of improved mask frac-
turing heuristics.

Acknowledgments
The UCSD and UCLA authors acknowledge the support of the
IMPACT+ program (http://impact.ee.ucla.edu/). We
also thank Pradiptya Ghosh (Mentor Graphics) for valuable discus-
sions.

7. REFERENCES
[1] T. Achterberg, “SCIP: Solving Constraint Integer Programs”, Mathematical

Programming Computation 1(1) (2009), pp. 1-41.
[2] S. Arora, “Approximation Schemes for NP-Hard Geometric Optimization

Problem: A Survey”, Mathematical Programming 97(1-2) (2003), pp. 43-69.
[3] S. V. Babin, A. B. Kahng, I. I. Mandoiu, and S. Muddu, “Resist Heating

Dependence on Subfield Scheduling in 50kV Electron Beam Maskmaking”,
Proc. SPIE Photomask Technology, vol. 5130, 2003, pp. 718-726.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, W. P. Martin and P. H. Vance,
“Branch-and-Price: Column Generation for Solving Huge Integer Programs”,
Operations Research 46(3) (1998), pp. 316-329.

(a) Arbitrary generated benchmarks

(b) Realistic generated benchmarks

Figure 11: Illustration of generated benchmarks with the optimal mask fracturing solution shown in dashed lines (wafer scale).

Figure 12: ILT mask shapes obtained after applying inverse lithography to layouts from the ICCAD-2013 contest [28] (wafer scale).

[5] R. Bracewell, “Rectangle Function of Unit Height and Base, PI(x)”, in The
Fourier Transform and Its Applications, McGraw-Hill, 1965.

[6] J. Choi, J. S. Pack, I. K. Shin and C. Jeon, “Inverse E-Beam Lithography on
Photomask for Computational Lithography”, J. Micro/Nanolithography,
MEMS, and MOEMS 13(1) (2013), pp. 011003-1-011003-9.

[7] G. S. Chua, W. L. Wang, B. I. Choi, Y. Zou, C. Tabery, I. Bork, T. Nguyen and
A. Fujimura, “Optimization of Mask Shot Count Using MB-MDP and
Lithography Simulation”, Proc. SPIE Photomask Technology, vol. 8166, 2011,
pp. 816632-1-816632-11.

[8] J. Cong, M. Romesis and X. Min, “Optimality and Stability Study of
Timing-Driven Placement Algorithms”, Proc. ICCAD, 2003, pp. 472-478.

[9] J. C. Culberson and R. A. Reckhow, “Covering Polygons is Hard”, J.
Algorithms 17(1) (1994), pp. 2-44.

[10] A. Elayat, T. Lin, E. Sahouria and S. F. Schulze, “Assessment and Comparison
of Different Approaches for Mask Write Time Reduction”, Proc. SPIE
Photomask Technology, vol. 8166, 2011, pp. 816634-1-816634-13.

[11] A. Fujimura, T. Kamikubo and I. Bork, “Model-Based Mask Data Preparation
(MB-MDP) and Its Impact on Resist Heating”, Proc. SPIE Alternative
Lithographic Technologies III, vol. 7970, 2011, pp. 797012-1-797012-10.

[12] R. Galler, D. Melzer, M. Boettcher, M. Krueger, M. Suelzle and C. Wagner,
“Modified Dose Correction Strategy for Better Pattern Contrast”, Proc. SPIE
European Mask and Lithography Conference, vol. 7545, 2010, pp.
75450F-1-75450F-12.

[13] P. Gupta, A. B. Kahng, A. Kasibhatla and P. Sharma, “Eyecharts: Constructive
Benchmarking of Gate Sizing Heuristics”, Proc. DAC, 2010, pp. 597-602.

[14] H. Imai and T. Asano, “Efficient Algorithms for Geometric Graph Search
Problems”, SIAM J. Computing 15(2) (1986), pp. 478-494.

[15] S. Jiang, X. Ma and A. Zakhor, “A Recursive Cost-Based Approach to
Fracturing”, Proc. SPIE Optical Microlithography XXIV, vol. 7973, 2011, pp.
79732P-1-79732P-18.

[16] S. Jiang and A. Zakhor, “Application of Signal Reconstruction Techniques to
Shot Count Reduction in Simulation Driven Fracturing”, Proc. SPIE
Photomask Technology, vol. 8166, 2011, pp. 81660U-1-81660U-14.

[17] S. Jiang and A. Zakhor, “Shot Overlap Model-Based Fracturing for
Edge-Based OPC Layouts”, Proc. SPIE Optical Microlithography XXVII, vol.
9052, 2014, pp. 90520L-1-90520L-19.

[18] A. B. Kahng, X. Xu and A. Zelikovsky, “Yield- and Cost-Driven Fracturing

for Variable Shaped-Beam Mask Writing”, Proc. SPIE Photomask
Technology, vol. 5567, 2004, pp. 360-371.

[19] A. B. Kahng, X. Xu and A. Zelikovsky, “Fast Yield-Driven Fracture for
Variable Shaped Beam Mask Writing”, Proc. SPIE Photomask and
Next-Generation Lithography Mask Technology XIII, vol. 6283, 2006, pp.
62832R-1-62832R-10.

[20] T. Lin, E. Sahouria, N. Akkiraju and S. Schulze, “Reducing Shot Count
Through Optimization-Based Fracture”, Proc. SPIE Photomask Technology,
vol. 8166, 2011, pp. 81660T-1-81660T-13.

[21] L. Pang, P. Hu, D. Peng, D. Chen, T. Cecil, L. He, G. Xiao, V. Tolani, T. Dam,
K. Baik and B. Gleason, “Source Mask Optimization (SMO) at Full Chip Scale
Using Inverse Lithography Technology (ILT) Based on Level Set Methods”,
Proc. SPIE Lithography Asia, vol. 7520, 2009, pp. 75200X-1-75200X-17.

[22] J. M. Pavkovich, “Proximity Effect Correction Calculations by the Integral
Equation Approximate Solution Method”, J. Vacuum Science & Technology B
4(1) (1986), pp. 159-163.

[23] B. Yu, J.-R. Gao and D. Z. Pan, “L-Shape Based Layout Fracturing for
E-Beam Lithography”, Proc. ASPDAC, 2013, pp. 249-254.

[24] H. R. Zable, A. Fujimura, T. Komagata, Y. Nakagawa and J. S. Petersen,
“Writing Wavy Metal 1 Shapes on 22-nm Logic Wafers with Less Shot
Count”, Proc. SPIE Photomask and Next-Generation Lithography Mask
Technology XVII, vol. 7748, 2010, pp. 77480X-1-77480X-10.

[25] “Boost Polygon Library”, http://www/boost.org/doc/libs/1_53_0/
libs/polygon/doc/index.html

[26] “CPLEX v12.5”, http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

[27] G. Guennebaud, B. Jacob et al., “Eigen v3”, 2010, http://eigen.tuxfamily.org
[28] S. Banerjee, “ICCAD 2013 Contest on Mask Optimization”,

http://cad_contest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2013/problem_c/

[29] “OpenAccess API”, http://www.si2.org

