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Abstract—Useful skew is a well-known design technique that adjusts
clock sink latencies to improve performance and/or robustness of high-
performance IC designs. Current design methodologies apply useful skew
after the netlist has been synthesized (e.g., with a uniform skew or
clock uncertainty assumption on all flops), and after placement has
been performed. However, the useful skew optimization is constrained by
the zero-skew assumptions that are baked into previous implementation
steps. Previous work of Wang et al. [15] proposes to break this chicken-
egg quandary by back-annotating post-placement useful skews to a re-
synthesis step (and, this loop can be repeated several times). However, it
is practically infeasible to make multiple iterations through re-synthesis
and physical implementation, as even the time for placement alone of a
large hard macro block in a 28nm SOC can be five days [10]. Thus, in our
work we seek a predictive, one-pass means of addressing the chicken-egg
problem for useful skew.

We observe that in a typical chip implementation flow, timing slacks
at post-synthesis stage do not correlate well with timing slacks at post-
routing stage. However, the correlation is improved when useful skew is
applied at the post-synthesis stage. Based on this observation, we propose
NOLO, a simple, “no-loop” predictive useful skew flow that applies useful
skew at post-synthesis within a one-pass chip implementation. Further,
our predictive useful skew flow can exploit an additional synthesis run
to improve circuit timing without any turnaround time impact (two
synthesis steps are run in parallel). Experimental results in a 28nm
FDSOI technology show that our predictive useful flow can reduce
runtime by 66% and improve total negative slack by 5% compared
to the useful skew back-annotation flow of [15].

I. INTRODUCTION

Zero-skew clock tree synthesis is commonly used in conventional
chip implementation flows to minimize the maximum clock skew.
Figure 1 shows a conventional chip implementation flow, in which
we synthesize a design described in RTL to obtain a gate-level netlist.
We then place the gate-level netlist, perform clock tree synthesis
(CTS) based on the placement results, and route the connections in
the design. We refer to this as a zero-skew flow.

By intentionally skewing clock latencies1 of flip-flops (flops),
we can increase the timing slacks on critical paths while still
satisfying the timing constraints on non-critical paths [6][11]. This
skew scheduling methodology for timing optimization is well-known
as useful skew. Previous works that study useful skew mainly focus
on two objectives – (i) to minimize the clock period and (ii) to
maximize the timing margin (robustness). Fishburn [6] formulates
a linear program (LP) to optimize clock latencies for performance
improvement. The LP formulation considers both setup and hold
constraints. Szymanski [11] further improves the efficiency of the LP
by selectively generating constraints. Wang et al. [12] also propose
an LP-based approach to evaluate potential slacks in circuits and
optimize clock skew. The clock skew optimization problem can also
be solved by graph-based methods as in [5].

More recent work of Albrecht et al. [1] [2] formulates useful skew
optimization as a maximum mean weight cycle (MMWC) problem,

1We define clock latency as the delay from the clock source to a flip-flop
clock input pin.

which optimizes not only the minimum slack in a circuit, but also
the slacks on other paths. The MMWC approach achieves better
timing improvement than the LP-based approach, and is currently
the standard approach for useful skew optimization in commercial
EDA tools. Runtimes are reduced using faster MMWC algorithms
such as [16][17].

Figure 2 shows a typical useful skew flow, in which the clock
latencies are optimized after synthesis, placement and CTS in the
Skew opt step. A crucial observation is that the typical useful skew
flow suffers from a “chicken-and-egg” quandary: after the netlist has
been synthesized and placed with zero skew, what useful skew can
accomplish is limited.
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Fig. 1: A conventional
zero-skew chip
implementation flow
(zero-skew flow).
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Fig. 2: A standard useful skew flow
(typical useful skew flow).

