
Multi-Way Partitioning Via Space�lling

Curves and Dynamic Programming�

C. J. Alpert and A. B. Kahng

UCLA Computer Science Department, Los Angeles, CA 90024-1596

Abstract
Spectral geometric embeddings of a circuit netlist

can lead to fast, high quality multi-way partition-
ing solutions. Furthermore, it has been shown that
d-dimensional spectral embeddings (d > 1) are a
more powerful tool than single-eigenvector embed-
dings (d = 1) for multi-way partitioning [2] [4]. How-
ever, previous methods cannot fully utilize informa-
tion from the spectral embedding while optimizing
netlist-dependent objectives. This work introduces
a new multi-way circuit partitioning algorithm called
DP-RP. We begin with a d-dimensional spectral em-
bedding from which a 1-dimensional ordering of the
modules is obtained using a space�lling curve. The 1-
dimensional ordering retains useful information from
the multi-dimensional embedding while allowing ap-
plication of e�cient algorithms. We show that for a
new Restricted Partitioning formulation, dynamic pro-
gramming e�ciently �nds optimal solutions in terms
of Scaled Cost [4] and can transparently handle user-
speci�ed cluster size constraints. For 2-way ratio cut
partitioning, DP-RP yields an average of 45% im-
provement over KP [4] and EIG1 [6] and 48% improve-
ment over KC [2].

1 Introduction
Systems with several million transistors entail prob-

lem complexities that are unmanageable for existing
logic- and physical-level design tools. Thus, partition-
ing is used to divide the system into smaller, more
manageable components. Previous work has focused
on 2-way partitioning algorithms that in practice are
recursively applied to generate k-way partitionings.
Since the top-down approach can lead to unnatural
partitioning solutions, our work seeks to reveal the

�Partial support for this work was provided by a Department
of Defense Graduate Fellowship, by NSF Young Investigator
Award MIP-9257982, and by Cadence Design Systems and Zy-
cad Corporation under the State of CaliforniaMICRO program.
ABK was also supported by NSF MIP-9117328 during a Spring
1993 sabbatical visit to UC Berkeley.

natural circuit structure via a non-hierarchical de-
composition into k subcircuits with minimum inter-
connectivity between the subcircuits:

General k-Way Partitioning: Given a circuit
netlist hypergraph H = (V;EH) with n modules
V = fv1; v2; : : : ; vng, and a value 2 � k � n, con-
struct a k-way partitioning, P k, that divides V into
k disjoint clusters C1; C2; : : : ; Ck to optimize a given
objective function f(P k).

Because cluster sizes are generally not known in
advance, we require a multi-way partitioning measure
which can account for both cut nets and size balance
among the clusters. The Scaled Cost objective [4] cap-
tures these requirements and is a multi-way general-
ization of the ratio cut objective [14]:

Scaled Cost: Find P k = fC1; C2; : : : ; Ckg that min-
imizes

f(P k) =
1

n(k � 1)

kX

i=1

jEij

jCij

where Ei � EH is the set of signal nets crossing the
boundary of cluster Ci. In what follows, we assume f
is the Scaled Cost objective. Minimizing Scaled Cost
is shown NP-complete by restriction to minimumratio
cut.

1.1 Previous Work

Previous work on 2-way partitioning has centered
on the minimum bisection and the minimum ratio
cut objectives, and various greedy or hill-climbing ap-
proaches having been proposed [9]. Approaches to
multi-way partitioning have involved seeded epitax-
ial growth, extensions of the Fiduccia-Mattheyses [5]
iterative bipartitioning algorithm [11], a primal-dual
iteration motivated by a generalization of the ratio
cut metric [15], and spectral approaches [6].

