
Incremental Multiple-Scan Chain Ordering for ECO Flip-Flop Insertion

Andrew B. Kahng†‡, Ilgweon Kang‡, and Siddhartha Nath‡

UC San Diego ECE† and CSE‡ Departments, La Jolla, CA 92093
{abk, igkang, sinath}@ucsd.edu

ABSTRACT
Testability of ECO logic is currently a significant bottleneck in
the SOC implementation flow. Front-end designers sometimes re-
quire large functional ECOs close to scheduled tapeout dates or
for later design revisions. To avoid loss of test coverage, ECO
flip-flops must be added into existing scan chains with minimal
increase to test time and minimal impact on existing routing and
timing slack. We address a new Incremental Multiple-Scan Chain
Ordering problem formulation to automate the tedious and time-
consuming process of scan stitching for large functional ECOs.
We present a heuristic with clustering, incremental clustering and
ordering steps to minimize the maximum chain length (test time),
routing congestion, and disturbance to existing scan chains. Test
times for our incremental scan chain solutions are reduced by 5.3%,
and incremental wirelength costs are reduced by 45.71%, compared
to manually-solved industrial testcases.

1. INTRODUCTION
In the design of semiconductor chips, scan is one of the most

popular techniques for design for testability (DFT). Designers must
achieve an adequate level of test coverage for the circuit [1]. Some-
times, when chips are very close to tapeout, front-end designers
may require sudden modifications adding hundreds of flip-flops
(FFs) and thousands of logic gates in total. To avoid loss of test
coverage, the incremental scan FFs should be included into existing
scan chains during the implementation of such engineering change
orders (ECOs). This yields an incremental multiple-scan chain
ordering problem, for which key considerations are as follows.

• The new ECO should be distributed among the existing scan
chains so as to minimize test time, which is very expensive
and is determined by the maximum chain length.
• Depending on the clock domain of each added ECO FF, only

a subset of the existing scan chains will be able to accommo-
date, i.e., are compatible with, that FF.
• As a completed design may already contain routing conges-

tion, it is desirable to stitch the ECO FFs into existing scan
chains so as to minimize perturbations to existing routing,
and hence minimize impact on timing.

The resulting optimization trades off test time against routability
and total wirelength. Figure 1 illustrates the incremental multiple-
scan chain ordering problem. The red cells represent incremental
scan flip-flops (ECO FFs) that have been stitched appropriately into
nearby compatible scan chains which had existed previously in the
design. Late-stage manual scan stitching can cost days or weeks of
design time, whereas a suitable tool could decrease this schedule
hit to a day or less.

In this work, we formulate the incremental multiple-scan chain
ordering (IMSCO) problem, and propose a heuristic method to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2013, November 18-21, 2013, San Jose, California, USA
Copyright 978-1-4799-1071-7/13/$31.00 c©2013 IEEE.

add ECO FFs into existing scan chains in the original design. We
perform assignments of ECO FFs to scan chains by cluster analysis.
Then, we incrementally order each group of assigned ECO FFs
within its respective scan chain with small added wirelength using
traveling salesman problem (TSP) heuristics.

Our main contributions are the following.
• We add ECO FFs to existing scan chains in the original de-

sign while satisfying a given maximum scan chain depth con-
straint.
• We heuristically minimize total incremental routing length

(optionally, weighted according to a given congestion map),
and we also try to minimize the number of cut edges in orig-
inal chains since these can cause unexpected side effects to
the original design.
• To our knowledge, we are the first to address the incremental

multiple-scan chain ordering problem at the ECO level. We
provide an efficient approach that meets practical demands
of physical designers.

Of independent interest in the operations research and metaheuris-
tics contexts is that our incremental multiple-scan chain ordering
problem can be seen as a new dynamic multi-depot vehicle routing
problem with a variable number of movable depots.

Input Port

Output Port

Original Scan FF

Incremental Scan FF

New Routing

Figure 1: Incremental ordering of multiple scan chains when flip-
flops are inserted into the design.

The remainder of this paper is organized as follows. In Section 2,
we review related works. Section 3 gives notation and definitions,
and formally states the incremental scan chain clustering and or-
dering problems that we address. Section 4 presents our heuristics,
and Section 5 describes experimental setup, results, and discussion.
Section 6 provides directions for ongoing work and concludes the
paper.

2. RELATED WORKS
IMSCO consists of two subproblems, (1) clustering and assign-

ment of ECO FFs into original scan chains, and (2) ordering of
the assigned ECO FFs. Clustering, assignment and stitching of
ECO FFs at cut edges in original scan chains can be seen as a
variant of the multi-depot vehicle routing problem (MDVRP), in
which one vehicle can be assigned to each depot (i.e., the depot
is the start/end location of the scan chain, and the scan order is



the vehicle’s route). The vehicle routing problem (VRP) [5] seeks
optimal delivery or collection routes from one depot to a number of
geographically scattered cities (or customers), subject to side con-
straints [17]. MDVRP is a variant of VRP that considers multiple
depots at the same time. Both VRP and MDVRP are well-known to
be NP-hard. Ordering of a group of ECO FFs within a previously-
existing scan chain can be formulated as an incremental traveling
salesman problem (TSP). The TSP, too, is a well-known NP-hard
combinatorial optimization problem [10] and has been extensively
studied in various fields.

Application of clustering to scan chains. Elm et al. [7] present
linear-time partitioning heuristics to cluster scan FFs into scan chains
to reduce test power. They do not apply any ordering refinements,
hence their method can potentially cause severe performance varia-
tions during test. Seok et al. [25] reduce test time by dividing a scan
chain into multiple scan chains based on placement information.
Then they reorder scan FFs based on test vectors. In addition, their
results show improvement of congestion. However, they do not
formulate the scan chain optimization as an ECO problem.

