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Abstract—In leading-edge process technologies, reliability
is a first-class constraint for both IC design and system opera-
tion. For multicore systems, reliability affects task scheduling
decisions since it constrains both performance and throughput.
Previous works on reliability-constrained task scheduling
have two basic limitations: either they cannot guarantee
lifetime (e.g., that the chip can deliver useful performance
over 10 years), or they cannot guarantee lower bounds on
“acceptable performance” or “acceptable throughput” for the
entire chip lifetime. In this work, we formulate and solve a new
maximum-value, reliability-constrained overdrive frequencies
(MVRCOF) problem that guarantees prescribed lower bounds
on “acceptable performance” and “acceptable throughput”
in multicore systems, without exceeding prescribed lifetime
budget for any core. Our formulation maximizes value of
overdrive frequencies for each number of active cores. We
develop a solver for the MVRCOF problem and present
optimal and heuristic solutions that determine the execution
times of each core in each combination of simultaneously
active cores, such that cores wear out in a balanced manner
over the chip lifetime. These solutions deliver maximum
value within the specified chip lifetime, and can be used
for reliability-constrained scheduling policies. Our heuristic
method can be 3.3% worse than our optimal method, but can
converge up to 10× faster. Further, our solutions improve the
objective function value by between 2.2% and 17.4% when
compared to existing reliability-constrained task scheduling
policies that provide lifetime guarantees.

I. INTRODUCTION

Modern systems with multicore processors typically operate
at multiple operating modes, e.g., nominal and overdrive (a.k.a.
Turbo) [28]. Applications running on multicore systems have
different requirements for the number of cores used at any
given moment, as well as for corresponding operating modes.
For example, in a system with eight cores, applications A and
B may have very different usage of these cores over time.
Figure 1(a) conceptually illustrates the time-varying usage of
cores by applications A and B. Each application uses at most
four cores simultaneously over the course of its execution.
When memory and I/O resources are not a bottleneck, the
operating system scheduler packs tasks using some or all of
the available processing cores in the multicore system. Figure
1(b) illustrates how the scheduler might pack executions of
A and B across eight cores (cf. Packed A, B shown in green
color in Figure 1(b)). A key observation is that when all of
the cores are not simultaneously active, task scheduling on a
subset of the available cores can be adjusted so that the cores
wear out in a balanced manner and meet lifetime as well as
performance requirements.

Mean time to failure (MTTF) is a measure of the
lifetime of a core. MTTF of a core degrades due

to reliability mechanisms such as electromigration, time-
dependent dielectric breakdown, stress migration, thermal
cycling, bias temperature instability, hot carrier injection, etc.
[15] [18]. Below, we use the following terminology.
• power-on-hours (POH) denotes the effective number of

lifetime hours consumed. POH is a measure of a given
core’s lifetime degradation, and differs from the total
number of hours for which the core operates, due to
operating conditions, e.g., frequency and temperature;

• nominal temperature is the temperature at which the
MTTF degradation of a core is the same as the number
of hours it is active;

• nominal frequency is the frequency at which the
temperature of a core attains its nominal value;

• overdrive frequency is the frequency due to overclocking
the cores;1

• acceleration factor (AF) denotes the increased MTTF
degradation due to operating at higher temperatures [27]
[32]. AF is the ratio of original MTTF (at nominal
temperature) to actual MTTF due to operating at a higher
than nominal temperature.2

To meet performance and throughput requirements, cores
operate at overdrive frequencies, and hence at higher than
nominal temperatures. Thus, overdrive modes can result
in cores’ actual MTTFs becoming significantly smaller
than original MTTFs. MTTF degradation can lead to two
challenges. (1) All the cores in a multicore system can fail even
before all assigned tasks are completed. A common strategy is
to dynamically adapt overdrive frequencies so that all tasks are
completed within the system’s lifetime [8] [15]. (2) To reduce
MTTF degradation, overdrive frequencies must be reduced and
can violate a minimum “acceptable performance” requirement
for tasks. We use Black’s Equation [3] to calculate the MTTF
due to electromigration. We consider a core to be reliable as
long as the POH of the core is ≤ MTTF.

 

Fig. 1. Core usage profiles of (a) individual applications A and B, and
(b) after scheduler packs execution using eight cores. B starts after A. The
numbers in the colored boxes refer to the number of cores active.

1At overdrive frequencies, the core’s temperature is higher than nominal.
2AF = 1 when a core is active at its nominal temperature, and AF > 1 at

higher than nominal temperatures. This captures the well-known acceleration
of wearout with higher operating temperature [27].



In this work, we formulate and solve a new maximum-value,
reliability-constrained overdrive frequencies (MVRCOF) op-
timization problem that, unlike existing works, guarantees
prescribed levels of “acceptable performance” and
“acceptable throughput”. To the best of our knowledge, ours
is the first approach that guarantees minimum performance
and throughput requirements under reliability constraints.
Our MVRCOF formulation maximizes the value (or, the
advantage) of operating active cores at overdrive frequencies.
The optimization is performed offline and is subject to four
types of constraints: a lower bound on lifetime of each core,
completion of all tasks within the system’s lifetime, and
upper bounds on instantaneous power and temperature. We
develop a solver for the MVRCOF problem that determines
the duration each combination should remain active so that all
cores have balanced wearout. If no feasible solution exists,
the scheduler may be notified to modify the task profile.
To find the optimal solution, we perform exhaustive search
over all overdrive frequencies within upper and lower bounds
and all combinations of simultaneously active cores.3 To
make our flow scalable and efficient, we perform a one-
time characterization of temperature and wearout for each
combination of active cores, at each overdrive frequency. To
our understanding, the MVRCOF solution is suitable for task
migration in datacenters and other multicore systems [23].