Other multi-way partitioning approaches extend
the well-established spectral method. Hall [7] showed
that the eigenvector corresponding to the second
smallest eigenvalue of the netlist Laplacian1 minimizes
a squared-wirelength objective. Hall's work [7] dis-
cusses the construction of a d-dimensional spectral em-

1Given an edge-weighted graph representation of the netlist,
G(V;EG), we construct the n�n adjacency matrix A = A(G) in
which Aij has weight e(vi; vj) 2 EG (by conventionAii = 0 for
all i = 1; : : : ; n). If deg(vi) denotes the degree of node vi (i.e.,
the sum of the weights of all edges incident to vi), we obtain
the n � n diagonal degree matrix D de�ned by Dii = deg(vi).
The Laplacian of the netlist graph is given by Q = D � A.



bedding of a graph, based on the d eigenvectors that
correspond to the smallest eigenvalues of the Lapla-
cian. The embedding is constructed by letting the ith

components of the d eigenvectors form the coordinates
in <d of module vi 2 V . Hall suggested partitioning
the spectral geometric embedding as a graph parti-
tioning heuristic; extensions to netlist hypergraphs are
accomplished using a clique net model. Intuitively,
since all d eigenvectors are good solutions for the
squared-wirelength objective, the d-dimensional em-
bedding has strong \distance-preserving" properties.
In other words, the embedding re
ects \distance" and
\separation" between netlist modules, such that two
modules which are strongly (weakly) connected in the
netlist should map to closely (widely) separated points
in the geometry.

The spectral approach is computationally e�cient:
eigenvectors of the Laplacian may be computed us-
ing readily available Lanczos codes. For example, Ha-
gen and Kahng [6] based their work on the code re-
ported by Pothen et al. [10], while others use the more
widely distributed LASO package of Parlett and Scott
[12]. The Lanczos iteration solves the sparse symmet-
ric eigenproblem with O(n1:4) expected complexity,
with runtimes generally competitive with those of it-
erative partitioning methods. [Other �elds have also
found eigenvector computations to be e�cient, e.g., Si-
mon [13] has used spectral methods to partition very
large �nite-element grids].

Alpert and Kahng [2] and Chan, et al. [4] have uti-
lized d-dimensional spectral embeddings to construct
high-qualitymulti-way netlist partitioning algorithms.
Since a geometric representation of the netlist requires
only O(n) space to capture �(n2) \distances", both
methods have low algorithmic complexity and memory
requirements. Given the netlist embedding, Alpert
and Kahng apply KC, an e�cient O(n log k) geometric
partitioning heuristic. Chan et al. apply the more ef-
fective KP heuristic which has O(nk2+nk logn) com-
plexity, assuming constant degree bounds. Alpert and
Kahng also studied the criticality of di�ering clique
net models with respect to performance; based on this
result, we will adopt their \partitioning-speci�c" net
model to generate geometric netlist embeddings2.

While KC and KP demonstrate that spectral geo-
metric embeddings preserve fundamental netlist prop-
erties, any partitioning algorithm that ignores netlist
topology or the underlying objective will be handi-
capped. For instance, KC minimizes a geometric mea-
sure (maximum cluster diameter) which has only a
heuristic correlation to Scaled Cost or other netlist-
dependent objectives. Similarly, KP assigns modules
to clusters via a directional cosine distance measure
and does not use the netlist except when assigning
the more \di�cult" modules; the actual Scaled Cost
objective is never used in the cluster assignment.

We believe that the geometric embedding should
serve as a guide, not an absolute { we require a new
partitioning approach that utilizes both geometric and
netlist information together, and that can directly op-

2The \partitioning-speci�c" clique net model assigns cost
4

p�(p�1)
to each edge in the clique that represents a p-pin net.

timize topology-dependent objectives such as Scaled
Cost.

1.2 Overview of Our Approach

To exploit both a d-dimensional geometric embed-
ding and the underlying netlist topology within an
e�cient partitioning optimization, we propose a new
method based on constructing a \tour" of the embed-
ded points via a space�lling curve (SFC). The SFC-
based ordering can be viewed as a 1-dimensional rep-
resentation of the d-dimensional pointset, which was
in turn a representation of the original circuit netlist.
This approach has two clear advantages:

� The 1-dimensional SFC-based ordering contains
more information than the 1-dimensional order-
ing generated by a single eigenvector of the Lapla-
cian and used by, e.g., [6].

� The SFC-based ordering is amenable to e�cient
optimizations that cannot be applied to higher-
dimensional representations.