Application of VRP/MDVRP for scan chain assignment. The
first exact algorithm for MDVRP is due to Laporte et al. [16], but is
useful only for small instance sizes. Renaud et al. [24] and Cordeau
et al. [6] present Tabu search-based MDVRP heuristics. The in-
stance sizes handled by these works are too small for application
to ECO scan chain optimization. Pepin et al. [20] and Gendreau et
al. [11] survey several heuristic approaches for VRP and MDVRP.
Ho et al. [14] and Mirabi et al. [19] propose other heuristics but
again consider limited numbers of customers and depots which
are small compared to IMSCO instances. The multiple traveling
salesman problem (mTSP) is a generalization of TSP with more
than one salesman and is an alternative to VRP [4]. However, prior
work rarely considers salesmen from multiple depots in mTSP, i.e.,
each salesman must begin and end at a single prescribed depot.

Application of TSP for scan chain ordering. Lawler et al. [18]
and Johnson [15] comprehensively review and empirically compare
TSP heuristics. Johnson provides tour construction heuristics such
as nearest-neighbor, as well as local optimization heuristics such as
3-Opt, Lin-Kernighan (LK) and iterated LK. Feuer and Koo [8]
present the first published work on application of TSP for scan
chain optimization by translating a given scan chain instance into
a TSP instance. However, they lose geometric information in this
translation, and hence cannot quantify the effectiveness of the TSP-
based approach.

Gupta et al. [12] propose a routing-driven methodology for scan
chain ordering that uses incremental routing cost (connecting to
existing or anticipated routing, rather than to the output pin) as
the cost for a scan connection. They consider scan chain ordering
as an asymmetric TSP, and use ScanOpt [27] based on 3-Opt as
their TSP solver. However, [12] does not consider timing; a sub-
sequent method in [13] is both routing-driven and timing-aware.
They search for the minimum wirelength incremental connection
that meets timing constraints, and perform buffer insertion for con-
nections that do not meet timing constraints. While their methods
are quite reasonable, they are not useful for ECO scan FF ordering
because they do not consider constraints such as scan time, number
of cut edges, etc. that are important during ECO scan FF insertion.
Rahimi et al. [21] assign scan FFs to multiple scan chains using par-
titioning and multichain assignment instead of TSP. Raul et al. [22]
assign and order multiple scan FFs by using physical layout infor-
mation. These methods are directed only to initial constructions of
scan chains and not to the ECO context.

3. PROBLEM FORMULATION
Table 1 defines notations pertaining to our IMSCO problem for-

mulation. We also use the following terminology.
Incremental Scan FF (ECO FF). Incremental scan FFs are scan
FFs added to the design during a functional ECO, occurring when

the design has reached near-final stages of physical implementation
and a restart from synthesis is too costly. Each incremental scan FF
must be added to a compatible scan chain.
Compatible Scan Chain. A scan chain is compatible with a given
ECO FF if the scan chain contains FFs in the same clock domain
as the ECO FF.
Test Time. Test time is proportional to the maximum length of any
scan chain, assuming that all scan shifts are executed in parallel.
To minimize test time, the maximum scan chain length should be
minimized.

Incremental Wirelength. ECO routing is required to stitch ECO
FFs into original scan chains. To minimize the number of buffers
added to scan chains and prevent high congestion, total wirelength
for ECO routing should be minimized.

Cut Edge. Cut edges are nets on original scan chains that are cut
when ECO FFs are inserted. In general, the number of cut edges
should be minimized to reduce disturbance to the existing routing,
since changes to existing routes may impact previously-achieved
timing closure.

Table 1: Notations used in our IMSCO formulation.
Term Meaning

C Set of scan chains, {ck}, ck ∈C, 1≤ k ≤ |C|
FO Set of original scan FFs
FE Set of incremental scan FFs (ECO FFs)
F Set of scan FFs, {FO}∪{FE}
FU Set of unwired ECO FFs, FU ⊆ FE
Fk Set of scan FFs in chain ck
fi ith scan FF, 1≤ i≤ |F |

CCi Set of scan chains that are compatible with fi, CCi ⊆C
d(i, j) (Manhattan) distance between scan FFs fi and f j
p(i, j) 0-1 variable to indicate if fi and f j are connected
g(i,k) 0-1 variable to indicate if fi is assigned to ck
DMAX Upper bound on scan chain depth
LMAX Upper bound on distance between connected fi and f j
LMIN Lower bound on distance between connected fi and f j
EMAX Upper bound on the number of cut edges in the design
eMAX Upper bound on the number of cut edges in the chain

Constraints {DMAX ,LMAX ,LMIN ,EMAX ,eMAX }

Three optimization problems for ECO FF insertion. We have
studied three variants of ECO FF insertion.
MinTT-ISC (minimize test time). In this problem, we insert ECO
FFs into compatible scan chains such that the length (scan depth)
of each scan chain is less than an upper bound DMAX . The problem
is formally stated as:

minimize max
ck ∈ CCi

∑
fi ∈ F

g(i, k)

subject to ∑
fi ∈ F
ck∈CCi

g(i, k)≤ DMAX

MinIncWL-ISC (minimize incremental wirelength). It is desir-
able to stitch ECO FFs into the original scan chains with minimum
possible wirelength. By minimizing wirelength, design engineers
can also minimize the number of buffers required to close timing
and meet design rule constraints. Minimal increase in wirelength
also implies minimal disturbance to existing routing, which can
help with functional mode timing closure. Our formulation also
considers a lower bound on distance to avoid introducing hold time
violations in scan shift mode. We formulate this problem as:

minimize ∑
fi, f j ∈FE

d(i, j) · p(i, j)+ ∑
fi ∈ FO
f j ∈ FE

d(i, j) · p(i, j)

subject to LMIN ≤ d(i, j) · p(i, j)≤ LMAX

where p(i, j) = 1 if fi and f j are connected, 0 otherwise.