Our contributions are the following.
• We propose a new MVRCOF formulation to maximize

the value of operating multiple cores in overdrive
frequencies under reliability constraints and given
weights (relative importance) for overdrive and nominal
frequencies in different modes.

• Our formulation guarantees satisfaction of prescribed
lower bound constraints on both “acceptable perfor-
mance” and “acceptable throughput” across all combina-
tions (C(N,m)) of active cores. (m is the number of active
cores, m = 1,2, ...,N). To the best of our knowledge,
we are the first to make minimum performance and
throughput guarantees under electromigration reliability
constraints.

• We determine optimal overdrive frequencies for each
m out of N available cores. These frequencies can
be maintained throughout the lifetime of the multicore
system.4

• We develop both exhaustive (discretized) search for the
optimal solution, as well as an approximate heuristic. In
practice, our heuristic is within 3.3% of optimal across
multiple testcases and converges up to ∼10× faster than
the exhaustive search.5

• Our approaches determine the execution times of each
combination of active cores; this can be used by OS
schedulers to assign tasks to cores while maintaining
required MTTF for all cores. (As we discuss below, this
implies balanced wearout of cores.) Although we validate
our solutions using four, six and eight cores, our method
can be applied to systems with more than eight cores.

• We empirically demonstrate that our optimal solutions
improve the objective function value by between 2.2%

3We implicitly consider that all possible overdrive frequencies are
feasible for a given block implementation. The relationship between feasible
range of overdrive frequencies and the area, mix of different-Vt cells in
implementation, etc. of a block is an open direction for future work.

4This implicitly assumes that each core in the system can adapt (e.g., by
supply voltage scaling) to aging in order to maintain a given target (nominal
or overdrive) operating frequency.

5Our method is based on offline simulations. Comparison of our results
with measured data remains a direction for future work.

and 17.4% when compared to the existing reliability-
aware task scheduling approaches of [4] and [15].

The remainder of this paper is organized as follows. Section
II describes related work. Section III establishes notation and
formulates our optimization problem. Section IV details our
optimal, heuristic and baseline flows, Section V describes
our methodology to generate testcases, Section VI describes
validation of our flows and reports results, and Section VII
outlines future work and concludes the paper.

II. RELATED WORK

We taxonomize prior works on task scheduling for
multicore systems as reliability-constrained (RC) or non-
reliability-constrained (NRC). RC task scheduling policies
can be further classified as those that make system “lifetime
guarantees” (LG) and those that make “no lifetime guarantees”
(NLG). Existing RC-LG policies apply (1) dynamic power
management (DPM), (2) dynamic thermal management
(DTM), or (3) dynamic reliability management (DRM). Such
works are “performance-guaranteeing” (PG) if they guarantee
lower bounds on “acceptable performance”. Table I classifies
existing works and our work according to the foregoing
taxonomy.

TABLE I
CLASSIFICATION OF EXISTING WORKS AND OUR WORK.

Work NRC

RC

NLG LG
DPM DTM DRM PG

Reiss et al. [13] 3
Karpuzcu et al. [9] 3
Mihic et al. [12] 3
Rosing et al. [15] 3
Rong et al. [14] 3

Coskun et al. [4] and [5] 3
Srinivasan et al. [18] 3

Karl et al. [8] 3
Our work 3 3

NRC and RC-NLG policies
Reiss et al. [13] present analysis of NRC task scheduling

policies in Google datacenters. Each core maximizes
throughput by operating at its worst-case temperature.
The “BubbleWrap” work of Karpuzcu et al. [9] proposes
a DVSAM-Perf policy to maximize performance in the
presence of delay degradation due to bias temperature
instability. DVSAM-Perf is an example of RC-NLG policy.
We demonstrate below that NRC and RC-NLG policies do
not guarantee that all scheduled tasks will complete execution
within the lifetime of the system.

RC-LG policies
Mihic et al. [12] and Rosing et al. [15] perform detailed

system modeling to devise a DPM policy to minimize total
system energy subject to all tasks in a task graph completing
execution within the multicore system’s lifetime. Rong et al.
[14] propose a DPM policy to minimize system energy subject
to meeting all task deadlines within the multicore system’s
lifetime. Both these policies adjust voltage/frequency settings
of a core to ensure all tasks complete execution within the
system’s lifetime.

Coskun et al. [4] propose five DTM policies to minimize
thermal hotspots subject to completion of all tasks in a task
graph while the multicore system meets its lifetime. In [5],
Coskun et al. devise four DTM task scheduling and migration
policies. They propose that tasks should be scheduled on cores



towards the periphery of the chip. However, in neither [4] nor
[5] do the proposed policies guarantee any minimum frequency
of a core.

Srinivasan et al. [18] develop RAMP, a reliability simulator,
and propose a DRM policy to adjust voltage/frequency settings
of cores to maximize the lifetime of the multicore system. Karl
et al. [8] use a proportion-integral-derivative (PID) control
system to determine the maximum voltage/frequency setting of
a core to complete a given task. However, again, these policies
do not guarantee any minimum frequency of a core.

Counterexamples for NRC, RC-NLG and RC-LG policies
We now demonstrate the suboptimality of existing policies

using a simple counterexample. We consider a system with
four cores and MTTF of seven years (= 61320h) for each
core. The nominal frequency and temperature are respectively
1.5GHz and 358K, the maximum frequency is 3.0GHz, and
the maximum temperature is 398K. We assume that the
scheduler assigns tasks for each (m (= the number of active
cores), nominal execution time, overdrive execution time) 3-
tuple as follows: (1, 1000h, 3000h), (2, 2000h, 5000h), (3,
3000h, 8000h), and (4, 2000h, 5000h). Last, we assume that
overdrive-mode tasks require a minimum overdrive frequency
or “acceptable performance” of 1.8GHz.