To fully exploit the potential of useful skew, Albrecht et al.
[3] interleave useful skew with RTL synthesis to optimize the
performance and area of a design. Hurst et al. [9] propose a
placement algorithm with a tight integration of useful skew to
minimize maximum mean delay in any circuit loop. Although these
methods can inject useful skew into synthesis or placement stages of
implementation, substantial changes would be required to implement
them with existing commercial tools. Thus, the work of Wang et
al. [15] is notable for its feasibility with modern back-end EDA tools:
the authors propose to back-annotate post-placement clock latencies
(obtained from useful skew optimization) to the pre-synthesis stage,
and re-execute the flow. I.e., after feeding back the clock latencies,
[15] re-performs synthesis and placement, followed by another useful
skew optimization (see Figure 3). This synthesis, placement and
useful-skew loop continues until there are no further improvements;
empirical results in [15] imply that only two iterations are required
to realize the benefits of the proposed methodology.



Our Work

Although the back-annotation flow can account for interactions
between synthesis, placement and useful skew optimizations, having
such a loop in the flow has unacceptable turnaround time impacts.
According to [10], it is practically infeasible to make multiple
iterations through re-synthesis and physical implementation, as even
the time for placement alone of a large hard macro block in a
28nm SOC can be five days (and, a single pass through placement +
placeOpt + CTS can have over a week of runtime). This motivates us
to seek a predictive, one-pass means of addressing the chicken-egg
problem for useful skew.

To avoid turnaround time impact, we predict and enforce useful
skews at the post-synthesis stage, within a one-pass implementation.
As outlined in Figure 4, our new NOLO (“no-loop”) flow predicts
useful skews based on timing analysis of the synthesized netlist using
the default wireload model provided in timing libraries. Experimental
results in Section IV show that our simple prediction flow achieves
good timing quality compared to a Typical useful skew flow without
only a single implementation pass (i.e., no runtime penalty). We
further improve circuit timing with a variant flow (the dotted box
in Figure 4) that predicts the useful skews based on two synthesized
netlists. With the optional flow, we can improve total negative slack
by 5% compared to the back-annotation flow of [15]. Note that the
additional synthesis run has no turnaround impact as we can launch
both synthesis runs in parallel.

To complete our study, we also implement a wide range of
alternative back-annotation flows (e.g., post-routing information can
be fed back to synthesis, to placement, or to clock tree synthesis
stages) to experimentally assess their runtime and timing quality
tradeoffs.

Our discussion below will use the following definitions.
• Zero-skew flow : the conventional chip implementation flow with

zero-skew CTS.
• Typical useful skew flow : one-pass chip implementation flow

with useful skew optimization using a commercial tool, e.g.,
skew opt in Synopsys IC Compiler [21].

• Back-annotation flow : a chip-implementation flow that feeds
back circuit information to earlier stages for useful skew
optimization. Variants of back-annotation flows are described
in Section III.

• Prediction flow : our new one-pass chip implementation flow,
NOLO, with useful skew optimization at the post-synthesis
stage.

We use slack to denote the endpoint setup slack on maximum-delay
paths between sequentially adjacent flops or ports [7]. Furthermore,
since MMWC is the de facto standard approach for useful skew
optimization, we perform useful skew scheduling using the maximum
mean weight cycle formulation of [2] and the algorithms given in [1].
Thus, (i) our useful skew optimization is same as that in the back-
annotation flow of Wang et al. [15], and (ii) we assume that the
“typical useful skew flow” also optimizes the skew schedule using
the MMWC formulation.

Scope and Organization of Paper

Our work achieves the somewhat surprising result that an improved
useful skew optimization at the post-synthesis stage can enable a
single-pass flow to achieve similar or better timing improvements
compared to back-annotation flows. We focus on optimization of
useful skews rather than the downstream physical implementation
(i.e., CTS, placement and routing with given useful skews). Our three
main contributions are summarized as follows.
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Fig. 3: A chip implementation
flow with useful skew back-
annotation (back-annotation
flow).
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Fig. 4: Our predictive NOLO (“no-
loop”) useful skew flow (prediction
flow).

1) We show that applying useful skews at post-synthesis stage of
circuit implementation improves the timing correlation between
post-synthesis stage and post-routing stage.