MinCE-ISC (minimize number of cut edges). To minimize the
impact of re-routing during ECO implementation, we can also min-
imize the number of cut edges in the original scan chains. We
formulate this problem as:

minimize ∑
fi ∈ FO
f j ∈ FE

p(i, j)

subject to ∑
fi ∈ FO
f j ∈ FE

p(i, j) ≤ EMAX

∑
fi ∈ Fk
f j ∈ FE

p(i, j) ≤ eMAX

4. OPTIMIZATION OF ECO FF INSERTION
We now describe our heuristic approach for the IMSCO problem.

We propose a three-phase heuristic with (1) initial greedy clustering
of ECO FFs based on an affinity vector; (2) iterative improvement
of initial clustering using a pass-based, Fiduccia-Mattheyses (FM)
style algorithm [9] based on movement of single ECO FFs; and (3)
multiple cut edge selection in original scan chains based on k-way
clustering of ECO FFs. Our approach heuristically addresses the
goals of minimum scan chain depth1, minimum wirelength, and
minimum number of cut edges. Figure 2 shows the flow of our
proposed approach.

Initial Clustering (Affinity Vector)

Improvement of Initial Clustering (modified FM)

Selection of Multiple Cut Edges (MDVRP)

Output: IMSCO Solution

Input: Original Scan Chains, ECO FFs, Constraints

Figure 2: Our IMSCO flow.

4.1 Initial Clustering
Algorithm 1 describes the initial clustering phase. We use an

affinity vector function that considers three objectives: (1) scan
chain depth (SD), (2) wirelength (WL), and (3) cut edges (CE). To
construct the initial cluster that simultaneously optimizes SD, WL,
and CE, we formulate the affinity vector function as a weighted
sum of each normalized affinity vector of SD, WL and CE. For
each of SD, WL and CE, we calculate all possible connections
between original scan FFs and ECO FFs, and between assigned
ECO FFs and unassigned ECO FFs. For CE, we seek to minimize
the number of cut edges but do not select the specific edges to cut
until a “selection of multiple cut edges” phase, described in Section
4.3 below.

Affinity( fi) is a vector of size |C| of affinity values 〈Affinity( fi)1,
Affinity( fi)2, . . ., Affinity( fi)|C|〉 of a given assigned ECO FF fi to
each scan chain.

Affinity( fi)k = α ·SD(i,k) + β ·WL(i,k) + γ ·CE(i,k) (1)

where fi ∈ Funassigned , ck ∈C, and {α, β, γ} are empirically deter-
mined. SD(i,k), WL(i,k) and CE(i,k) in Algorithm 1 respectively

1We use scan chain depth to refer to scan chain length.

compute SD, WL and CE affinities. To compute SD affinity, we de-
fine SD(ck) as the current scan depth of scan chain ck and calculate
the SD_limit across all scan chains as

SD_limit = min{max
ck
{SD(ck)},DMAX} (2)

SD_limit contrains the assignment of ECO FFs to scan chains such
that SD values across all scan chains remain balanced. When an
ECO FF is assigned to a scan chain ck, the value of SD(ck) in-
creases by one. To promote assignment of ECO FFs to scan chains
with smaller SD(ck), the SD affinity function returns the recipro-
cal of SD(ck). When an ECO FF is assigned to a scan chain ck
with SD(ck) < SD_limit, the value of SD_limit remains unchanged.
However, when an ECO FF is assigned to a scan chain ck with
SD(ck) = SD_limit, the value of SD_limit increases by one as long
as the new value is ≤DMAX . Figure 3 illustrates these two cases of
ECO FF assignment.

To compute WL affinity, we use the reciprocal of the distance be-
tween the ECO FF fi and a nearest FF in the scan chain ck. The dis-
tance functions for congestion- and non-congestion-aware modes
are different. In non-congestion-aware mode the distance between
two scan FFs is the Manhattan distance, whereas in congestion-
aware mode the distance is calculated as

Distance( fi, f j) = xCon · |xi− x j|+ yCon · |yi− y j| (3)
where xCon and yCon are congestion coefficients in the horizontal
and vertical directions, calculated as the average ratio of used tracks
to the total number of tracks for all grid cells in the bounding box
{(xi, yi), (x j, y j)}.

To compute CE affinity, we choose an edge in a scan chain ck
that is nearest to the ECO FF fi. We then use the reciprocal of the
number of “virtual” cut edges as shown in Figure 4.

Figure 3: Example of ECO FF assignment and impact on SD. In the
figure, there are eight ECO FFs out of which six have been assigned
to scan chains #1–#5. Case 1. The seventh ECO FF is assigned to
Chain #5. SD of Chain #5 increases to six, but SD_limit remains at
six. Case 2. The eighth ECO FF is assigned to Chain #5. SD_limit
must change to seven because all scan chain depths are six after the
seventh ECO FF is assigned to Chain #5.

Figure 4: Virtual cut edges in the CE affinity calculation. There are
three virtual CEs in the figure.