Using HotSpot [17] as detailed in Section VI below, for
the above instance optimal (discretized) overdrive frequencies
can be found using exhaustive search for each m respectively
as 2.85GHz, 2.3GHz, 1.8GHz and 1.8GHz.6 However, NRC
and RC-NLG policies will operate always at 3.0GHz and
398K, inducing an acceleration factor AF = 9.77 relative to the
nominal operating temperature of 358K. Assuming execution
of tasks are balanced across the four cores, Figures 2 and
3 respectively illustrate suboptimalities of NRC and RC-LG
policies for a system with four cores, where each core has an
initial lifetime of seven years (61320h) and the tasks listed
in the previous paragraph are as assigned by the scheduler.
The figures show how time progresses along with execution
of nominal and overdrive tasks, starting with m = 1 and
followed by m = 2,3 and m = 4 for Figure 3. For example, for
m = 1 in both figures, the duration of nominal tasks Enom =
1000h, each core executes 250h at a nominal frequency fnom =
1.5GHz, and the corresponding AF is 1.0, hence the value
of power-on-hours, POH, is 250h×1.0 = 250h for each core.
All POH values are shown with a negative sign to indicate
effective lifetime consumed. Further, for m = 1, the duration
of overdrive tasks EOD = 3000h, each core executes 750h at
an overdrive frequency fOD = 3.0GHz, and the corresponding
AF is 9.77, hence the POH is 750h×9.77 = 7372.5h.

With NRC policies, Figure 2 shows that the effective
lifetime of each core at the end of m = 3 nominal tasks is
24947.5h (“Lifetime remaining” in the figure). This is because
each core consumes 1220h + 24425h after executing 1000h
in nominal and 2500h in overdrive modes for m = 2, and
3150h after executing 2250h in nominal mode for m = 3.
For balanced execution of m = 3 overdrive tasks, each core
requires 6000h of execution; this requires the lifetime of
each core to be 6000h×9.77 = 58620h, which exceeds the
effective lifetime of 24947.5h. (Moreover, this is without
resourcing any tasks for m = 4.) This simple example shows
that existing NRC policies are not optimal, in that they cannot
guarantee that cores will complete all tasks before failing.

6We describe in Section IV the use of HotSpot [17] to simulate temperatures
(from which wearout acceleration factors (AFs) are derived) for different
frequencies and combinations of active cores.
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Fig. 2. Suboptimality of NRC policies. Enom and EOD respectively
indicate the nominal and overdrive execution times. Lifetime of all cores are
completely used up by the end of nominal mode execution in m = 3. Thus,
tasks requiring m= 3 overdrive mode execution, and all tasks requiring m= 4,
cannot be completed. All times are in hours.
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Fig. 3. Suboptimality of RC-LG policies. Enom and EOD respectively indicate
the nominal and overdrive execution times. Tasks requiring m = 3 and m = 4
overdrive mode execution must operate at an overdrive frequency of 1.6GHz
instead of the required 1.8GHz. All times are in hours.

The conclusion from our counterexample: Operating at the
maximum frequency for all overdrive tasks is not the optimal
strategy, as it ignores lifetimes of cores.

With RC-LG policies, Figure 3 shows that the POH of each
core is 250h + 7327.5h + 1220h + 22100h after executing
250h in nominal mode and 750h in overdrive mode for m = 1,
and 1000h in nominal mode and 2500h in overdrive mode
for m = 2. Cores can be run at the maximum value of
3.0GHz for m = 1, but cannot maintain this frequency for
m = 2,3,4 if the required tasks are to be completed while
maintaining the system’s lifetime (“Lifetime remaining” is
1422.5h≥ 0 in the figure). Executing the frequency assignment
approach of RC-LG policies, we experimentally determine
that overdrive frequency for m = 3,4 can be at most 1.6GHz,
which is less than the minimum required overdrive frequency
of 1.8GHz as illustrated in Figure 3. The positive value of
“Lifetime remaining” cannot be utilized to increase any of
the overdrive frequencies further, as this violates lifetime
requirements. Thus, our simple example shows that existing
RC-LG policies are not optimal, in that they cannot guarantee
lower bounds on “acceptable performance”. The conclusion
from our counterexample: Executing overdrive tasks at the
maximum frequency and decreasing the frequency to meet
lifetime is not the optimal strategy, as it does not consider
duration of all overdrive tasks across all combinations of active
cores.

III. PROBLEM STATEMENT

We now formulate our MVRCOF optimization problem
to maximize the value7 of a set of overdrive frequencies,
such that no core wears out before its prescribed lifetime
requirement. We assume that the scheduler packs tasks from
multiple applications and provides a final operating schedule
as conceptually illustrated in Figure 4. Further, we do not
consider the cost of task migration.

7By “value”, we refer to the advantage of operating at overdrive frequencies.
We maximize the advantage by maximizing the overdrive frequencies.



There are two kinds of inputs: (1) system description, and
(2) task description. Table II lists the parameters used in
our formulation and solution. Figure 5 shows the inputs and
outputs of the MVRCOF problem graphically. We assume
that the values for the system description parameters are
given. The operating system scheduler provides values for
the task description parameters depending on application
demands for performance and the number of cores used. For
example, applications that benefit from frequency overdrive
are accounted for in EOD,m and wOD,m parameters, whereas
applications that do not benefit from frequency overdrive are
accounted for in Enom,m, fnom,m and wnom,m parameters.

We define “acceptable performance” as 1.3× fnom,m, based
on [28]; this does not compromise the generality of our
conclusions. Further, we define “acceptable throughput” as
the ability to complete all tasks within the multicore system’s
given lifetime.