We present a new Restricted Partitioning (RP) for-
mulation that requires clusters of the partitioning to
be contiguous in the SFC-based ordering. We then
show RP can be solved optimally by dynamic pro-
gramming while transparently handling user-speci�ed
cluster size constraints. This dynamic programming
technique holds theoretical interest since all of the
unrestricted partitioning formulations of interest (ra-
tio cut, min-bisection, Scaled Cost, etc.) are NP-
complete. Figure 1 contrasts the original methodology
of Hall (a) with previous spectral k-way partitioning
methods (b), and our new multi-way partitioning al-
gorithm (c).

(a) (c)

??? (unspecified)

Edge−Weighted
       Graph

Eigenvectors of Laplacian
(via clique net model)

Spacefilling Curve

Circuit Netlist

k−Way Partitioning

1−dimensional Tour

   d−dimensional
Geometric Pointset

DP−RP Dynamic
Programming

Eigenvectors of Laplacian
(via clique net model)

k−Way Partitioning

   d−dimensional
Geometric Pointset

KC − Geometric
Partitioning

KP − Directional
Cosines

Eigenvectors of Laplacian
(via clique net model)

Circuit Netlist

k−Way Partitioning

   d−dimensional
Geometric Pointset

(b)

Figure 1: (a) Methodology proposed by Hall; (b)
KC [2] and KP [4] algorithms; and (c) our new
multi-way partitioning algorithm.

The remainder of our paper is organized as follows.
Section 2 presents our new Restricted Partitioning for-
mulation. Section 3 presents space�lling curves for
creating a one-dimensional orderings. Section 4 de-
scribes the DP-RP dynamic programming algorithm.
Section 5 gives experimental results indicating that
DP-RP is an excellent k-way partitioning heuristic in
terms of Scaled Cost, for 2 � k � 5.



2 Restricted k-Way Partitioning
A genesis of our new approach lies in the Traveling

Salesman Problem (TSP) heuristic of Karp [8], which
uses a partitioning of a planar pointset to construct
a tour. Karp's heuristic visits the clusters of the par-
titioning one at a time, and visits every point in a
particular cluster before moving to the next cluster.
We ask whether an \inverse" methodology can suc-
ceed, i.e., whether we can use a tour of the geometric
pointset to generate a partitioning. We require each
cluster of the partitioning to be a contiguous \slice" of
the tour, thereby obtaining the following general ap-
proach: (i) construct a \good tour" over the geometric
points, and (ii) minimize a partitioning objective sub-
ject to clusters being contiguous slices of the tour.

We represent a tour by a circular permutation3, i.e.,
a bijection � : V ! V . If we write �(vi) = v�j ;
then � can be expressed using the ordered-set no-
tation fv�1 ; v�2 ; : : : ; v�ng, i.e., the tour begins with
point v�1 , visits v�2 , etc., until it visits v�n and then
�nally revisits v�1 . A slice [i; j] of � is a contigu-
ous subset of �; we treat indices modulo n so that
[i; j] = fv�i ; v�i+1 ; : : : ; v�jg if i � j and [i; j] =
fv�j ; v�j+1 ; : : : ; v�ng [ fv�1 ; v�2 ; : : : ; v�ig if i > j. We
now de�ne the \restricted" k-way partitioning prob-
lem:

Restricted k-Way Partitioning (RP): Given a
permutation � : V ! V , cluster size bounds L and
U , a value 2 � k � jV j, and an objective f , partition
V into disjoint clusters P k = fC1; C2; : : : ; Ckg that
optimizes f(P k) such that:

Condition 1: if v�i ; v�j 2 C for some cluster C,
then either

(a) [i; j] � C, or

(b) [j; i] � C.

Condition 2: L � jCjj � U; 1 � j � k.

Condition 1 captures the restriction that clusters
must be slices of �, and Condition 2 adds cluster size
constraints. The RP formulation in e�ect seeks to
partition a 1-dimensional representation of V , namely,
�. We will show that we can solve RP optimally for
a large class of objectives (including Scaled Cost) in
polynomial time.

Given the embedded netlist modules V , our multi-
way partitioning methodology �rst constructs a tour
� using a space�lling curve, then applies an optimal
dynamic programming algorithm to minimize Scaled
Cost within the RP formulation. A variant of RP
removes Condition 1(b), thus requiring clusters to be
slices from a linear ordering rather than from a tour.
This restriction narrows the solution space but allows
an O(n) factor speedup; our experiments use linear
orderings to capitalize on this complexity savings.