Algorithm 1 invokes the InitialClustering procedure with the set
of original scan chains, ECO scan FFs and constraints. Initially,
all ECO FFs are put into an Funassigned list. We pick an ECO FF,
fi, from this list and invoke the Affinity procedure to calculate the
affinity of fi to all compatible scan chains CCi . If some constraint



is not satisfied for a scan chain, then the affinity value of fi for
the scan chain is set to −1. If all affinity values are negative, then
fi is moved to a set of unwired ECO FFs. In each iteration we
decrease the number of elements in Funassigned by one and continue
until all ECO FFs are assigned to some scan chain or are added
to the set of unwired ECO FFs. We calculate the bias for each
ECO FF as the difference between the two largest affinity values
across all scan chains and assign it to the scan chain for which it
has the largest value of affinity. We then invoke the TSP solver
Concorde [2] to find the optimal tour of all the assigned ECO FFs
in each scan chain. (1) Thus, at the end of InitialClustering we
have clustered a list of ECO FFs for each scan chain and ordered
them using a TSP heuristic to minimize wirelength. (2) Details of
our ordering scheme are given below in Section 4.4.

Algorithm 1 Procedures to assign ECO scan flip-flops.
Procedure InitialClustering(F, C, Constraints)
Input: scan chains, ECO FFs, constraints
Output: clustering and ordering of ECO FFs; assignment of ECO
FFs to original scan chains
Funassigned ← FE ;
while Funassigned 6= φ do

fi← Funassigned .pop;
Funassigned .size← Funassigned .size – 1;
Affinity( fi)← Affinity( fi, C, Constraints);

end while
while i≤ FE .size do

Bias← Affinity( fi)|C| – Affinity( fi)|C|−1;
if Bias == 0 then

FU .push( fi);
end if
i← i+1;

end while
Concorde(C, FE \FU ); // TSP solver

Procedure Affinity( fi, C, Constraints)
for each ck ∈CCi do

if fi does not satisfy some Constraints then
Affinity( fi)k←−1;

else
Affinity( fi)k← α ·SD(i,k)+β ·WL(i,k)+ γ ·CE(i,k);

end if
Affinity( fi).push(Affinity( fi)k);

end for
Affinity( fi).sort;
return Affinity( fi);

Procedure SD(i,k)
if SD(ck)≤ SD_limit then

SD(ck)← SD(ck)+1;
return {1 / SD(ck)};

else
return {−1};

end if

Procedure WL(i,k)
distance( fi, ck)← distance between fi and nearest f j in ck;
return {1 / distance( fi, ck)};

Procedure CE(i,k)
virtualCE← number of virtual CEs after assigning fi to ck;
return {1 / virtualCE};

4.2 Improvement of Initial Clusters
We create initial clusters by applying a greedy method based on

the value of the affinity vector. Usually, greedy heuristics become
easily stuck in local minima. To improve the initial solution, we

perform iterative improvement using a modified FM strategy, based
on single moves of ECO FFs. From the given initial clustering
solution, we consider all possible single moves of ECO FFs to
another scan chain. Since we already minimize the scan chain
depth during initial clustering, we focus on reducing incremental
WL in the iterative improvement procedure. Equation (4) gives the
gain function we use in our iterative improvement procedure.

GainWL(FE , C) = WL(removed edges)−WL(added edges) (4)
A single move of an ECO FF from scan chain c j to scan chain ci

removes three edges (two edges from c j and one edge from ci) and
adds three edges (one edge from c j and two edges from ci). For
all combinations of ECO FFs and scan chains, we search for the
ECO FF fi that gives maximum gain, and move fi from c j to ci.
Note that a move is performed only when the depth of scan chain
ci is < DMAX . After being moved, the ECO FF is fixed in the scan
chain ci. When all ECO FFs have been moved once, this completes
one pass of iterative hill-climbing improvement. If the iterative im-
provement reduces total WL, we run another iterative improvement
step. This continues until there is no more improvement in WL.

To reduce the number of hill-climbing iterations, we use two
termination conditions: (1) If {height of hill > 7% of temporary
minimum WL}, then exit; and (2) If {local minimum && #iterations
> one quarter of the number of ECO FFs}, then exit. We determine
these conditions empirically. Algorithm 2 presents our iterative
improvement procedure.

Algorithm 2 Improvement of Initial Solution.
Procedure Improvement(F, C, Constraints)
Input: scan chains, ECO FFs, constraints
Output: improvement of initial solution
execute the modified FM(GainWL(FE , C));
Concorde(C, FE \FU ); // TSP solver

Algorithm 3 Selection of Multiple Cut Edges.
Procedure MDV RP(F, C, Constraints)
Input: scan chains, ECO FFs, constraints
Output: scan FF ordering with multiple cut edges
while the number of CEs in the design < EMAX do

for ∀ck with #CEs < eMAX do
calculate gain ∀ clusters in ck;

end for
find gainMAX ;
if gainMAX > 0 then

divide cluster into two;
select new cut edges;
Concorde(C, FE \FU ); // TSP Solver

else
break;

end if
end while

4.3 Selection of Multiple Cut Edges
After the above iterative improvement procedure, a scan chain

with ECO FFs will use only one cut edge. By using multiple cut
edges, we can further reduce the total WL. Multiple cut edges can
be viewed as multiple depots in a classical VRP. We solve this
IMSCO problem as an instance of MDVRP with dynamic depots,
that is, the location of the depots and the number of depots are
not fixed. Algorithm 3 shows the selection of multiple cut edges
using MDVRP. Based on multi-way clustering of ECO FFs and
assignment of clusters to original scan chains, we use a gain cal-
culation to guide the selection of multiple cut edges according to
Equation (2). Given a cluster of ECO FFs, the gain from separating
the cluster into two sub-clusters is found by disconnecting the two
longest edges in the cluster’s scan chain ck, then reconnecting each



of the sub-clusters to the nearest original scan FF in ck. (Edges
incident to a nearest original scan FF are candidates to become cut
edges.) If this results in a smaller total scan chain cost, we say that
there is a positive gain from the operation. We calculate gain for
all clusters in all scan chains, then implement the cluster separation
that achieves the maximum gain. We continue to divide clusters
into two, and select new cut edges for the two subclusters, until
the maximum gain is no longer positive. We then perform ordering
with the newly selected cut edges.