2) We also show that with an additional synthesis run, our
predictive useful skew flow can achieve better timing slacks
compared to back-annotation flows.

3) We implement different useful skew flows to study the tradeoffs
between runtime and timing slacks (with the same area and
power).

We present our NOLO prediction flow in Section II. Section III
describes our experimental setup and implementation details of
different useful skew flows. We report experimental results in
Section IV. Section V concludes our discussion and gives several
directions for future work.

II. PREDICTIVE USEFUL SKEW METHODOLOGY

Our predictive flow applies useful skew optimization to a post-
synthesis netlist, such that the useful skew optimization is not
affected by an initial placement, and allows for a one-pass chip
implementation flow.

A. Analysis of the Impact of Placement and Timing Optimization

Intuitively, applying predicted useful skews at the post-synthesis
stage is risky, in that timing information at this stage is incomplete.
In other words, the circuit timing will be changed by subsequent
placement, routing and optimization steps (e.g., cell resizing and/or
swapping, buffer insertion, cloning, parasitics from wiring, etc.). To
gain initial understanding of the impact of a predictive useful skew
flow at the post-synthesis stage, we run two basic implementation
flows as illustrated in Figure 5.
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Fig. 5: Overview of two basic implementation flows.

Given a post-synthesis netlist (Netlist A), we run placement and
routing (P&R) to obtain a post-routing netlist without any useful skew



optimization (Netlist B). Meanwhile, we extract timing information
from Netlist A, and apply MMWC-based useful skew optimization.
Based on the useful skew results, we annotate clock latencies in an
.sdc file and run the same P&R flow to obtain another post-routing
netlist (Netlist C).

Fig. 6: Timing slacks at post-synthesis versus timing slacks at post-
routing stage: (a) without useful skew, and (b) with useful skew.
Paths are extracted from the mpeg2 testcase with 0.4ns clock period
(Table I).

skew_vs_slack

Fig. 7: Useful skew versus timing slacks at (a) post-synthesis and (b)
post-routing stages. Paths are extracted from the mpeg2 testcase with
0.4ns clock period (Table I).

Figure 6 shows the timing slacks (for all sequentially adjacent flop
pairs) at post-synthesis stage versus the timing slacks at the post-
routing stage. In Figure 6(a), we can see that in a chip implementation
flow without any useful skew optimization (i.e., the top flow in
Figure 5), the timing slacks at post-synthesis stage have poor
correlation with the timing slacks at post-routing stage. For example,
critical paths at post-routing stage (timing slack = 0) correspond to
the paths with 0ps to 250ps timing slacks at post-synthesis stage. On
the other hand, Figure 6(b) shows that with useful skew optimization
at post-synthesis stage, the timing slacks at post-synthesis and post-

routing stages have much better correlation. More specifically, the
critical paths at post-routing stage (timing slack = 0) correspond to
the paths with 0ps to 150ps timing slacks at post-synthesis stage
when useful skew is applied at post-synthesis stage. This is because
the useful skew optimization at post-synthesis relaxes the timing
constraints. As a result, the P&R stages do not need to significantly
perturb the netlist to meet the timing constraints. Further, Figure 7
shows that the relative values of useful skew and timing slacks are
similar for post-synthesis and post-routing stages. The post-routing
slack is slightly smaller due to the impact of interconnect delay and
power/area optimization during the P&R stage.

A Key Observation. Because of the good correlation between
timing slacks at post-synthesis stage and post-routing stages, the
clock latencies resulting from useful skew optimization are similar
at these two stages. Therefore, we expect that applying useful
skew optimization at post-synthesis stage will lead to similar timing
improvements compared to applying useful skew optimization at
later stages. We validate this hypothesis by generating the optimal
useful skews at post-routing stage (Netlist C) and comparing with the
predictive useful skews generated at post-synthesis stage (Netlist A).
Each dot in Figure 8 represents the useful skew of a pair of
sequentially adjacent flops. The x-axis is the optimal useful skew
at post-synthesis stage and the y-axis is the optimal useful skew at
post-routing stage; the correlation coefficient for the useful skews is
0.83. Since the predicted useful skews at the post-synthesis stage are
very similar to the optimal useful skews at the post-routing stage,
our predictive useful skew flow would seem likely to achieve near-
optimal timing quality. Note that the results in Figures 6 to 8 are
representative for all other testcases in our study.