TABLE II
PARAMETERS USED IN PROBLEM FORMULATION AND SOLUTION.

Parameter Description Type
N #symmetric cores indexed by i = 1,2, · · ·,N System

Pmax maximum power consumption of any core System
fmax maximum frequency of any core System
Tnom core temperature at nominal frequency System
Tmax maximum die temperature System

MTTF lifetime of each core System
Ea metal activation energy (0.7eV [7]) Physical
k Boltzmann’s constant (8.62×10−5eV/K) Physical

m #simultaneously running, or active, cores, 1≤ m≤ N Task(at the same nominal or overdrive frequency)
l operating mode of any core ({nom, OD}) Task

fnom,m nominal frequency of m cores Task

wl,m
weights in objective function of achieved Taskfrequencies, wl,m ≥ 0, ∀l,m

El,m execution time in operating mode l with m cores Task
Pi power of the ith core at any time Variable
Tm temperature of the die with m active cores at any time Variable

t j,m,l execution times for the jth combination of m cores Variable

bi, j,m
binary variable (1 when core i is present in the Variable

jth combination of m cores, 0 otherwise)
MTTFi effective lifetime of the ith core after it has been active Variable
POHl,i POH of the ith core in operating mode l Variable

AFi, j,m,l
AF of the ith core in the jth combination Variableof m cores in operating mode l

Ti, j,m,l
temperature of the ith core in the jth combination Variableof m cores in operating mode l

∆ f OD discrete amount by which overdrive frequency is increased Variable
fOD,m overdrive frequency for m cores Output

v j,m,l
% total execution time for the jth combination Outputof m cores in operating mode l

ui,l
% of lifetime during which the ith core is active Outputin operating mode l

MVRCOF Formulation
Given the above-described inputs, the problem to maximize the
value of a set of overdrive frequencies is formally expressed
as

maximize
N

∑
m=1

(wOD,m · fOD,m ·EOD,m +wnom,m · fnom,m ·Enom,m)

subject to
∀m,1.3× fnom,m ≤ fOD,m ≤ fmax (1)
∀i,MT T Fi ≤MT T F (2)
∀i,Pi ≤ Pmax (3)
∀m,Tm ≤ Tmax (4)

where
• Constraint (1) ensures lower bounds of “acceptable

performance” is at least 30% more than fnom,m as well
as restricts fOD,m values to be within the maximum
frequency of the system.

• Constraint (2) ensures “acceptable throughput”, i.e., tasks
are completed within the system’s lifetime.

• Constraints (3) and (4) ensure that the power of each
core, Pi, and the temperature of the die with m active
cores, Tm, are within maximum power and temperature
upper bounds.8 MTTFi is calculated using Equations (5)
– (7) [27].

We use the execution times in the objective function to
determine the duration over which cores in mode m execute
at fOD,m.

AFi, j,m,l = exp
(

Ea

k
·
[

1
Tnom

− 1
Ti, j,m,l

])
(5)

POHl,i =
N

∑
m=1

C(N,m)

∑
j=1

t j,m,l ·bi, j,m ·AFi, j,m,OD (6)

MT T Fi = ∑
l={nom,OD}

POHl,i (7)
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Fig. 4. Core usage profile from scheduler after packing tasks from multiple
applications. The task profile represents typical datacenter workload from [2].
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Fig. 5. Graphical representation of inputs and outputs of the MVRCOF
problem.

IV. OPTIMAL (DISCRETIZED) SOLUTION FLOW
We now present our flow to solve the MVRCOF

optimization problem. We also present our heuristic flow
and a baseline flow to compare RC-LG policies. To work
around potential nonlinear constraints, we perform exhaustive
search of fOD,m across all m by increasing values of fOD,m
from 1.3× fnom,m to fmax by ∆ f OD. We perform one-time
characterization (∼9.5h on an Intel Xeon E5-2640 2.5GHz
system) of temperature and AF for all discretized values of
fOD,m for each combination of m out of N cores and generate
a lookup table (LUT)9 as follows.

1) Perform post-layout gate-level power simulation of a
single core. We set the switching activity factor at

8Pi is obtained using post-layout power simulation of a core at fnom,m or
fOD,m. Tm is the die temperature obtained from HotSpot [17] simulations.

9The reader will notice that we are assuming that temperature is restored to
its nominal value before task execution begins on each successive combination
of active cores. We believe this assumption is reasonable as long as task
assignments have relatively long durations, and given that, in a day, cores are
utilized ∼60% of the time (i.e., system is idle for ∼9h) [13]. Our experiments
indicate that the time for temperature to drop from 125oC to 85oC is ∼10s,
and this is consistent with the results of [22]. Achieving a solution that is
“history-aware” remains a direction for future work.



primary inputs in the nominal mode as 0.11 [29] and
in the overdrive mode as 0.3 [16]; We also set the clock
period as the inverse of the overdrive frequency in the
SDC file [1].

2) Perform temperature simulation with power using
HotSpot [17].10

3) Create a LUT entry for the ith core if it is present in
the jth combination of m cores as ( fOD,m, temperature,
AF). For each core and for each fOD,m, there are at most
N×C(N,m) entries. Figure 6 illustrates an example of
a subset of a LUT for a system with three cores.

4) Increase fOD,m by ∆ f OD as long as fOD,m+∆ f OD ≤ fmax.
Go to Step (1).