4.4 Ordering ECO FFs
We can formulate ordering of ECO FFs as an instance of classi-

cal TSP (cf. Section 2). We use the TSP solver, Concorde, to order
ECO FFs in scan chains. Concorde implements the cutting-plane
method, and uses a branch-and-cut search scheme [3]. On more
complicated instances, if the cutting-plane method cannot find the
optimal solution, Concorde switches to a branch-and-bound search.2
It uses an independent LP solver software to implement the cutting-
plane algorithm. In each phase of our algorithm, Concorde is exe-
cuted to find the optimal or near-optimal wirelengths.

LOW                                                                                                                    HIGH

(a) (b) (c)

Figure 5: Examples of congestion maps from our congestion map
generator. These three congestion maps are used to obtain the
results given in Table 8.

Congestion-aware ordering. To avoid disruption of existing rout-
ing and timing closure, we consider congestion information as well.
We use congestion maps (using our congestion map generator as
shown in Figures 5(a) – (c), or from commercial P&R tools) that
consist of grid-cell arrays. Each grid cell contains the number of
available routing tracks.

5. VALIDATION AND RESULTS
Our ISC-solver code implements our three-phase algorithm pre-

sented in C++ and is compiled with g++ 4.8.0. We use the TSP
solver Concorde [2] to order scan FFs. For congestion-aware order-
ing, we use the 3-opt algorithm in Concorde with our congestion-
aware distance function in Equation (3).

ISC-solver is validated on a 2.5GHz Intel Xeon E5-2640 Linux
workstation with 128GB memory and 12 hyperthreaded CPU cores.
ISC-solver is configurable with several user-specified options such
as, maximum scan depth, maximum and minimum edge lengths
between two flip-flops, and maximum number of cut edges for both
chain and entire design. To verify ISC-solver, we use two kinds of
testcases: (1) industrial, and (2) randomly generated using our scan
instance generator. The scan instance generator creates testcases
as well as congestion maps. The generator is also configurable,
with user-specified options including layout size, number of scan
chains, physical information of scan FFs in scan chains, number of
ECO FFs, (x, y) locations of ECO FFs, compatible scan chain sets,
distribution type of scan FFs, congestion map, size of grid cells,
and congestion values in grid cells. We generate our results with
α = β = γ = 0.33 in Equation (1).

2Sometimes Concorde provides different ordering results. As an example, for an input
with 634 cities and geometric distances, we divide the cities into 34 groups and run
Concorde 50 times. We find the results are normally distributed with µ = 22769.64
and σ = 67.05, and can vary up to 1.5% from the minimum result. To denoise, in all
results reported below we repeat each run of Concorde 50 times and record the best
result.

1250

1300

1350

1400

1450

1500

3750 3800 3850 3900 3950 4000

(a) Final chain WL = 4115.58µm when mce = 1.

1250

1300

1350

1400

1450

1500

3750 3800 3850 3900 3950 4000

(b) Final chain WL = 3949.82µm when mce = 3.

1250

1300

1350

1400

1450

1500

3750 3800 3850 3900 3950 4000

(c) Final chain WL = 3904.46µm when mce = 5.

1250

1300

1350

1400

1450

1500

3750 3800 3850 3900 3950 4000

(d) Final chain WL = 3817.94µm when mce = 10.

1250

1300

1350

1400

1450

1500

3750 3800 3850 3900 3950 4000

(e) Final chain WL = 3782.01µm when mce = ∞.

Figure 6: Example non-congestion-aware solutions of an industrial
scan chain solved by ISC-solver.

5.1 Comparison to Industrial Results
Table 2 compares scan depth SD achieved by ISC-solver to SD

in the industrial results of manual ECO FF insertion. The industrial
testcase contains 320 scan chains, 634 ECO FFs, and seven com-
patible scan chain groups. Table 2 compares change in SD across



the industrial testcase, where seven different ECOs were applied
to a design. The maximum value of SD in the original industrial
testcase (Ind in tables) is 574. For example, in the case of ECO1,
manual ECO FF insertion changes SD to 592 from 562, that is, the
manual solution requires up to 5.3% additional test time compared
to the ISC-solver solution. Table 3 compares final WL between
manual (industry) and ISC-solver solutions; ISC-solver achieves
a 6593.8µm (45.71%) reduction in incremental wirelength. Fur-
ther, ISC-solver (ISC in tables) does not increase the scan depth,
meaning that no additional test time is required with our solution.
Figures 6(a) – (e) show example solutions of an industrial scan
chain solved by ISC-solver with different mce values. The red
blocks and blue diamonds indicate ECO FFs and original scan FFs,
respectively. Clearly, for larger ECOs, our algorithm performs bet-
ter than manual solutions.

Table 2: Comparison of final scan depth (SD).