3In the discussion below, we use V = fv1; v2; : : : ; vng to
denote either the modules of the netlist or the corresponding
points in d-space, i.e., vi can denote either a module or a point
in <d. Our discussion will often overload these meanings for
notational convenience, e.g., we may discuss a partitioning of
V � <d with respect to the netlist topology over V . The mean-
ing will be clear from the context.

3 Space�lling Curves in d Dimensions
Recall that two modules that are strongly con-

nected in the netlist will tend to be near each other
in the spectral geometric embedding. We now seek a
good tour of the embedding such that points of V that
are close to each other in the embedding remain near
each other in �. Furthermore, if two strongly con-
nected modules are not actually adjacent in the tour,
they should be separated by modules with which they
may pro�tably share a cluster. From the above intu-
ition, a good TSP solution over the embedded pointset
should su�ce since it is unlikely to wander out of, and
then back into, a natural cluster. However, it is not
obvious which TSP heuristic to choose. For example,
even relatively e�ective methods such as the greedy
nearest-neighbor approach can yield long edges, forc-
ing distant points to be adjacent in the tour.

Figure 2: The planar Sierpinski space�lling
curve.

Bartholdi and Platzman have used space�lling
curves as the basis of a provably good TSP heuristic
[3]. They use the recursive construction due to Sier-
pinski (1912), the 2-dimensional case of which is shown
in Figure 2. In the Figure, the successive approxima-
tions are progressively re�ned until the curve \�lls"
up the unit square to the necessary precision, i.e., it
passes over every point. The order in which points
of a TSP instance are visited by the curve yields the
heuristic TSP solution. Figure 3 shows the SFC tour
for (a) a uniformly random set of 150 points in the
plane, and (b) the 2-dimensional spectral embedding
of the Primary1 layout synthesis benchmark.

(a) (b)

Figure 3: The Sierpinski tour over (a) 150 ran-
dom points, and (b) the 2-dimensional spectral
embedding of the Primary1 benchmark.

In practice, the SFC heuristic yields planar TSP
tours within 25% of optimal for uniformly random
instances and also has an O(logn) worst-case error
bound [3]. For uniformly random pointsets, [3] em-



pirically found that the Sierpinski curve outperforms
these and other space�lling curves as the basis for
a TSP heuristic. Other space�lling curves might be
better suited for nonuniform distributions; indeed, [3]
has outlined a method for creating application-speci�c
space�lling curves.

The tour generated by the Sierpinski curve seems
to suit our purposes for several reasons.

� Points that are close to each other in d-space will
generally also be close along the tour. More crit-
ically, the tour avoids long edges, so that if two
points are adjacent in the tour, they will be close
to each other in the geometry.

� The Sierpinski construction can easily be ex-
tended into higher dimensions by recursively ap-
plying the 2-dimensional construction.

� The tour is calculated in O(n logn) time [3], [1].

4 Dynamic Programming (DP) for RP
While the Scaled Cost objective is of primary inter-

est in our work, we cast the following discussion more
generally in order to extend our result to a larger class
of objectives f .

Let w(Ci) be the cost of having cluster Ci in our
partitioning P k, i.e., the contribution of Ci to the

value f(P k). For example, w(Ci) =
Ei

jCij
in the Scaled

Cost objective. The cluster corresponding to slice [i; j]
is denoted by C[i;j] and P k

[i;j] denotes a k-way RP

solution over the slice [i; j]. We use P̂ k
[i;j] to denote

the optimal k-way RP solution over [i; j]. Notice that

P 1
[i;j] = P̂ 1

[i;j] = fC[i;j]g. We will use optimal parti-

tioning solutions P̂ k
[i;j] as \building blocks" of solutions

P̂ k0

[i0;j0] where [i; j] � [i0; j0] and k < k0.

Since each cluster C[i;j] is uniquely determined by
its �rst and last points v�i and v�j , only (U �L+1)n
clusters can be part of any RP solution. Our DP-RP
algorithm (Figure 4) �rst computes the cost w(C[i;j])
for each of these (U � L + 1)n clusters using some
procedure Cluster Costs (cf. the discussion below).
These clusters form the set of all optimal 1-way parti-
tionings P̂ 1

[i;j]. We then build 2-way partitioning solu-

tions P̂ 2
[i;j] from the P̂ 1

[i;j], etc. until all possible k-way

partitioning solutions are obtained.