Fig. 8: Optimal useful skews (obtained from MMWC) based on
timing information at post-synthesis and post-routing stages have
good correlation. Paths are extracted from the mpeg2 testcase with
0.4ns clock period (Table I). This suggests why simple prediction of
useful skews at the post-synthesis stage is feasible.

B. Implementation of Predictive Useful Skew Flow

It is well known that useful skew optimization migrates timing
slack from a non-critical path to the sequentially adjacent critical
paths. Thus, the maximum achievable timing slack is bounded by
the mean timing slack of paths that form a cycle. Therefore, we
follow standard practice and formulate the useful skew optimization
as the maximum mean weight cycle (MMWC) problem [1] [2].
Given a post-synthesis netlist with edge-triggered flops, we model
the netlist using the directed graph G(V,E), where each flop in the



netlist is represented by a vertex2 and there is an edge between
two vertices whenever there is a purely combinational path between
the corresponding flops. The setup and hold slacks on the path are
modeled by the following equations

si, j,setup =−xi + x j +T −di−dmax
i, j − tsetup

j

si, j,hold = xi− x j +di−d j +dmin
i, j − thold

j

where si, j,setup and si, j,hold are respectively the setup and hold slack
on the path from the ith flop ( fi) to the jth flop ( f j). xi denotes the
clock latency of the ith flop. T is the clock period, di is the clock-
to-Q delay of fi, and dmax

i, j and dmin
i, j are respectively the maximum

and minimum path delay from fi to f j. Last, tsetup
j and thold

j are the
setup and hold time of f j, respectively. We then formulate our useful
skew optimization as

maximize ∑
i, j

si, j,setup

s. t. si, j,hold ≥ 0,∀i, j
(1)

We optimize the sum of setup slacks (flop pairs) because a
larger setup slack can potentially improve the achievable operating
frequency, or be traded off for power and area recovery. We also
consider hold time constraints to ensure correct circuit operation.
In the MMWC optimization, we first calculate the weight of each
edge (i.e., the worst setup slack corresponding to a pair of flops).
We then find the minimum-weight edge in each iteration and label it
as a critical path. For an efficient implementation, we determine the
minimum-weight edges using the parametric shortest path algorithm
(details of which are given in [1]). When the critical paths form a
cycle, we set the weight (i.e., timing slack) of each edge on the
cycle as the maximum mean weight of the cycle. Based on the
timing slack, we then determine the clock latency for each vertex
(flop). After assigning the clock latencies, we contract the cycle into
one vertex and update the weights of incoming/outgoing edges of
the contracted vertex. We iteratively search for the minimum-mean-
weight cycle and contract the cycle until every vertex is assigned to
a clock latency. To incorporate hold constraints in the MMWC, we
add edges in parallel to the edges corresponding to setup slack (but
with reversed direction). Similarly, each of these (hold) edges is given
a weight that corresponds to the hold slack. The parametric shortest
path algorithm will honor the constraints defined by hold edges when
it searches for the minimum (setup) weight edge.

C. An Improved Predictive Useful Skew

The solution quality of useful skew optimization at the post-
synthesis stage will be affected by various timing optimizations
during place and route, such as VT-swapping and sizing. To address
this issue, we also predict useful skews based on a netlist synthesized
with only the fastest available cells (e.g., low threshold voltage (LVT)
library) (Algorithm 1). Prediction of useful skews based on the LVT-
only netlist not only comprehends the impact of VT-swapping in later-
stage optimizations, but also estimates the achievable slack between
each flop pair. However, hold time analysis on a netlist with only the
fastest cells is too conservative. Thus, we also propose to synthesize
the design with multiple libraries (e.g., multi-VT cell libraries) and
formulate the hold constraints based on the multi-VT netlist (Line
4 in Algorithm 1). As shown in Algorithm 1, this prediction flow