Core (m, j) fOD,m (GHz) Temp (K) AF 

 
 
 

     1 

 
 
 

(1,1) 

3.0 398 9.77 

2.95 392.5 7.34 

2.90 396.9 5.34 

1.80 362.0 1.29 

 
 
 

    2 

 
 
 

(2,1) 

3.0 398 9.77 

2.95 393.1 7.58 

2.90 388.4 5.90 

1.80 367.6 1.82 

 
 
 

    3 

 
 
 

(3,1) 

3.0 398 9.77 

2.95 397.5 9.53 

2.90 396.9 9.24 

1.80 377.4 3.42 

Fig. 6. Example of a subset of a lookup table (LUT) for a three-core system.

Algorithm 1 shows details of our flow to determine the
optimal values of fOD,m. f (.) in the algorithm indicates that
the output value is a function of the input parameters (.).
Lines 1–18 initialize MTTF of all cores, overdrive frequencies
across all m, the variable bi, j,m for each core, and the variables
that store the optimal value of the objective function and the
overdrive frequencies. Lines 19–46 contain the loops for the
exhaustive search. Lines 22–34 comprise the innermost loop
which, given an overdrive frequency, determines if all cores in
all combinations can complete execution within the prescribed
lifetime. If a core is present in a combination, Line 25 obtains
its AF from the LUT, and Line 26 executes the following linear
program (LP), which calculates t j,m,nom and t j,m,OD to balance
wearout across all cores. Formally, the LP is expressed as

maximize c
subject to

∀i,c≤ ∑
l={nom,OD}

POHl,i (8)

∀i, ∑
l={nom,OD}

POHl,i ≤MT T F (9)

C(N,m)

∑
j=1, l∈{nom,OD}

t j,m,l = El,m (10)

where
• Constraint (8) ensures c is the minimum POH across all

cores.
• Constraint (9) ensures that all tasks are completed within

the multicore system’s lifetime.

10Thermal parameters for HotSpot [17] simulations are calibrated with Intel
Xeon processors.

• Constraint (10) ensures that the sum of nominal and
overdrive execution times across all combinations of m
active cores meet the respective required execution times.
POHl,i is obtained from Equation (6).

If an optimal solution exists for the LP, Line 27 calculates
POH for the core using Equation (7) and Line 28 updates the
core’s effective MTTF, MT T Fi, based on t j,m,l and El,m values.
If all cores can complete execution within their lifetimes, Line
36 calculates the value of the objective function. Lines 38–
41 store the overdrive frequencies and largest value of the
objective function obtained up through the iteration iter (We
compare iter across our testcases in Section VI). Lines 42–
43 increments fOD,m by ∆ f OD. When all values of frequencies
across all m have been tried, Lines 47–51 output the optimal
solution or report infeasibility if no feasible solution exists.

Figure 7 shows our complete flow from generating the
LUT to using Algorithm 1 and the LP to achieving optimal
values of the objective function, fOD,m and t j,m,l . We can now
determine the optimal values of v j,m,l and ui,l from the values
of t j,m,l . Exhaustive search across all discretized values of
fOD,m across all cores present in the jth combinations of m
achieves a discretized optimal solution. The time complexity
of Algorithm 1 is O(N2 ·C(N,m) · fsteps), where fsteps =
( fmax−1.3× fnom,m)/∆ f OD. By construction, our optimal
flow guarantees “acceptable performance” because we search
for optimal values of fOD,m that are at least 30% above
the nominal frequency. The optimal flow also guarantees
“acceptable throughput” because our LP always guarantees
balanced wearout and Lines 29–31 of Algorithm 1 does not
allow cores to operate at frequencies that cannot guarantee
task completion within a core’s effective lifetime.

Heuristic flow. We also develop a heuristic flow to solve the
optimization by maximizing overdrive frequencies for each m
in the order of decreasing wOD,m × EOD,m. This is because
maximizing fOD,m for the largest wOD,m×EOD,m causes large
improvement in the objective function value. The flow is
similar to the exhaustive search; however, rather than explore
all modes in their numerical order, we start with the mode
that has the largest product of wOD,m×EOD,m and obtain the
maximum fOD,m. The flow uses Lines 20–45 of Algorithm 1
to determine the maximum fOD,m for each m in decreasing
order of wOD,m×EOD,m. We compare the iter value (i.e., the
number of iterations) from Line 43 between the optimal and
heuristic solutions in Section VI.

Baseline (RC-LG) flow. To compare the solutions of our
optimal and existing RC-LG policies, we describe a baseline
flow in which we use frequency assignment approach in RC-
LG policies. RC-LG policies assign the maximum frequency
of a combination m as long as power, thermal upper bound
and lifetime constraints are met [9] [13] [15]. The frequency
is dynamically changed to meet lifetime requirements. The
baseline flow is as follows.

• Choose core(s) with the maximum MTTF for execution
and whose MT T Fi ≥ the required (nominal or overdrive)
execution times.

• Find the maximum fOD,m subject to power, thermal upper
bound constraints and MT T Fi (when multiple cores are
active, use the minimum MT T Fi,∀i).11

11We perform exhaustive search for the maximum fOD,m, starting from fmax.
If a frequency can complete current and future tasks within the lifetime of
all cores, then set this as the maximum fOD,m. Otherwise decrease in 50MHz
steps and until fOD,m = fnom,m.
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V. TESTCASE GENERATION
To construct different testcases, we modify (1) wnom,m and

wOD,m, (2) Enom,m and EOD,m, and (3) fnom,m values. While we
make certain choices of parameter values in our experiments,
these choices do not compromise the generality of our method
and conclusions. Let the ratio rm =

wnom,m
wOD,m

be a random variable
chosen uniformly in the interval [0.1, 10]. Then, wOD,m = 1

1+rm
and wnom,m = rm

1+rm
.12 For each m, we generate a value of rm

to obtain wnom,m and wOD,m.
Figure 4 illustrates an example of the scheduler-determined

total execution times in an eight-core system when m =
1,2, ...,8 cores, respectively, are active. To model a similar
skewed Gaussian distribution of Etot,m = Enom,m +EOD,m for
the random variable m with mean µ, standard deviation σ

and probability density function f (m|µ,σ), we assume the
following.
• All cores begin execution with the same MTTF = {7,

10} years to represent typical server cores [19].
• µ = bN

2 c+1,∀N; µ is an integer as it equals m with the
largest Etot,m.