Group Orig #ECO Ind ISC Ind ISC
Max SD FF SD SD ∆SD ∆SD

ECO1 562 508 592 562 30 (5.3%) 0 (0.0%)
ECO2 565 77 565 565 0 (0.0%) 0 (0.0%)
ECO3 373 3 373 373 0 (0.0%) 0 (0.0%)
ECO4 565 7 565 565 0 (0.0%) 0 (0.0%)
ECO5 471 6 476 471 5 (1.1%) 0 (0.0%)
ECO6 574 2 574 574 0 (0.0%) 0 (0.0%)
ECO7 573 30 576 573 3 (0.5%) 0 (0.0%)

Table 3: Comparison of final wirelength (WL) (µm).
Orig Ind ISC Ind – Orig ISC – Orig

1984806.7 1999232.3 1992638.5 14425.6 7831.8
(–45.71%)

Figure 7: ∆ScanDepth vs. ∆WireLength, ISC-solver vs. industry.

5.2 Scalability of Our Implementation
ISC-solver is configurable with several user-specified options.

Table 5 presents results for the industrial testcase with various con-
figurations of user-specifiable options. In the table, psd is the max-
imum percentage increase in scan depth allowed after ECO FFs are
inserted into a compatible scan chain set; lel and mel are respec-
tively the lower and upper bounds for edge lengths between two
scan FFs; mce and MCE are respectively the maximum allowed
number of cut edges for each scan chain and for the entire design.
The original scan chain has SD = 574 and WL = 1984806.64µm.
By increasing psd, we observe that the final scan depth increases. If
psd = 0, the final scan depth cannot be increased beyond the original
scan depth of 574. If lel is increased, the final wirelength and the
number of unwired ECO FFs increase. When mel = 200, ISC-solver
provides the largest benefit with respect to the final wirelength,
the number of cut edges, and the number of unwired ECO FFs.
By increasing mce and MCE, the final wirelength and the number
of unwired ECO FFs are both reduced, since more cut edges are
allowed.

ISC-solver has O(mn2) time complexity for each iteration of
affinity vector calculation, where m is the number of original scan
FFs and n is the number of ECO FFs. To demonstrate scalability of
ISC-solver, we conduct experiments with two randomly generated
testcases. The first testcase has 100 scan chains with scan depths
between 400–600, a random distribution of ECO FFs, and a con-
gestion map. The second testcase contains {20, 50, 100, 200, 500}
original scan chains, 300 ECO FFs, and a congestion map. The top
and bottom halves of Table 4 respectively show the scalability of
ISC-solver across these two testcases. These runtime and memory
data are representative of ISC-solver trends when #scan chains is
fixed and #ECO FFs varies (top half of figure), and when #ECO
FFs is fixed and #scan chains varies (bottom half of figure).

Table 4: Scalability of ISC-solver.
#ECO #Scan #Orig Scan CPU time Mem

FFs Chains FFs (s) (MB)
100 100 49300 11.56 28.99
250 100 49300 52.12 29.14
500 100 49300 206.66 29.51
1000 100 49300 801.00 30.70
2500 100 49300 4766.29 35.07
300 20 9832 131.76 56.64
300 50 25693 354.77 62.88
300 100 50002 673.99 72.26
300 200 99203 1299.38 91.42
300 500 250059 3025.67 149.25

5.3 Impact of Congestion-Aware Cost Function
ISC-solver is able to cluster and order ECO FFs guided by a

user-provided congestion map. We conduct experiments with three
different congestion maps, {200, 500, 1000, 2000} ECO FFs, and
500 original scan chains with #FFs between 400–600. Table 8
shows results for the randomly generated testcases and congestion
maps from Figures 5(a) – (c). We observe that post-ECO WL val-
ues with and without congestion are clearly different for the same
testcase, and that congestion-aware clustering and ordering does
not consume significantly more system resources. Figures 8(a)
and 8(b) respectively show non-congestion-aware and congestion-
aware solutions for a small example containing 200 ECO FFs. The
figures show how ISC-solver avoids highly congested regions dur-
ing initial clustering and ordering.

Table 6: Incremental WL (in µm) for solutions and costs with and
without congestion awareness (representative result).

Cost
w/o congestion w/ congestion

Solution w/o congestion 72280.09 117143.14
w/ congestion 84470.61 100516.30

To further illustrate the “sanity” of congestion-aware solutions,
Table 6 gives representative results of WL for four distinct treat-
ments of a testcase: (i) when both solution and cost function do
not consider congestion; (ii) when both solution and cost function
consider congestion; (iii) when only solution considers conges-
tion; and (iv) when only cost function considers congestion. As
expected, WL values satisfy (i) < (iii), and (ii) < (iv). These
representative results illustrate intuitively reasonable behavior of
ISC-solver’s solutions and cost functions.

Table 7: Impact of granularity of grid cell (Gcell) size.
Gcell SD WL #CE CPU Time Mem
X×Y (µm) (s) (MB)

10×10 600 2515210.74 264 344.49 83.77
20×20 600 2524434.69 241 347.45 89.53
50×50 600 2540594.35 249 386.16 322.12

100×100 600 2548770.12 243 1383.44 3900.93
200×200 600 2582814.58 230 7237.27 61123.81