2Following guidance from [4], all input (resp. output) ports are merged
and treated as a single vertex in our MMWC useful skew optimization. This
step enables every maximum-delay combinational path (flop-flop, PI-flop or
flop-PO) to be included in at least one cycle.

requires two synthesis runs, which can be executed in parallel so that
there is no turnaround time impact. Based on the synthesized LVT
and multi-VT netlists, we optimize useful skews using the MMWC
algorithm (Line 5). We then use the LVT netlist for placement and
routing (P&R) (Line 6). Note that we use multi-VT libraries for P&R
implementations, i.e., the P&R tools will optimize power by swapping
LVT cells to other VT flavors on non-critical timing paths. Thus, the
accuracy of our useful skew prediction based on LVT-only netlist
is less affected by the VT swapping. In the following discussion,
we use SimPred to refer to the simple prediction flow described in
Section II-B, and ImpPred for this improved predictive useful skew
flow based on two synthesis runs.

Algorithm 1 No-loop, Predictive Useful Skew Methodology
Procedure ImpPred(RT L, .sdc, LibertyLV T ,LibertyMV T )
Output: Nout

1: NLV T ← Synthesis(RT L, .sdc, LibertyLV T );
2: NMV T ← Synthesis(RT L, .sdc, LibertyMV T );
3: V ← flops, PIs, POs in NLV T ;
4: E ← max-delay paths in NLV T ∪ min-delay paths in NLV T ;
5: clock latencies ← MMWC(V , E);
6: Nout ← P&R(NLV T , .sdc, LibertyLV T , clock latencies);

III. EXPERIMENT SETUP

Our experiments use a dual-VT 28nm FDSOI library and three
RTL designs from the OpenCores website [19]. We show statistics
of testcases (including clock period, total number of cells, number of
flops, and number of maximum/minimum delay paths (i.e., number
of edges in the sequential graph)) in Table I. We use Synopsys Design
Compiler vH-2013.03-SP3 [20] to synthesize the RTL netlists.3 We
run P&R using Synopsys IC Compiler vH-2013.03-ICC-SP3 [21].
We also use Synopsys IC Compiler for power analysis, and Synopsys
PrimeTime H-2013.06-SP2 [22] for timing analysis. The setups for
timing analysis are given in Table II, where in the absence of AOCV
tables we use timing derates to model on-chip variation. All (dual-
VT) implementation experiments are run with two signoff corners at
{125◦C, 0.9V, SS} and {-40◦C, 1.05V, FF}. To mitigate the effects
of tool noise [8], each P&R implementation executes three separate
runs with small perturbations of clock period (i.e., -1ps, 0ps, +1ps);
we report the largest endpoint slack results obtained over all three
final-routed netlists.

TABLE I: Benchmark designs

Design Clk period #Cells #Flip-flops #Paths
(ns) (#Vertices) (#Edges)

aes cipher 0.6 ∼23k 530 16251
des perf 0.5 ∼11k 1985 23153

jpeg encoder 0.6 ∼50k 4712 137333
mpeg2 0.4 ∼11k 3381 95490

The back-annotation flow can have different variants. In addition
to the back-annotation flow proposed in [15], we have implemented
four variant back-annotation flows, designated as BA-I, BA-II, BA-
III and BA-IV.

In BA-I (Figure 9), we collect timing information at post-
placement stage, optimize useful skew, and back-annotate the clock

3A physical synthesis flow is used: We first run the default synthesis flow,
then implement a fast placement of the synthesized netlist, based on which
another pass of synthesis is made with topographical (“topo”) option.