• 3σ = max
(
N−

(
bN

2 c+1
)
,bN

2 c
)
= bN

2 c because the
execution times with fewer or more active cores are less
than the ones which use approximately half of N [13]. σ

does not need to be an integer because we only want to
make sure that |m−µ| ≤ 3σ. So, σ = 1

3 · b
N
2 c,∀N.

• U is a uniformly random number in [0.35, 0.5], denoting
the peak core utilization of Amazon EC2 datacenters,
following core utilization data in [11]. Then, we have
that Enom,µ +EOD,µ = MT T F ×U , and Etot,m = Etot,µ×
f (m|µ,σ) when m 6= µ.

• re,m is a uniformly random number in [0.1, 0.5] following
task priority information in [11], which denotes the ratio
of Enom,m to Enom,m+EOD,m. Then, we have that Enom,m =
re,m×Etot,m, and EOD,m = Etot,m−Enom,m.

• fnom,m takes on values between [1.5, 2.0]GHz in steps
of 50MHz so that the maximum frequency is ≤ 3.0GHz
[24].

Decomposition of task trace
We decompose packed tasks from Figure 4 to resemble

realistic datacenter traces with the following assumptions. (1)
For a given m, all cores execute either nominal or overdrive
tasks. (2) In a day, nominal tasks run for ∼20% (5h) and
overdrive tasks run for ∼40% (10h) [2] [10] [13]. The cores
are idle for the remaining 9h. (3) Tasks are nonpreemptive.
(4) Overdrive tasks are scheduled before nominal tasks.

We obtain Enom,m and EOD,m from above and calculate the
per-day nominal and overdrive tasks for each m so that they

120.1≤ rm ≤ 10 allows us to obtain extreme values such as, wnom,m = 0.1
and wOD,m = 0.9, and wOD,m = 0.1 and wnom,m = 0.9.

are in the ratio of their total execution times.13 Therefore,
in a day, across all m, the sum of nominal tasks in a day
adds up to 5h and the sum of overdrive tasks adds up to 10h.
We now generate a trace by sequencing tasks as {overdrive,
nominal} for each day such that execution times of all nominal
and overdrive tasks respectively add to Enom,m and EOD,m.
The sequencing gives the notion that overdrive tasks must
be completed before nominal tasks. We use these traces to
validate our solutions, as we describe next.

VI. VALIDATION AND RESULTS

To simulate a design to fill 25mm2, 38mm2 and 51mm2 die at
∼70% utilization respectively with four, six, and eight vector
processor-like cores, we create a floorplan file for Hotspot
[17] that instantiates each processor core as 72× jpeg encoder
[31] cores. To obtain area and power for 72× jpeg encoder,
we perform synthesis, place-and-route, and power analysis
of a single jpeg encoder core and scale the area and power
values by 72. We use 45nm commercial foundry libraries,
synthesize the jpeg encoder design using Synopsys Design
Compiler vG-2012.06 [26] and perform place-and-route using
Cadence SOC Encounter vEDI10.1 [25] with clock period set
to 0.5ns. The post-layout netlist for a single jpeg encoder
core contains ∼38K instances and the area of standard-cells is
0.06mm2. We then perform power analysis by varying supply
voltage from 0.8V to 1.2V in steps of 10mV, varying the
frequency (transcribed to clock period in the SDC [1] file)
from 1.5GHz to 3.0GHz in steps of 50MHz. 14 We develop a
solver using custom Tcl scripts to implement Algorithm 1 and
the heuristic flow, and solve all our generated LP instances
using lp solve [30]. For all m, we set fnom,m = 1.5GHz and
the minimum fOD,m to be 1.8GHz (i.e., 20% greater than the
nominal frequency, following [28]). We set Pmax to 30W [28]
and Tmax to 398K [27].

We report experimental setup and results with four15, six
and eight cores, and MTTF of each core set to seven years.
Table III shows the Enom,m, EOD,m, fnom,m, wnom,m, and wOD,m
values for each testcase. We name our testcases as N-testcase#
where N indicates the number of cores. Testcase 6-II uses
twice the EOD,m values from Testcase 6-I. Testcases 4-I and
4-II use different weights for m = 1,4. Our results enable
(1) validation of our discretized optimal solutions, and (2)
comparison of solutions from optimal, heuristic, and baseline
(RC-LG) flows.

13For example, if Enom,1 is 10% of total execution time of nominal tasks
across all m, then in a day the nominal task for m = 1 is 10% of 5h.

14We assume that for a given block implementation all the possible fOD
values are feasible by construction, i.e., the implementation ensures no timing
violations when the frequency is set to fmax.

15The area of four cores with 70% utilization is (4×72×0.06)/0.7 ≈
25mm2.