Whether the P̂ k values are optimal depends on the
objective f . A su�cient condition for DP-RP to gen-
erate optimal solutions is for f to be monotone non-

decreasing over w: for any P k = fC1; C2; : : : ; Ckg
and Qk = fC0

1; C
0

2; : : : ; C
0

kg with w(Ci) � w(C0

i) for
1 � i � k, f is monotone nondecreasing if and only if
f(P k) � f(Qk). For such objectives f , the principle
of optimality holds: all subsolutions of an optimal RP
solution are themselves optimal RP subsolutions, e.g.,
if P 3 = fC1; C2; C3g is an optimal 3-way RP solution

DP-RP Algorithm

Input: Permutation � = fv�1 ; v�2 ; : : : ; v�ng
L;U � Lower and upper cluster size bounds
k � Number of clusters

Output: P̂ k � Optimal RP solution

Vars: P̂ k0

[i;j] � Subsolutions

k0 � Index denoting current partitioning size
m � Beginning index of possible new cluster

fbest � Objective value for best current P̂ k0

[i;j]

1. 8i; j compute f(P̂ 1
[i;j]

) = w(C[i;j]) using Cluster Costs

2. for k0 = 2 to k do

3. for each i; j do

4. fbest =1
5. for m = j � U to j � L do

6. if fbest < f(P̂ k0�1
[i;m] [ fC[m+1;j]g) then

7. fbest = f(P̂ k0�1
[i;m] [ fC[m+1;j]g)

P̂ k0

i;j
= P̂ k0�1

[i;m]
[C[m+1;j]

8. return P̂ k = P̂ k
[i;i�1]

for the i

that minimizes f(P̂ k
[i;i�1]

); 1 � i � n

Figure 4: The DP-RP algorithm. All index ma-
nipulations are performed modulo n.

then fC1; C2g will be the optimal 2-way RP solution
for the points in fC1 [C2g. Thus, given the set of all

optimal P̂ k0
�1

[i;j] , we can build the set of optimal P̂ k0

[i;j] by

virtue of P̂ k0

[i;j] being expressible as P̂
k0
�1

[i;m] [fC[m+1;j]g

for some m with L � jC[m+1;j]j � U . Since DP-RP
considers each possible value ofm (Step 5) and records
each new partitioning which reduces f (Step 7), every

P̂ k0

[i;j] retained when the loop of Step 5 terminates must

be optimal. DP-RP has complexity O(k(U � L)n2)
since, as we will subsequently show, Cluster Costs has
only O(nU ) complexity. When there are no cluster
size constraints, DP-RP has O(kn3) complexity.

When only a few relatively large values of k are of
interest, DP-RP can be improved to O(log k(U�L)n2)
complexity by the technique of addition chains. We
�rst construct optimal 4-way partitionings from 2-way
optimal partitionings, then 8-way partitionings from
4-way partitionings, etc. Optimal k-way solutions may
now be derived from the 2i-way partitioning subsolu-
tions corresponding to the log k values of 2i that sum
to k.

The class of partitioning objectives f(P k) which
are monotone nondecreasing for some cluster weight
function w includes Scaled Cost and the common
geometric partitioning objectives, Min-Max-Diameter
and Min-Sum-Diameters4. [When f corresponds to
Min-Max-Diameter, DP-RP signi�cantly outperforms
standard Min-Max-Diameter partitioning algorithms

4diam(C) is the maximum of the geometric distances be-
tween every pair of points in C. Setting w(C) = diam(C),
f(P k) = min

1�i�k
w(Ci) for Min-Max-Diameter and f(P k) =

X

1�i�k

w(Ci) for Min-Sum-Diameters; see [1] for more details.



for uniformly random pointsets, illustrating the 
exi-
bility of the DP-RP approach [1].]