Table 5: Industrial testcase results with various ISC-solver configurations. (SD = scan depth; #CE = number of cut edges.)
QoR Configuration Options Post-ECO with ISC-solver System Resources

psd lel mel mce MCE SD WL (µm) #CE #Unwired FFs CPU time (s) Mem (MB)

psd

1 0 500 ∞ 10000 578 1993022.96 84 0 242.49 69.33
2 0 500 ∞ 10000 582 1992830.60 104 0 254.15 69.46
5 0 500 ∞ 10000 590 1992321.28 106 0 272.28 69.46
9 0 500 ∞ 10000 612 1991673.92 146 0 187.66 69.85

lel

0 1 500 ∞ 10000 574 1994232.28 69 0 246.80 69.21
0 2 500 ∞ 10000 574 1995079.84 62 0 234.42 69.59
0 5 500 ∞ 10000 574 1997388.72 94 0 215.81 69.20
0 10 500 ∞ 10000 574 2002900.52 102 1 245.17 69.33
0 20 500 ∞ 10000 574 2012828.76 86 2 292.19 69.20
0 50 500 ∞ 10000 574 2039497.64 110 99 215.43 69.21

mel

0 0 50 ∞ 10000 574 1990935.84 103 74 139.23 69.60
0 0 100 ∞ 10000 574 1993875.00 84 7 206.17 69.34
0 0 200 ∞ 10000 574 1992638.52 73 0 181.88 69.21
0 0 500 ∞ 10000 574 1993001.68 69 0 163.98 69.33
0 0 1000 ∞ 10000 574 1993545.16 113 0 158.26 69.33
0 0 2000 ∞ 10000 574 1993765.56 98 0 167.25 69.33

mce

0 0 5000 1 10000 574 1997098.36 35 0 231.21 69.20
0 0 5000 3 10000 574 1994494.64 56 0 216.85 69.20
0 0 5000 5 10000 574 1994317.12 67 0 214.82 69.21
0 0 5000 10 10000 574 1993972.72 83 0 237.14 69.33
0 0 5000 20 10000 574 1993633.64 102 0 176.41 69.33

MCE

0 0 5000 ∞ 10 574 1988055.76 10 417 84.14 69.33
0 0 5000 ∞ 20 574 1994268.40 20 104 167.88 69.60
0 0 5000 ∞ 30 574 1996570.28 30 4 201.18 69.86
0 0 5000 ∞ 50 574 1994547.28 48 0 185.19 69.21
0 0 5000 ∞ 100 574 1993683.76 89 0 183.03 69.33

Table 7 compares solution quality in a 25mm2 layout when the
number of grid cells is varied. When ISC-solver imports the con-
gestion map, ISC-solver internally coalesces multiple adjacent tool-
reported small grid cells into larger grid cells (Gcells in Table 7). To
reduce the runtime, ISC-solver stores congestion coefficients (i.e.,
xCon and yCon) between two scan FFs. The testcase consists of
200 original scan chains with the maximum scan chain depth of
600 and 500 ECO FFs. Solution quality measured in terms of WL,
#CE and SD are similar. However with 100×100 or more grid
cells, the runtime and memory usage increases by ∼3× and ∼10×
respectively as compared to with 10×10 grid cells. This is because
with 100×100 or more grid cells, several congestion coefficients
must be computed at runtime and few coefficients can be reused
between grid cells, whereas with 10×10 grid cells most congestion
coefficients can be precalculated and reused.

6. CONCLUSIONS
To improve testability of ECO logic in the SOC implementation

flow, incremental multiple-scan chain ordering for ECO FF inser-
tion can efficiently support large front-end RTL modifications when
the design flow is near tapeout stage. To avoid loss of test coverage,
ECO FFs must be added into existing scan chains with maximum
preservation of routing and timing closure. We present a new In-
cremental Multiple-Scan Chain Ordering formulation as the basis
for future automation of the tedious and time-consuming process
of manual scan stitching. Our proposed heuristic approach consists
of clustering, incremental clustering and ordering steps to mini-
mize the maximum chain length (test time), routing congestion,
and disturbance to existing scan chains. Our implementation, ISC-
solver, shows dominant performance compared to physical design
engineers’ manual solutions for an industrial design. ISC-solver
successfully minimizes the excess scan chain length, the incremen-
tal wirelength, and the disruption of existing scan chains. With
its heuristic approach based on greedy construction and iterative
improvement, ISC-solver achieves 5.3% test time reduction (i.e., no
additional test time from the ECO), and 45.71% reduction of incre-
mental wirelength, versus the manual (production tapeout) solution
for the industrial testcases. ISC-solver can also consider congestion

information to efficiently avoid high-congestion areas in the chip
layout. Various user-specified options allow tuning of the solu-
tion to various objectives. We conclude that ISC-solver provides a
promising approach to dealing with the insertion of ECO FFs into
an existing design which is near tapeout. Our ongoing work pursues
various code optimizations (speedups) as well as better connections
to the operations research literature, e.g., via the dynamic multi-
depot VRP with variable number of movable depots.

Acknowledgments
We thank Mr. Ching-Yao Liu for his participation in our initial
investigations. We also thank Ms. Nancy MacDonald for valuable
feedback and discussions of problem formulations.

7. REFERENCES
[1] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems

Testing and Testable Design, Computer Science Press, 1990.
[2] D. L. Applegate, R. E. Bixby, V. Chvátal and W. Cook, “Concorde

TSP Solver”, http://www.tsp.gatech.edu
[3] D. L. Applegate, R. E. Bixby, V. Chvátal, W. Cook, D. G. Espinoza,

M. Goycoolea and K. Helsgaun, “Certification of an Optimal TSP
Tour through 85,000 Cities”, OR Letters 37(1) (2009), pp. 11-15.

[4] T. Bektas, “The Multiple Traveling Salesman Problem: An
Overview of Formulations and Solution Procedures”, Omega 34(3)
(2006), pp. 209-219.

[5] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem”,
Management Science 6(1) (1959), pp. 80-91.

[6] J.-F. Cordeau, M. Gendreau and G. Laporte, “A Tabu Search
Heuristic for Periodic and Multi-Depot Vehicle Routing Problems”,
Networks 30(2) (1998), pp. 105-119.