Alg. 1 Determination of optimal fOD,m

Require: N, fmax, fnom,m, Enom,m, EOD,m, wnom,m, wOD,m,
( fOD,m, temp) LUT, MT T F

1: for all i = 1,2, ...,N do
2: MT T Fi←MT T F
3: end for
4: for all m = 1,2, ...,N do
5: fOD,m← 1.3× fnom,m
6: end for
7: for all m = 1,2, ...,N do
8: for all j = 1,2, ...,C(N,m) do
9: for all i = 1,2, ...,N do

10: if core i ∈ combination j then
11: bi, j,m← 1
12: else
13: bi, j,m← 0
14: end if
15: end for
16: end for
17: end for
18: iter← 1; Bestval← 0; Best f od []← 0
19: for all m = 1,2, ...,N do
20: while fOD,m ≤ fmax do
21: Valiter← 0; term← 0
22: for all j = 1,2, ...,C(N,m) do
23: for all i = 1,2, ...,N do
24: if bi, j,m > 0 then
25: Get AF: AFi, j,m,OD← f ( fOD,m,LUT, i, j,m)
26: Solve LP: t j,m,l ← f

(
AFi, j,m,l ,MT T F

)
27: Calculate POH: POHi ←

f
(
t j,m,l ,Enom,m,EOD,m

)
28: Update MTTF: MT T Fi←MT T Fi−POHi
29: if MT T Fi ≤ 0 then
30: term← 1
31: end if
32: end if
33: end for
34: end for
35: if term > 0 then
36: Calculate objective function value:
37: Valiter← wnom,m · fnom,m ·Enom,m+wOD,m · fOD,m ·

EOD,m
38: if Valiter > Bestval then
39: Bestval←Valiter
40: Best f od [m]← fOD,m
41: end if
42: fOD,m← fOD,m +∆ f OD
43: iter← iter+1
44: end if
45: end while
46: end for
47: if Bestval > 0 then
48: Output Bestval and Best f od [1,2, ...,N]
49: else
50: Output no feasible solution exists
51: end if

A. Solution validations

To validate our solutions, we confirm the sensibility of
how varying ∆ f OD, wnom,m, and wOD,m affect the value of
the objective function. Then, for Testcase 8-I, we present the
optimal values of v j,m,l and ui,l which can potentially be used

TABLE III
EXPERIMENT SETUP. EACH ROW SHOWS EXECUTION TIMES AND WEIGHTS

FOR TWO VALUES OF m.

Testcase m Enom,m EOD,m wnom,m wOD,m
fnom,m

(Kh) (Kh) (GHz)

4-I 1, 2 1, 2 3, 5 0.5, 0.3 0.5, 0.7 1.53, 4 3, 2 8, 5 0.2, 0.4 0.8, 0.6

4-II 1, 2 1, 2 3, 5 0.2, 0.3 0.8, 0.7 1.53, 4 3, 2 8, 5 0.2, 0.5 0.8, 0.5

4-III 1, 2 1, 2 3, 5 0.1, 0.2 0.9, 0.8 1.53, 4 3, 2 8, 5 0.9, 0.8 0.1, 0.2

4-IV 1, 2 1, 2 3, 5 0.1, 0.2 0.9, 0.8 1.53, 4 3, 2 8, 5 0.1, 0.2 0.9, 0.8

4-V 1, 2 1, 2 3, 5 0.9, 0.8 0.1, 0.2 1.53, 4 3, 2 8, 5 0.1, 0.2 0.9, 0.8

6-I
1, 2 0.5, 0.7 1, 2 0.5, 0.45 0.5, 0.55

1.53, 4 1.2, 1.6 3.5, 5 0.3, 0.2 0.7, 0.8
5, 6 1.3, 0.9 4, 2.5 0.4, 0.4 0.6, 0.6

6-II = 6-I = 6-I = 2×6-I = 6-I = 6-I = 6-I

8-I

1, 2 0.55, 0.45 0.6, 0.8 0.5, 0.45 0.5, 0.55

1.53, 4 0.65, 0.8 0.9, 1.1 0.3, 0.2 0.7, 0.8
5, 6 0.77, 0.73 1, 0.95 0.3, 0.35 0.7, 0.65
7, 8 0.74, 0.59 0.82, 0.73 0.4, 0.4 0.6, 0.6

by the operating system scheduler for task migration.16

Impact of ∆fOD. Table IV shows the optimal values of fOD,m
and the value of our objective function for different values
of ∆ f OD from our optimal flow. The objective function value
varies by less than 0.3% when ∆ f OD varies from 200MHz to
50MHz. However, when ∆ f OD = 50MHz, the solution requires
∼13× the number of iterations to converge.17 Smaller values
of ∆ f OD achieves higher values of the objective function,
as expected. Because the MVRCOF solver runs offline and
runtime is not significant concern for our testcases, we use
∆ f OD = 50MHz to achieve higher value of the objective
function.
Impact of wnom,m and wOD,m. Table V compares solutions of
all testcases with four cores, 4-I – 4-V, from our optimal flow.
The value of the objective function depends on the values of
Enom,m×wnom,m and EOD,m×wOD,m. In our experiments, we set
fnom,m = 1.5GHz for all m, so the value depends on EOD,m×
wOD,m. At smaller values of m, fOD,m is larger as compared to
larger values of m because as m increases, overdrive frequency
is limited by the maximum die temperature Tmax. Specifically,
because EOD,m×wOD,m is higher in 4-I – 4-IV for m = 1,2,3
than in 4-V, testcases 4-I – 4-IV yield a higher value of the
objective function than 4-V. Testcase 4-IV has the highest
value of EOD,3×wOD,3, so it yields the highest value of the
objective function even though fOD,3 for 4-IV is the same as 4-
III. Therefore, larger values of fOD,m are achieved for smaller
values of m and larger value of the objective function is
achieved when EOD,m×wOD,m is large for these corresponding
values of m.

TABLE IV
OBJ FN VALUE VS. ∆ f OD . HIGHER OBJ FN VALUE IS BETTER.