Figure 5 describes Cluster Costs for f correspond-
ing to Scaled Cost; the procedure returns all cluster
costs w(C[i;j]) in O(nU ) time, assuming O(n) signal
nets. This is a valid assumption since both fanout
and cell I/O are bounded for any given technology.
Steps 1-9 calculate the outdegree for each cluster, and
w(C[i;j]) is computed in Step 10. Given the value of
w(C[i;j�1]), one can computew(C[i;j]) by adding v�j to
cluster C[i;j�1] and checking whether any cut nets be-
come completely contained in the cluster (Step 8), or
whether any previously uncut nets become cut (Step
9). Appropriate data structures allow Steps 8 and 9
to be executed in constant time, hence Cluster Costs
has O(nU ) time complexity [1].

Cluster Costs

Input: Permutation � = fv�1 ; v�2 ; : : : ; v�ng
L;U � Lower and upper cluster size bounds

Output: w(C[i;j]) �
E[i;j]

jC[i;j] j
for every possible cluster C[i;j]

Vars: � � One less than size of current clusters
Si � Set of signal nets which contain module v�i

1. for i = 1 to n do

2. w(C[i;i]) = jSij where
Si = fsjsignal net s contains module v�ig

3. for � = 1 to U do

4. j = ((i+� � 1) mod n) +1
5. Sj = fsjsignal net s contains module v�j g
6. w(C[i;j]) = w(C[i;j�1])
7. for every s 2 Sj do

8. if (s is completely contained in C[i;j]) then
decrement w(C[i;j])

9. if (s contains no modules of C[i;j�1]) then
increment w(C[i;j])

10. for every w(C[i;j]) calculated do w(C[i;j]) =
w(C[i;j])

j�i+1

Figure 5: Cluster Costs (Scaled Cost).

So far, we have considered the RP formulation
where both conditions 1(a) and 1(b) apply. DP-RP
may require up to O(kn3) time complexity, which is
prohibitive for practical netlist sizes. However, elimi-
nating rule 1(b) changes the tour into a linear order-
ing, which restricts the solution space but allows a fac-
tor of n speedup, i.e., O(kn(U � L)) time complexity
and O(kn2) when there are no cluster size constraints.
The speedup arises since we are guaranteed that some
cluster begins with index �1; thus, for each value of k0

(see Step 2 of Figure 4) we maintain only O(n) subso-

lutions of form P k0

[1;j] instead of O(n2) subsolutions of

form P k0

[i;j].

5 Results and Future Work
We initially generated a linear ordering from

the Sierpinski tour by removing the tour's largest
edge. We also generated a subsequent linear or-
dering based on the split of the 2-way partitioning
solution, i.e., if the original solution yielded P 2 =
fC[1;m]; C[m+1;n]g, then the second linear ordering
was f�m+1; �m+2; : : : ; �n; �1; �2; : : :�mg. We repeated

this procedure to generate a third linear ordering and
then recorded the best partitioning solution obtained
from the three linear orderings. The subsequent linear
orderings did not a�ord signi�cant improvements over
the initial linear ordering.

For each benchmark in our experiments, we con-
sidered the d-dimensional embedding derived from d
eigenvectors (1 � d � 10), and then computed the
space�lling curve for each embedding. Our experi-
ments also set L = 1 and U = n in order to con-
sider the full range of solutions. We recorded the best
solutions obtained by running DP-RP on 1- through
10-dimensional embeddings.

The best Scaled Cost results are recorded in Table
1. We compare DP-RP to KC [2], KP [4] and EIG1 [6],
the results of which are quoted from [4]. Table 1 shows
that DP-RP is signi�cantly superior to EIG1, KP and
KC, particularly for k = 2 through k = 5. For exam-
ple, we see that DP-RP averages 45% improvement
over both KP and EIG1 for k = 2. Generating the
Sierpinski tour and executing DP-RP for a single lin-
ear ordering was also reasonably e�cient: we obtained
k-way partitioning solutions for all values 2 � k � 10,
with d = 5, in 63 seconds for Primary1 and in 633
seconds for Primary2 on a Sparc IPX.

The 1-dimensional SFC ordering captures useful
information from the multi-dimensional spectral em-
bedding that is not available from the 1-dimensional
spectral embedding. To see this, we executed DP-RP
on the linear ordering corresponding to the eigenvec-
tor of the smallest non-zero eigenvalue of the Lapla-
cian. For k-way partitioning with 2 � k � 10, DP-
RP applied to the SFC linear ordering obtained any-
where from 26.4% (19ks) to 84.0% (Test05) average
reduction in Scaled Cost versus DP-RP applied to
the single-eigenvector linear ordering. Thus, our SFC-
based ordering is valuable for its ability to capture
information from d eigenvectors while still remaining
tractable to e�cient partitioning optimizations.