TABLE II: Experimental setups for timing analysis

Parameter Value
Clock uncertainty (synthesis) 0.15 × clock period

Clock uncertainty (placement, CTS) 0.10 × clock period
Clock uncertainty (CTS opt, routing) 0.05 × clock period

Maximum transition 0.08 × clock period
Timing derate on net delay (early/late) 0.90 / 1.19
Timing derate on cell delay (early/late) 0.90 / 1.05
Timing derate on cell check (early/late) 1.10 / 1.10

latencies to the post-synthesis stage. For BA-II, BA-III and BA-
IV, we collect timing information at post-routing stage and optimize
useful skew. The optimized clock latencies are then back-annotated
to the synthesis, placement, and CTS stages, respectively, in BA-II,
BA-III and BA-IV.
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RTL netlist 

Synthesis 

Fig. 9: BA-I flow.
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Fig. 10: BA-II flow.
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Fig. 11: BA-III flow.
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Fig. 12: BA-IV flow.

IV. EXPERIMENTAL RESULTS

We perform chip implementations on designs (listed in Table I)
with eight chip implementation flows – (a) the standard useful skew
flow (Typical) where we use the command skew opt in Synopsys
IC Compiler [21] to generate desired clock latencies for incremental
clock tree optimization; (b) the back-annotation flow by Wang et al.
[15] (BA-W), which is depicted in Figure 3; (c) four variants of back-
annotation flows described in Section III; and (d) our two NOLO
(“no-loop”) predictive flows (SimPred and ImpPred), in which we
apply predicted useful skews at post-synthesis stage and continue to
use them throughout timing optimization in P&R.

Results in Table III show that different flows achieve similar power
and area. Also, all designs are free of any hold time violation. Thus,
we achieve clean comparisons of different flows based on the total
negative slack.

Back-annotation vs. Typical: Results in Table III show that the BA-
W flow can achieve better total negative slack (TNS) compared to the
Typical flow (average across all testcases in Table I). This is mainly

because the useful skew optimization in the BA-W flow can interact
with the synthesis and placement stages through the feedback loop.
As a result, the cells on critical paths can be re-sized, re-structured
and/or re-allocated to improve timing quality. However, the runtime
of the BA-W flow is 85% longer than the Typical flow.

SimPred vs. Back-annotation: Results in Table III show that
although the SimPred flow can also achieve significant improvement
compared to the Typical flow, the average TNS achieved by the
SimPred flow is approximately 20% worse compared to BA-W. This
is expected because the useful skew solution (at post-synthesis stage)
may be suboptimal due to design changes in the place and route
stages. However, the SimPred reduces runtime by 66% compared to
the BA-W flow.

ImpPred vs. Back-annotation: Our results also show that with
the concurrent LVT-only synthesis run, the ImpPred flow achieves
improved TNS, power and area (on average) compared to BA-W.
This is because the benefit of useful skew optimization is limited by
the zero-skew placement in BA-W. For example, buffers are inserted
in the zero-skew netlist to fix timing violations, which increases
area and power. Moreover, the critical paths will not fully exploit
the potential benefits of useful skew. In contrast, our ImpPred flow
relaxes timing constraints at the post-synthesis stage via an early-
stage useful skew optimization (see Section II-C). We believe that
this enables the optimized netlist to meet timing constraints with less
area and power penalty (e.g., less buffer insertions).

Among the four testcases, BA-W only does better for the
jpeg encoder testcase, by a small margin. Overall, our prediction
of useful skew at post-synthesis stage is superior to the BA-
W back-annotation flow. Moreover, our ImpPred is a one-pass
implementation which reduces runtime by 66% compared to BA-
W. Note that the runtime of the ImpPred flow is smaller than the
runtime of the SimPred flow, even though ImpPred implements
two synthesis runs. This is because we execute the synthesis runs
simultaneously, and the improved timing quality leads to a faster
convergence in the P&R stages.

Design Dependencies: We observe that the improvements
from useful skew implementations are design-dependent. Timing
improvements with useful skew are less for a design with fewer flops,
because the number of paths that can be improved is smaller (e.g.,
aes cipher). In this work, we have focused only on optimization of
timing. Conventional wisdom would suggest that our improvements in
timing can be traded for power and area improvements, and we plan
to consider the tradeoffs between timing and power/area objectives
in our future work.