Testcase m ∆ f OD fOD,m (GHz) Obj fn value iter

4-I 1, 2 200MHz 3.0, 2.2 32870 213, 4 1.8, 1.8

4-I 1, 2 50MHz 2.85, 2.3 32995 2713, 4 1.8, 1.8

6-I 1, 2, 3 100MHz 2.8, 2.9, 2.6 28367.5 15004, 5, 6 1.8, 1.8, 1.8

6-I 1, 2, 3 50MHz 2.85, 2.9, 2.6 28392.5 105724, 5, 6 1.8, 1.8, 1.8

8-I
1, 2, 3 100MHz, 2.9, 2.9, 2.8 12316.0, 1845,4, 5, 6 50MHz 1.8, 1.8, 1.8 12316.0 112547, 8 1.8, 1.8

16Testcase 6-II is infeasible because no value of fOD,m with lower bound
(“acceptable performance”) set to 1.8GHz can complete the tasks within the
system’s lifetime.

17On a Intel Xeon E5-2640 2.5GHz system, each iteration executes roughly
in 0.7s.



TABLE V
OBJ FN VALUE VS. WEIGHTS AT ∆ f OD = 50MHZ.

Testcase m fOD,m (GHz) Obj fn value iter
4-I 1, 2, 3, 4 2.85, 2.3, 1.8, 1.8 32995 271
4-II 1, 2, 3, 4 2.95, 2.25, 2.05, 1.8 36175 408
4-III 1, 2, 3, 4 2.95, 2.35, 2.05, 1.8 28005 424
4-IV 1, 2, 3, 4 2.95, 2.35, 2.05, 1.8 41125 424
4-V 1, 2, 3, 4 3.0, 2.3, 2.0, 1.8 29600 410

Task migration policy based on optimal values of v j,m,l and
ui,l for Testcase 8-I. Based on notations and terminologies
described in Section III, Table VI shows values of v j,m,l
for each active combination j of 1 ≤ m ≤ 8 active cores in
both nominal and overdrive execution modes. For example,
v11,2,OD = v17,2,OD = 25.8 for C(N = 8,m = 2). Out of total
lifetime of seven years, each core is active as follows: core
1 for 12.91%, core 2 for 10.29%, core 3 for 11.46%, core
4 for 11.58%, core 5 for 12.44%, core 6 for 10.05%, core
7 for 9.66% and core 8 for 13.44%. As expected, as they
enjoy better heat removal, the cores towards the periphery of
the die (e.g., cores 1, 4, 5, 8) are active for longer duration
(higher percentages of chip lifetime) than other cores [4].18

The operating system scheduler can use the optimal values
of v j,m,l and ui,l to determine how long each core should
execute at nominal and overdrive frequencies for balanced
wearout. Using the linear programming approach to determine
the execution time of each combination leads to the times
being very imbalanced across combinations. As part of our
future work, we will explore techniques such as geometric
programming which may lead to more balanced solutions.

B. Comparisons of optimal, heuristic, and RC-LG solutions
We compare our optimal solutions with (1) our heuristic

solutions and (2) baseline (RC-LG) solutions [4] and [15].
Figures 8–10 show the results of these comparisons. Figure
8 shows that for our testcases, the heuristic solutions are
at most 3.3% worse than the optimal solutions, but can
converge in up to 10× fewer iterations as shown in Figure
9 when compared to the number of iterations in Table IV.
Moreover, our solutions guarantee that all tasks in each
combination of m execute at fOD,m ≥ 1.8GHz, i.e., the
solutions meet “acceptable performance” requirements. In
addition, we guarantee “acceptable throughput” because all
tasks complete within the multicore system’s lifetime. Figure
8 shows that the baseline method’s solutions can be up to
17.4% below optimal, even as they execute around 27% of the
overall overdrive execution time below the minimum required
frequency of 1.8GHz as shown in Figure 10. In other words,
the baseline solutions do not meet “acceptable performance”
requirements. For Testcase 6-II, the baseline flow achieves a
solution within lifetime constraints, but unfortunately executes
75.5% of the overall overdrive execution time at frequencies
below 1.8GHz. Runtime versus accuracy tradeoffs would
determine a user’s choice between optimal and heuristic
methods.

VII. CONCLUSIONS
When scheduling tasks in multicore systems implemented in

leading-edge IC technologies, reliability awareness is critical
to achieving guaranteed lower bounds on performance and
throughput. With this in mind, we have formulated and
solved a new maximum-value, reliability-constrained overdrive

18To confirm the optimality of these solutions, we separately solve the
dual program for each m, minimize ∑

2N
i=N λiMT T Fi+µ1Enom,m+µ2EOD,m and

verify that we obtain identical objective function values.
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frequencies (MVRCOF) problem. We show how an optimal
(discretized) solution may be found using exhaustive search,
and we propose a heuristic that maximizes the overdrive
frequency in the order of user-specified weights for each
operating mode. We develop a solver that serves as the
foundation of both the optimal and heuristic flows. Our
methods are the first to guarantee both acceptable performance
and throughput, in that all tasks are executable for their
entire duration at the optimal overdrive frequencies, without
exceeding the total lifetime requirement of any core. Further,
we determine optimal execution times of each core in each
mode; these can be utilized by schedulers for balanced wearout
of cores. Experimentally, across eight testcases on between
4 and 8 cores, our optimal overdrive frequencies achieve
between 2.2% and 17.4% greater value than existing RC-LG
policies [4] and [15] (the largest improvement is for the 8-core
testcase). Our ongoing work seeks five improvements: (i) use
of geometric programming to guarantee more balanced usage
of core combinations in each operating mode; (ii) application
of our methods to traces from actual server workloads, along
with validation of our results on actual servers; (iii) extension
of our optimizations to accurately comprehend the cost of task
migration / context switching in the objective function; (iv)
enhance our methods to achieve solutions that are temperature
history-aware; and (v) the relationship between feasible range
of overdrive frequencies and the area, mix of different-Vt cells
in implementation, etc. of a block.
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