We note that DP-RP performs poorly as k con-
tinues to increase, and we suspect this is due to the
fact that RP is too restrictive for larger values of k.
The tour successfully captures global information, but
when more local decisions have to be made, e.g, for
k � 6, DP-RP's reliance on a \monolithic" space�ll-
ing curve seems less e�ective. This leaves open the
future improvement to DP-RP for larger values of k.
One possibility would be to integrate some cluster-
ing method which will permanently �x some groups
of modules into the same cluster. Then, the space-
�lling curve will traverse complete clusters of mod-
ules instead of individual modules, with the clusters
being subsequently re-expanded before dynamic pro-
gramming is applied. We also note that although
DP-RP can easily handle bounds on cluster size (i.e.,
module cardinalities), it handles area constraints only
with added complexity on the order of the total mod-
ule area. We leave open the question of whether
area constraints can be integrated without increas-
ing algorithmic complexity. On a similar note, we
leave open the integration of individual cluster size
or area constraints into DP-RP, e.g., L1 � jC1j � U1,
L2 � jC2j � U2, etc.



Test ALG Number of Clusters - k (Best dimension)
Case 10 9 8 7 6 5 4 3 2
19ks DP-RP 17.6 16.8 15.6 14.3 12.7 11.7 8.37 7.74 5.44

KC 15.0 15.8 15.6 15.1 14.4 13.1 12.5 17.6
bm1 DP-RP 24.8 22.8 20.7 18.1 14.4 11.5 8.89 6.61 5.53

KC 27.6 30.6 28.6 19.8 17.9 11.1 7.0 5.8
Prim1 DP-RP 38.9 36.7 35.2 31.7 28.8 26.0 22.1 14.7 13.5

KP 44.7 41.3 32.3 33.2 31.3 29.9 21.2 14.7 13.5
KC 34.6 33.6 34.4 30.7 27.5 16.4 17.4 13.5
EIG1 59.4 56.2 51.0 46.6 43.2 40.3 38.9 22.5 13.5

Prim2 DP-RP 13.7 13.3 12.8 12.1 11.0 9.43 7.95 6.86 5.05
KP 15.0 15.2 13.5 11.0 10.5 10.1 9.24 7.25 4.64
KC 11.7 12.0 11.8 11.5 10.4 9.0 7.5 5.9
EIG1 11.1 10.6 10.4 9.56 8.44 8.47 7.56 6.56 4.78

Test02 DP-RP 25.5 24.1 22.8 20.9 18.5 16.1 13.4 10.9 8.07
KP 24.2 23.4 21.5 19.0 16.4 13.9 14.1 12.7 9.26
KC 21.5 21.2 21.1 21.2 23.1 23.6 19.1 30.1
EIG1 25.5 23.8 21.7 20.3 18.9 14.5 13.0 11.4 8.73

Test03 DP-RP 22.6 21.1 19.2 17.1 16.2 15.2 14.3 13.0 10.2
KP 20.6 20.1 19.8 17.6 18.0 17.5 20.2 15.0 31.2
KC 21.0 22.4 23.2 22.4 22.2 19.3 21.4 16.7
EIG1 19.8 17.9 17.3 17.0 16.9 16.9 17.1 20.7 31.2

Test04 DP-RP 22.2 19.9 17.8 17.6 16.5 15.1 12.4 8.19 5.85
KP 17.4 17.6 20.0 15.8 15.2 14.3 14.8 18.9 66.1
KC 22.1 23.8 24.4 24.3 27.2 27.4 36.0 66.1
EIG1 21.9 21.6 23.3 24.4 24.9 28.2 32.3 37.4 66.1

Test05 DP-RP 9.88 8.66 8.06 7.84 7.32 6.56 5.49 4.90 3.15
KP 9.32 7.21 8.91 8.66 7.64 7.98 8.07 8.65 11.3
KC 11.0 10.6 10.7 11.1 10.3 8.8 10.2 10.6
EIG1 9.28 8.43 6.58 6.42 6.22 6.28 6.30 6.37 8.94