Comparison Among Variants of Useful Skew Flows: We compare
the runtime and resultant total negative slacks of various useful skew
flows. In the back-annotation flows, we iteratively optimize until the
improvement in the average setup slack is less than 50ps. All the
back-annotation flows converge within three iterations.

Figure 13 shows that the TNS values of the back-annotation
flows vary depending on the testcase. This suggests that even with
back-annotation, the useful skew optimization may be misled by
the initial netlist and thus end up with suboptimal solutions. Since
the back-annotation flows achieve different TNS values, we also
plot the average TNS of all back-annotation flows (including BA-
W) for comparison (i.e., the blue diamond symbol and dotted
lines). The results show that ImpPred can achieve better results
compared to the average TNS of the back-annotation flows (BA
avg) for larger testcases (jpeg encoder and mpeg2). For smaller
testcases (aes cipher and des perf), ImpPred achieves similar TNS



TABLE III: Design metrics of routed design from different flows.

Design Flow Power Area #Hold TNS WNS Runtime
(mW) (µm) vio. (ns) (ns) (min)

aes cipher

Typical 16984 35.8 0 -7.806 -0.047 117
BA-W 16860 35.0 0 -4.898 -0.042 145

SimPred 16539 34.7 0 -5.089 -0.035 79
ImpPred 16002 34.3 0 -4.883 -0.036 62

des perf

Typical 21971 65.8 0 -13.920 -0.046 108
BA-W 20445 61.2 0 -5.574 -0.032 101

SimPred 20603 62.2 0 -5.885 -0.034 61
ImpPred 19618 57.2 0 -4.726 -0.035 53

jpeg encoder

Typical 72799 77.0 0 -136.650 -0.131 496
BA-W 58874 64.6 0 -14.166 -0.043 1171

SimPred 57878 63.4 0 -19.317 -0.043 358
ImpPred 56970 61.7 0 -14.695 -0.045 339

mpeg2

Typical 27655 52.6 0 -137.855 -0.168 134
BA-W 25761 48.5 0 -7.590 -0.049 165

SimPred 25415 48.3 0 -8.251 -0.054 97
ImpPred 25250 48.4 0 -6.408 -0.046 79

Typical 34852 57.8 0 -74.058 -0.098 213
Average of BA-W 30485 52.3 0 -8.057 -0.042 395
4 designs SimPred 30108 52.2 0 -9.636 -0.042 148

ImpPred 29460 50.4 0 -7.678 -0.041 133

compared to the average of back-annotation flows. Also, it is clear
that our predictive flows have significantly less runtime than the back-
annotation flows for all testcases.
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(a) aes cipher.
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(b) des per f .
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(c) jpeg encoder.
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(d) mpeg2.

Fig. 13: Comparison among useful skew flows. Our ImpPred flow
achieves better or similar TNS but with 66% runtime reduction
compared to back-annotation flows.

V. CONCLUSIONS

We propose NOLO, a “no-loop” predictive useful skew
optimization flow, based on timing information of a post-synthesis
netlist. To account for the potential of timing changes during the
place and route stages, we improve our estimate of potential slack
in the netlist by running an additional logic synthesis step using fast
library cells. Based on this technique, we show that an improved
predictive useful skew flow (ImpPred) can achieve similar or better
total negative slack compared to back-annotation flows, with only
one pass through chip implementation. The runtime of our predictive
useful skew flows is similar to the runtime of the Typical flow, which
is approximately 66% less than the runtime of the back-annotation
flow in [15].

Our study of different back-annotation flows indicates that back-
annotation (or optimization loops) cannot completely resolve the
“chicken-and-egg” problem. We see that the timing quality varies

depending on testcases. This is because even with back-annotation,
the useful flows can be misled to a suboptimal local solution.

There are two major directions for our future work. First, we plan
to analyze and apply our useful skew flows across multiple PVT
corners. Second, we plan to study and develop models of the tradeoffs
among area, power and timing with useful skew.
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