[7] M. Elm, H.-J. Wunderlich, M. E. Imhof, C. G. Zoellin, J. Leenstra
and N. Maeding, “Scan Chain Clustering for Test Power Reduction”,
Proc. DAC, 2008, pp. 828-833.

[8] M. Feuer and C. C. Koo, “Method for Rechaining Shift Register
Latches Which Contain More Than One Physical Book”, IBM
Technical Disclosure Bulletin 25(9) (1983), pp. 4818-4820.

[9] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for
Improving Network Partitions”, Proc. DAC, 1982, pp. 175-181.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.



Table 8: Randomly generated testcase results with and without congestion information. (SC = #scan chains; SD = scan depth; #CE = number of cut edges.)

Congestion Original Scan Information #ECO Post-ECO Scan Information
Aware? FFsSC SD WL (µm) SD WL (µm) #CE CPU Time (s) Mem (MB)

No 500 600 5331786.45

200 600 5350960.45 19 18.61 93.30
500 600 5354949.67 20 85.51 93.82
1000 600 5379113.05 28 328.33 94.86
2000 600 5400818.87 32 1300.72 97.84

Yes 500 600 5331786.45

200 600 5355131.92 24 47.10 133.78

Figure 5(a)

500 600 5362603.72 23 212.18 134.28
1000 600 5387926.79 39 765.43 135.36
2000 600 5434472.62 29 3280.43 140.04

Yes 500 600 5331786.45

200 600 5355222.36 20 52.96 133.91

Figure 5(b)

500 600 5362192.94 37 209.93 134.41
1000 600 5396720.22 26 829.11 135.86
2000 600 5429455.72 37 3318.68 139.37

Yes 500 600 5331786.45

200 600 5355800.32 23 47.96 133.78

Figure 5(c)

500 600 5366554.20 27 267.38 134.79
1000 600 5398157.62 37 749.31 135.48
2000 600 5443891.86 31 2983.94 139.19

(a) Non-congestion-aware solution.

(b) Congestion-aware solution.
Figure 8: Contrast between non-congestion-aware and congestion-
aware ISC-solver solutions. A pair of path endpoints in each
solution represents a cut edge in the original scan chain.

[11] M. Gendreau, J.-Y. Potvin, O. Bräysy, G. Hasle, and A.
Løkketangen, Metaheuristics for the Vehicle Routing Problem and
its Extensions: A Categorized Bibliography, Springer, 2008.

[12] P. Gupta, A. B. Kahng and S. Mantik, “Routing-Aware Scan Chain
Ordering”, Proc. ASP-DAC, 2003, pp. 857-862.

[13] P. Gupta, A. B. Kahng and S. Mantik, “A Proposal for
Routing-Based Timing-Driven Scan Chain Ordering”, Proc. ISQED,
2003, pp. 339-343.

[14] W. Ho, G. T. S. Ho, P. Ji and H. C. W. Lau, “A Hybrid Genetic
Algorithm for the Multi-Depot Vehicle Routing Problem”,
Engineering Applications of AI 21(4) (2008), pp. 548-557.

[15] D. S. Johnson, “Local Optimization and the Traveling Salesman
Problem”, Proc. ICALP, 1990, pp. 446-461.

[16] G. Laporte, Y. Nobert and D. Arpin, “Optimal Solutions to
Capacitated Multidepot Vehicle Routing Problems”, Congressus
Numerantium 44 (1984), pp. 283-292.

[17] G. Laporte, “The Vehicle Routing Problem: An Overview of Exact
and Approximate Algorithms”, European Journal of Operations
Research 59(3) (1992), pp. 345-358.

[18] E. L. Lawler, J. K. Lenstra, A. Rinnooy-Kan and D. Shmoys, The
Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley, 1985.

[19] M. Mirabi, S. M. T. F. Ghomi and F. Jolai, “Efficient Stochastic
Hybrid Heuristics for the Multi-Depot Vehicle Routing Problem”,
Robotics and Computer-Integrated Manufacturing 26(6) (2010), pp.
564-569.

[20] A.-S. Pepin, G. Desaulniers, A. Hertz and D. Huisman, “A
Comparison of Five Heuristics for the Multiple Depot Vehicle
Scheduling Problem”, Scheduling 12(1) (2009), pp. 17-30.

[21] K. Rahimi and M. Soma, “Layout Driven Synthesis of Multiple Scan
Chains”, IEEE Trans. on CAD 22(3) (2003), pp. 317-326.

[22] J.-C. Rau, C.-H. Lin and J.-Y. Chang, “An Efficient Low-Overhead
Policy for Constructing Multiple Scan-Chains”, Proc. Asian Test
Symposium, 2004, pp. 82-87.

[23] G. Reinelt, “TSPLIB95”, Interdisziplinäres Zentrum für
Wissenschaftliches Rechnen (IWR), Heidelberg, 1995.

[24] J. Renaud, G. Laporte and F. F. Boctor, “A Tabu Search Heuristic for
the Multi-Depot Vehicle Routing Problem”, Computers and OR
23(3) (1996), pp. 229-235.

[25] G. Seok, I.-S. Lee, T. Ambler and B. F. Womack, “An Efficient Scan
Chain Partitioning Scheme with Reduction of Test Data under
Routing Constraint”, Proc. Symp. on Defect and Fault-Tolerance,
2006, pp. 145-156.

[26] D. Xiang, M.-J. Chen, J.-G. Sun and H. Fujiwara, “Improving Test
Effectiveness of Scan-Based BIST by Scan Chain Partitioning”,
IEEE Trans. on CAD 24(6) (2005), pp. 916-927.

[27] ScanOpt. http://vlsicad.ucsd.edu/GSRC/Bookshelf/Slots/ScanOpt/ .