Test06 DP-RP 27.1 25.1 23.7 20.2 18.4 16.6 14.2 11.3 9.2
KP 21.3 21.6 20.7 18.5 17.2 15.0 18.0 12.1 28.6
KC 31.0 32.4 33.6 26.4 28.8 25.9 19.3 28.6
EIG1 21.7 21.7 22.7 14.1 16.6 15.1 16.6 18.6 28.6

Table 1: Scaled Cost values (�105) of best k-way partitions obtained using d-dimensional embed-
dings, 1 � d � 10. Results for KP and EIG1 are quoted from [4], and results for KC are quoted from
[2].

Acknowledgments
We have enjoyed research discussions with Pak

Chan, Martine Schlag and Jason Zien. Lars Hagen
and Jen-Hsin Huang developed the ideas behind the
partitioning-speci�c net model. Part of this work was
performed during a Spring 1993 visit to UC Berke-
ley; the hospitality of Professor Ernest S. Kuh and his
research group is gratefully acknowledged.

References
[1] C. J. Alpert and A. B. Kahng, \Multi-Way Netlist Parti-

tioning Using Space�llingCurves," UCLA technical report
930016, 1993.

[2] C. J. Alpert and A. B. Kahng, \GeometricEmbeddings for
Faster and Better Multi-way Netlist Partitioning," Proc.
ACM/IEEE Design Automation Conf. 1993, pp. 743-748.

[3] J. J. Bartholdi and L. K. Platzman, \Heuristics Based
on Space�lling Curves for Combinatorial Problems in
Euclidean Space" Management Sciences Vol. 34, No. 3,
March 1988, pp. 291-305.

[4] P. K. Chan, M. D. F. Schlag and J. Zien, \SpectralK-Way
Ratio Cut Partitioning and Clustering", Proc. Symp. on
Integrated Systems, Seattle, March 1993. (also see J. Zien,
\Spectral K-Way Ratio Cut Graph Partitioning", M.S.
Thesis, Computer Engineering Dept., UC Santa Cruz,
March 1993, for experimental results).

[5] C. M, Fiduccia and R. M. Mattheyses, \A Linear
Time Heuristic for Improving Network Partitions", Proc.
ACM/IEEE Design Automation Conf., June 1982, pp.
175-181.

[6] L. Hagen and A. B. Kahng, \New Spectral Methods for
Ratio Cut Partitioning and Clustering", IEEE Trans. on
CAD 11(9), Sept. 1992, pp. 1074-1085.

[7] K. M. Hall, \An r-dimensional Quadratic Placement Al-
gorithm",Manag. Sci, 17, 1970, pp. 219-229.

[8] R. M. Karp, \Probabilistic Analysis of Partitioning Algo-
rithms for the Traveling-Salesman Problem in the Plane",
Mathematics of Operations Research 2(3), 1977, pp. 209-
224.

[9] T. Lengauer, Combinatorial Algorithms for Integrated
Circuit Layout, Wiley-Teubner, 1990.

[10] A. Pothen, H. D. Simon, and K. P. Liou, \Partitioning
Sparse Matrices with Eigenvectors of Graphs," SIAM J.
Matrix Anal. Appl., vol. 11, pp. 430-452, 1990.

[11] L. A. Sanchis, \Multiple-way Network Partitioning",
IEEE Trans. on Computers, 38, 1989, pp. 62-81.

[12] D. S. Scott, \LASO2 Documentation", technical report,
CS Dept., University of Texas at Austin, 1980.

[13] H. D. Simon, \Partitioning of Unstructured Problems for
Parallel Processing", technical report, NAS Systems Divi-
sion, NASA Ames Research Center, Feb. 1991.

[14] Y. C. Wei and C. K. Cheng, \Ratio Cut Partitioning for
Hierarchical Designs", IEEE Trans. on CAD 10(7), July
1991, pp. 911-921.

[15] C. W. Yeh, C. K. Cheng and T. T. Lin, \A General
Purpose Multiple Way Partitioning Algorithm", Proc.
ACM/IEEE Design Automation Conf., June 1991, pp.
421-426.


